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A FIXED POINT APPROACH TO THE STABILITY OF 3-LIE

HOMOMORPHISMS AND 3-LIE DERIVATIONS

Siriluk Paokanta a and Jung Rye Lee b, ∗

Abstract. Using the fixed point method, we prove the Hyers-Ulam stability of
3-Lie homomorphisms and 3-Lie derivations in 3-Lie algebras for Cauchy-Jensen
functional equation.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam

[15] concerning the stability of group homomorphisms. Hyers [8] gave a first affir-

mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem

was generalized by Aoki [1] for additive mappings and by Rassias [14] for linear

mappings by considering an unbounded Cauchy difference. A generalization of the

Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Rassias’ approach.

A Lie algebra is a Banach algebra endowed with the Lie product

[x, y] :=
(xy − yx)

2
.

Similarly, a 3-Lie algebra is a Banach algebra endowed with the product[
[x, y], z

]
:=

[x, y]z − z[x, y]

2
.

Let A and B be two 3-Lie algebras. A C-linear mapping H : A→ B is called a 3-Lie

homomorphism if

H([[x, y], z]) = [[H(x),H(y)],H(z)]
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for all x, y, z ∈ A. A C-linear mapping D : A→ A is called a 3-Lie derivation if

D
(
[[x, y], z]

)
= [[D(x), y], z] + [[x,D(y)], z] + [[x, y, ], D(z)]

for all x, y, z ∈ A (see [17]).

We recall a fundamental result in fixed point theory.

Theorem 1.1 ([2, 5]). Let (X, d) be a complete generalized metric space and let

J : X → X be a strictly contractive mapping with Lipschitz constant α < 1. Then

for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [9] were the first to provide applications of stabil-

ity theory of functional equations for the proof of new fixed point theorems with

applications. By using fixed point methods, the stability problems of several func-

tional equations have been extensively investigated by a number of authors (see

[3, 4, 6, 12, 13]).

Throughout this paper, we suppose that A and B are two 3-Lie algebras. For

convenience, we use the following abbreviation for a given mapping f : A→ B

Dµf(x, y, z) := f(
µx+ µy

2
+ µz) + f(

µx+ µz

2
+ µy) + f(

µy + µz

2
+ µx)

− 2µf(x)− 2µf(y)− 2µf(z)

for all µ ∈ T1 := {λ ∈ C : |λ| = 1} and all x, y, z ∈ A.

Throughout this paper, assume that A is a 3-Lie algebra with norm ∥ ·∥ and that

B is a 3-Lie algebra with norm ∥ · ∥.

2. Stability of 3-Lie Homomorphisms in 3-Lie Algebras

We need the following lemmas which have been given in for proving the main

results.
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Lemma 2.1 ([16]). Let X be a uniquely 2-divisible abelian group and Y be linear

space. A mapping f : X → Y satisfies

(2.1) f(
x+ y

2
+ z) + f(

x+ z

2
+ y) + f(

y + z

2
+ x) = 2[f(x) + f(y) + f(z)]

for all x, y, z ∈ X if and only if f : X → Y is additive.

Lemma 2.2 ([10]). Let X and Y be linear spaces and let f : X → Y be a mapping

such that

(2.2) Dµf(x, y, z) = 0

for all µ ∈ T1 and all x, y, z ∈ A. Then the mapping f : X → Y is C-linear.

Using the fixed point method, we investigate the Hyers-Ulam stability of 3-Lie

homomorphisms in 3-Lie algebras associated to the functional equation (2.1).

Theorem 2.3. Let φ : A3 → [0,∞) be a function such that there exists an L < 1

with

φ (x, y, z) ≤ 2Lφ
(x
2
,
y

2
,
z

2

)
(2.3)

for all x, y, z ∈ A. Suppose that f : A→ B is a mapping satisfying

(2.4) ∥Dµf(x, y, z)∥ ≤ φ(x, y, z),

∥f([[x, y], z])− [[f(x), f(y)], f(z)]∥ ≤ φ(x, y, z)(2.5)

for all µ ∈ T1 and all x, y, z ∈ A. Then there exists a unique 3-Lie homomorphism

H : A→ B such that

(2.6) ∥f(x)−H(x)∥ ≤ 1

6(1− L)
φ (x, x, x)

for all x ∈ A.

