KYUNGPOOK Math. J. 63(2023), 325-331
https://doi.org/10.5666/KMJ.2023.63.3.325
pISSN 1225-6951 eISSN 0454-8124
(C) Kyungpook Mathematical Journal

## Annihilating Conditions of Generalized Skew Derivations on Lie Ideals

Nadeem ur Rehman and Sajad Ahmad Pary<br>Department of Mathematics, Aligarh Muslim University, 202002 Aligarh, India<br>e-mail: nu.rehman.mm@amu.ac.in and paryamu@gmail.com<br>Junaid Nisar*<br>Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India<br>$e$-mail: junaidnisar73@gmail.com; junaid.nisar@sitpune.edu.in

Abstract. Let $\mathfrak{A}$ be a prime ring of $\operatorname{char}(\mathfrak{A}) \neq 2, \mathscr{L}$ a non-central Lie ideal of $\mathfrak{A}, \mathscr{F}$ a generalized skew derivation of $\mathfrak{A}$ and $p \in \mathfrak{A}$, a nonzero fixed element. If $p \mathscr{F}(\eta) \eta \in C$ for any $\eta \in \mathscr{L}$, then $\mathfrak{A}$ satisfies $S_{4}$.

## 1. Introduction

Throughout this article, $\mathfrak{A}$ is a prime ring with center $Z(\mathfrak{A})$, right Martindale quotient ring $\mathscr{Q}$, extended centroid $C$ and $p \in \mathfrak{A}$, a nonzero fixed element. Any information about definitions and main properties can be found in [3]. The standard polynomial identity $S_{4}$ in four variables is defined as $S_{4}\left(\eta_{1}, \eta_{2}, \eta_{4}, \eta_{4}\right)=$ $\sum(-1)^{\sigma} \eta_{\sigma(1)} \eta_{\sigma(2)} \eta_{\sigma(3)} \eta_{\sigma(4)}$, where $(-1)^{\sigma}$ is +1 when $\sigma$ is an even permutation, and $(-1)^{\sigma}$ is $(-1)$, when $\sigma$ is an odd permutation in the symmetric group $S_{4}$. An additive map $d: \mathfrak{A} \rightarrow \mathfrak{A}$ is a skew derivation of $\mathfrak{A}$ if $d(\eta \omega)=d(\eta) \omega+\alpha(\eta) d(\omega)$ for all $\eta, \omega \in \mathfrak{A}$, where $\alpha$ is associated automorphism of $d$. If $\alpha$ is an identity automorphism of $\mathfrak{A}$ then $d$ is derivation of $\mathfrak{A}$. In particular, for a fixed $a \in \mathfrak{A}$, the mapping $I_{a}(\eta)=[\eta, a]$ is derivation called an inner derivation of $\mathfrak{A}$. An additive map $\mathscr{F}: \mathfrak{A} \rightarrow \mathfrak{A}$ is a generalized skew derivation if $\mathscr{F}(\eta \omega)=\mathscr{F}(\eta) \omega+\alpha(\eta) d(\omega)$ for all $\eta, \omega \in \mathfrak{A}$, where $d$ is an skew derivation of $\mathfrak{A}$ with associated automorphism $\alpha$. Further, a generalized skew derivation $\mathscr{F}: \mathfrak{A} \rightarrow \mathfrak{A}$ is called $X$ - inner if there exist elements $a, b \in \mathscr{Q}$ and an automorphism $\alpha$ of $\mathfrak{A}$ such that $\mathscr{F}(\eta)=a \eta+\alpha(\eta) b$ for all

[^0]$\eta \in \mathfrak{A}$, otherwise it is outer. Similarly, a skew derivation $d: \mathfrak{A} \rightarrow \mathfrak{A}$ is called X- inner if there is element $a \in \mathscr{Q}$ and an automorphism $\alpha$ of $\mathfrak{A}$ such that $d(\eta)=a \eta-\alpha(\eta) a$ for all $\eta \in \mathfrak{A}$, otherwise, it is X-outer. The notion of a generalized skew derivation is combination of the notions of skew derivation and generalized derivation.