Proof. Letting µ = 1 and x = y = z in (2.4), we get

(2.7) ∥3f(2x)− 6f(x)∥ ≤ φ(x, x, x)

for all x ∈ A.

Consider the set

S := {g : A→ B, g(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ∥g(x)− h(x)∥ ≤ µφ (x, x, x) , ∀x ∈ A} ,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [11]).
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Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ A.

It follows from (2.7) that∥∥∥∥g(x)− 1

2
g(2x)

∥∥∥∥ ≤ 1

6
φ(x, x, x)

for all x ∈ A.

Let g, h ∈ S be given such that d(g, h)) = ε. Then

∥g(x)− h(x)∥ ≤ εφ (x, x, x)

for all x ∈ A. Since∥∥∥∥12g (2x)− 1

2
h(2x)

∥∥∥∥ ≤ 1

2
εφ (2x, 2x, 2x) ≤ Lεφ (x, x, x)

for all x ∈ A, d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.7) that d(f, Jf) ≤ 1
6 .

By Theorem 1.1, there exists a mappings H : A→ A satisfying the following:

(1) H is a fixed point of J , i.e.,

H (x) =
1

2
H (2x)(2.8)

for all x ∈ A. The mapping H is a unique fixed point of J . This implies that H is

a unique mapping satisfying (2.8) such that there exists a µ ∈ (0,∞) satisfying

∥f(x)−H(x)∥ ≤ µφ (x, x, x)

for all x ∈ A;

(2) d(J lf,H) → 0 as l → ∞. This implies the equality

lim
l→∞

1

2l
f
(
2lx

)
= H(x)

for all x ∈ A;

(3) d(f,H) ≤ 1
1−Ld(f, Jf), which implies

∥f(x)−H(x)∥ ≤ 1

6(1− L)
φ (x, x, x)

for all x ∈ A. Thus we get the inequality (2.6).
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It follows from (2.3) that

∥DµH(x, y, z)∥ = lim
n→∞

1

2n
∥Dµf(2

nx, 2ny, 2nz)∥

≤ lim
n→∞

1

2n
φ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A and all µ ∈ T1. So DµH (x, y, z) = 0 for all µ ∈ T1 and all

x, y, z ∈ A. By Lemma 2.2, the mapping H : A→ B is C-linear.
It follows from (2.5) that

∥H([[x, y], z])− [[H(x),H(y)],H(z)]∥

= lim
n→∞

1

8n
∥f([[2nx, 2ny], 2nz])− [[f(2nx), f(2ny)], f(2nz)]∥

≤ lim
n→∞

1

8n
φ(2nx, 2ny, 2nz) ≤ lim

n→∞

1

2n
φ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A. Thus

H([[x, y], z]) = [[H(x),H(y)],H(z)]

for all x, y, z ∈ A.

Therefore, the mapping H : A→ B is a 3-Lie homomorphism. �

Corollary 2.4. Let θ, r be positive real numbers with r < 1. Suppose that f : A→ B

is a mapping such that

(2.9) ∥Dµf(x, y, z)∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r),

∥f([[x, y], z])− [[f(y), f(z)], f(x)]∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r)(2.10)

for all µ ∈ T1 and all x, y, z ∈ A. Then there exists a unique 3-Lie homomorphism

H : A→ B such that

(2.11) ∥f(x)−H(x)∥ ≤ θ

2− 2r
∥x∥r

for all x ∈ A.

Proof. The proof follows from Theorem 2.3 by taking L = 2r−1 and φ(x, y, z) =

θ(∥x∥r + ∥y∥r + ∥z∥r) for all x, y, z ∈ A. �

Theorem 2.5. Let φ : A3 → [0,∞) be a function such that there exists an L < 1

with

φ
(x
2
,
y

2
,
z

2

)
≤ L

2
φ (x, y, z)(2.12)
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for all x, y, z ∈ A. Suppose that f : A→ B is a mapping such that

∥Dµf(x, y, z)∥B ≤ φ(x, y, z),

∥f([[x, y], z])− [[f(x), f(y)], f(z)]∥ ≤ φ(x, y, z)

for all µ ∈ T1 and all x, y, z ∈ A. Then there exists a unique 3-Lie homomorphism

H : A→ B such that

∥f(x)−H(x)∥ ≤ L

6(1− L)
φ(x, x, x)(2.13)

for all x ∈ A.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem

2.3.

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x
2

)
for all x ∈ A.

It follows from (2.7) that∥∥∥f(x)− 2f
(x
2

)∥∥∥ ≤ 1

3
φ
(x
2
,
x

2
,
x

2

)
≤ L

6
φ(x, x, x)

for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 2.6. Let θr and q3 be non-negative real numbers with r > 1. Suppose

that f : A→ B is a mapping satisfying (2.9) and (2.10). Then there exists a unique

3-Lie homomorphism H : A→ B such that

∥f(x)−H(x)∥ ≤ θ

2r − 2
∥x∥r(2.14)

for all x ∈ A.

Proof. The proof follows from Theorem 2.5 by taking L = 21−r and φ(x, y, z) =

θ(∥x∥r + ∥y∥r + ∥z∥r) for all x, y, z ∈ A. �

3. Stability of 3-Lie Derivations on 3-Lie Algebras

Using the fixed point method, we investigate the Hyers-Ulam stability of 3-Lie

derivations in 3-Lie algebras associated to the functional equation (2.1).
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Theorem 3.1. Let φ : A3 → [0,∞) be a function satisfying (2.3). Suppose that

f : A→ A is a mapping satisfying

∥Dµf(x, y, z)∥ ≤ φ(x, y, z),

∥f([[x, y], z])− [[f(x), y], z]− [[x, f(y)], z]− [[x, y], f(z)]∥ ≤ φ(x, y, z)(3.1)

for all µ ∈ T1 and all x, y, z ∈ A. Then there exists a unique 3-Lie derivation

D : A→ A satisfying (2.6).

Proof. By the proof of Theorem 2.3, there exists a unique C-linear mapping D :

A→ A satisfying (2.6) and

D(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ A. It follows from (3.1) that

∥D([[x, y], z])− [[D(x), y], z]− [[x,D(y)], z]− [[x, y], D(z)]∥

= lim
n→∞

1

8n
∥f([[2nx, 2ny], 2nz])− [[f(2nx), 2ny], 2nz]− [[2nx, f(2ny)], 2nz]− [[2nx, 2nx], f(2nz)]∥

≤ lim
n→∞

1

8n
φ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A. So

D([[x, y], z]) = [[D(x), y], z] + [[x,G(y)], z] + [[x, y], D(z)]

for all x, y, z ∈ A. Therefore, the mapping D : A→ A is a 3-Lie derivation. �

Corollary 3.2. Let θ, r be positive real numbers with r < 1. Suppose that f : A→ A

is a mapping satisfying (2.9) and (2.10). Then there exists a unique 3-Lie derivation

D : A→ A satisfying (2.11).

Theorem 3.3. Let ψ : A3 → [0,∞) be a function satisfying (2.12). Suppose that

f : A→ A is a mapping satisfying

∥Dµf(x, y, z)∥ ≤ ψ(x, y, z),

∥f([[x, y], z])− [[f(x), y], z]− [[x, f(y)], z]− [[x, y], f(z)]∥ ≤ ψ(x, y, z)

for all µ ∈ T1 and all x, y, z ∈ A. Then there exists a unique 3-Lie derivation

D : A→ A satisfying (2.13).

Proof. By the proof of Theorem 2.5, there exists a unique C-linear mapping D :

A→ A satisfying (2.13) and

D(x) := lim
n→∞

2nf(
x

2n
)
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for all x ∈ A.

The rest of proof is similar to the proof Theorem 3.1. �

Corollary 3.4. Let θ, r be non-negative real numbers with r > 1. Suppose that

f : A → B is a mapping satisfying (2.9) and (2.10). Then there exists a unique

3-Lie derivation D : A→ A satisfying (2.14).
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2. L. Cădariu & V. Radu: Fixed points and the stability of Jensen’s functional equation.

J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).

3. : On the stability of the Cauchy functional equation: a fixed point approach.

Grazer Math. Ber. 346 (2004), 43-52.

4. : Fixed point methods for the generalized stability of functional equations in a

single variable. Fixed Point Theory Appl. 2008, Art. ID 749392 (2008).

5. J. Diaz & B. Margolis: A fixed point theorem of the alternative for contractions on a

generalized complete metric space. Bull. Am. Math. Soc. 74 (1968), 305-309.

6. I. EL-Fassi: Generalized hyperstability of a Drygas functional equation on a restricted

domain using Brzdek’s fixed point theorem. J. Fixed Point Theory Appl. 19 (2017),

2529-2540.
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