In [13], Sharma and Dhara proved that if $\mathfrak{A}$ is a prime ring with non-zero derivation $d, \mathscr{L}$ a non-central Lie ideal and $a \in \mathfrak{A}$ such that $a \eta^{n} d(\eta)^{m}=0$ for all $\eta \in \mathscr{L}$, where $n \geq 1$ and $m \geq 1$ are fixed integers, then one of the following holds:
(1) $a=0$ or $d(\mathscr{L})=0$ if $\operatorname{char}(\mathfrak{A}) \neq 2$.
(2) $a=0$ or $d(\mathfrak{A})=0$ if $[\mathscr{L}, \mathscr{L}] \neq 0$ and $\mathfrak{A} \neq M_{2}(F)$.

In [8], Dhara and De Filippis considered generalized derivations. They proved for a prime ring $\mathfrak{A}$ that if $H$ is a generalized derivation of $\mathfrak{A}$ and $\mathscr{L}$ a non-commutative Lie ideal of $\mathfrak{A}$ such that $\eta^{s} H(\eta) \eta^{t}=0$ for all $\eta \in \mathscr{L}$, where $s \geq 0, t \geq 0$ are fixed integers, then $H(\eta)=0$, for all $\eta \in \mathfrak{A}$, unless $\operatorname{Char}(\mathfrak{A})=2$ and $\mathfrak{A}$ satisfies $S_{4}$.

In [9], Du and Wang demonstrated the following result for generalized derivations. Let $\mathfrak{A}$ be a prime ring, $U$ be its Utumi ring of quotients, $H$ a nonzero generalized derivation of $\mathfrak{A}, \mathscr{L}$ a non-central Lie ideal of $\mathfrak{A}$ and $0 \neq a \in \mathfrak{A}$. Suppose that $a \eta^{s} H(\eta) \eta^{t}=0$ for all $\eta \in \mathscr{L}$, where $s, t \geq 0$ and $n \geq 1$ are fixed integers. Then either $s=0$ and there exists $b \in U$ such that $H(\eta)=b \eta$ for all $\eta \in \mathfrak{A}$ with $a b=0$ or $\mathfrak{A}$ satisfies $S_{4}$.

Inspired by the above outcomes, in the present paper, we prove the following result about generalized skew derivations with an annihilating condition on the non-central Lie ideal.

Theorem 1.1. Let $\mathfrak{A}$ be a prime ring of $\operatorname{Char}(\mathfrak{A}) \neq 2$, $\mathscr{L}$ a non-central Lie ideal of $\mathfrak{A}, \mathscr{F}$ a generalized skew derivation of $\mathfrak{A}$ and $p \in \mathfrak{A}$, a nonzero fixed element. If $p \mathscr{F}(\eta) \eta \in C$ for any $\eta \in \mathscr{L}$, then $\mathfrak{A}$ satisfies $S_{4}$.

## 2. Preliminaries

The following facts are often referenced in the proofs of our results:
Fact 2.1. Let $\mathfrak{A}$ be a prime ring and $\mathscr{I}$ be a two sided ideal of $\mathfrak{A}$. Then $\mathscr{I}, \mathfrak{A}$ and $\mathscr{Q}$ satisfy the same generalized polynomial identity with coefficients in $\mathscr{Q}$ [5]. Furthermore, $\mathscr{I}, \mathfrak{A}$ and $\mathscr{Q}$ satisfy the same generalized polynomial identity with automorphisms [6].
Fact 2.2. ([14, Lemma 2.1]) Let $\mathfrak{A}$ be a prime ring with extended centroid $C$. Then the following conditions are equivalent:
(1) $\operatorname{dim}_{\mathscr{C}} \mathfrak{A} \mathscr{C} \leq 4$.
(2) $\mathfrak{A}$ satisfies $S_{4}$.
(3) $\mathfrak{A}$ is commutative or $\mathfrak{A}$ embeds in $M_{2}(F)$, for $F$ a field.
(4) $\mathfrak{A}$ is algebraic of bounded degree 2 over $\mathscr{C}$.
(5) $\mathfrak{A}$ satisfies $\left[\left[a^{2}, b\right],[a, b]\right]=0$.

Fact 2.3. ([7, Theorem 1]) Let $\mathfrak{A}$ be a prime ring, $D$ be an X-outer skew derivation of $\mathfrak{A}$ and $\alpha$ be an X- outer automorphism of $\mathfrak{A}$. If $\left(\psi\left(a_{i},\right), D\left(a_{i}\right), \alpha\left(a_{i}\right)\right)$ is a generalized polynomial identity for $\mathfrak{A}$, then $\mathfrak{A}$ also satisfies the generalized polynomial identity $\psi\left(a_{i}, b_{i}, c_{i}\right)$, where $a_{i}, b_{i}, c_{i}$ are distinct indeterminates.
Fact 2.4. Let $\mathfrak{A}$ be a prime ring and $\mathscr{L}$ a be non-central Lie ideal of $\mathfrak{A}$. If $\operatorname{char}(\mathfrak{A}) \neq 2$, by [3, Lemma 1] there exists a nonzero ideal $\mathscr{I}$ of $\mathfrak{A}$ such that $0 \neq[\mathscr{I}, \mathfrak{A}] \subseteq \mathscr{L}$. If $\operatorname{char}(\mathfrak{A})=2$ and $\operatorname{dim}_{\mathscr{G}} \mathfrak{A} \mathscr{C}>4$, i.e., $\operatorname{char}(\mathfrak{A})=2$ and $\mathfrak{A}$ does not satisfy $S_{4}$, then by [11, Theorem 13] there exists a nonzero ideal $\mathscr{I}$ of $\mathfrak{A}$ such that $0 \neq[\mathscr{I}, \mathfrak{A}] \subseteq \mathscr{L}$. Thus, if either $\operatorname{char}(\mathfrak{A}) \neq 2$ or $\mathfrak{A}$ does not satisfy $S_{4}$, then we may conclude that there exists a nonzero ideal $\mathscr{I}$ of $\mathfrak{A}$ such that $[\mathscr{I}, \mathscr{I}] \subseteq \mathscr{L}$.
Fact 2.5. ([2, Lemma 7.1]) Let $V_{D}$ be a vector space over a division ring $D$ with $\operatorname{dim} V_{D} \geq 2$ and $T \in \operatorname{End}(V)$. If $\mathfrak{s}$ and $T \mathfrak{s}$ are $D$-dependent for every $\mathfrak{s} \in V$, then there exists $\chi \in D$ such that $T \mathfrak{s}=\chi \mathfrak{s}$ for every $\mathfrak{s} \in \mathscr{V}$.

## 3. Some Important Results

We start with the following lemma and proposition; they are required for the development of our theorems:

Lemma 3.1. Suppose $\mathfrak{A}$ is a primitive ring isomorphic to a dense ring of linear transformations on some vector space $V$ over a division ring $D, \operatorname{dim}_{D} V \geq 2, f \in$ $\operatorname{End}(V)$ and $a \in \mathfrak{A}$. If $a \mathfrak{s}=0$, for any $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, f(\mathfrak{s})\}$ is linearly $D$-independent, then $a=0$, unless $\operatorname{dim}_{D} V=2$ and $\operatorname{char}(\mathfrak{A})=2$.

Proof. A vector $\mathfrak{s} \in V$ is fixed such that $\{\mathfrak{s}, f(\mathfrak{s})\}$ is linearly $D$-independent, then $a \mathfrak{s}=0$. Let $\mathfrak{r} \in V$ such that $\{\mathfrak{r}, \mathfrak{s}\}$ is linearly $D$-dependent. Then both $a \mathfrak{r}=0$ and $\mathfrak{r} \in \operatorname{span}\{\mathfrak{s}, f(\mathfrak{s})\}$ are trivial.

Now, let $\mathfrak{r} \in V$ such that $\{\mathfrak{r}, \mathfrak{s}\}$ is linearly $D$-independent and $a \mathfrak{r} \neq 0$. By the hypothesis, we have $\{\mathfrak{r}, f(\mathfrak{r})\}$ is linearly $D$-dependent, as are $\{\mathfrak{r}+\mathfrak{s}, f(\mathfrak{r}+\mathfrak{s})\}$ and $\{\mathfrak{r}-\mathfrak{s}, f(\mathfrak{r}-\mathfrak{s})\}$. Thus, there exists $\kappa_{\mathfrak{r}}, \kappa_{\mathfrak{r}+\mathfrak{s}}, \kappa_{\mathfrak{r}-\mathfrak{s}} \in D$ such that

$$
f(\mathfrak{r})=\mathfrak{r} \kappa_{\mathfrak{r}}, f(\mathfrak{r}+\mathfrak{s})=(\mathfrak{r}+\mathfrak{s}) \kappa_{\mathfrak{r}+\mathfrak{s}}, f(\mathfrak{r}-\mathfrak{s})=(\mathfrak{r}-\mathfrak{s}) \kappa_{\mathfrak{r}-\mathfrak{s}} .
$$

In other words, we have

$$
\begin{equation*}
\mathfrak{r} \kappa_{\mathfrak{r}}+f(\mathfrak{s})=\mathfrak{r} \kappa_{\mathfrak{r}+\mathfrak{s}}+\mathfrak{s} \kappa_{\mathfrak{r}+\mathfrak{s}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{r} \kappa_{\mathfrak{r}}-f(\mathfrak{s})=\mathfrak{r} \kappa_{\mathfrak{r}-\mathfrak{s}}-\mathfrak{s} \kappa_{\mathfrak{r}-\mathfrak{s}} . \tag{3.2}
\end{equation*}
$$

Suppose $\operatorname{dim}_{D} V \geq 3$. It is obvious that $\mathfrak{r} \in \operatorname{Span}\{\mathfrak{s}, f(\mathfrak{s})\}$, otherwise equation (3.1) is contradicted. Thus for any $\mathfrak{r} \in V$, we have $\mathfrak{r} \in \operatorname{Span}\{\mathfrak{s}, f(\mathfrak{s})\}$, that is $V=\operatorname{Span}\{\mathfrak{s}, f(\mathfrak{s})\}$, a contradiction.

To complete the proof, suppose $\operatorname{dim}_{D} V=2$ and suppose $\operatorname{char}(\mathfrak{A}) \neq 2$, if not we are done.

By equating (3.1) and (3.2), we get both

$$
\begin{equation*}
\mathfrak{r}\left(2 \kappa_{\mathfrak{r}}-\kappa_{\mathfrak{r}+\mathfrak{s}}-\kappa_{\mathfrak{r}-\mathfrak{s}}\right)+\mathfrak{s}\left(\kappa_{\mathfrak{r}-\mathfrak{s}}-\kappa_{\mathfrak{r}+\mathfrak{s}}\right)=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 f(\mathfrak{s})=\mathfrak{r}\left(\kappa_{\mathfrak{r}+\mathfrak{s}}-\kappa_{\mathfrak{r}-\mathfrak{s}}\right)+\mathfrak{s}\left(\kappa_{\mathfrak{r}+\mathfrak{s}}+\kappa_{\mathfrak{r}-\mathfrak{s}}\right) \tag{3.4}
\end{equation*}
$$

By (3.3) and since $\{\mathfrak{r}, \mathfrak{s}\}$ is $D$-independent and $\operatorname{char}(\mathfrak{A}) \neq 2$, we have $\kappa_{\mathfrak{r}}=\kappa_{\mathfrak{r}+\mathfrak{s}}=$ $\kappa_{\mathfrak{r}-\mathfrak{s}}$. Thus, $2 f(\mathfrak{s})=2 \mathfrak{s} \kappa_{\mathfrak{r}}$ by (3.4). Since $\{\mathfrak{s}, f(\mathfrak{s})\}$ is $D$-independent, the conclusion $\kappa_{\mathfrak{r}}=\kappa_{\mathfrak{r}+\mathfrak{s}}=0$ follows, that is $f(\mathfrak{r})=0$ and $\operatorname{char}(\mathfrak{A}) \neq 2$, it follows that $a \mathfrak{r}=0$, for any $\mathfrak{r} \in V$, i,e. $a V=(0)$. Hence, $a=0$ follows.

Lemma 3.2. Let $\mathfrak{A}$ be a non-commutative prime ring, $a \in \mathfrak{A}, I$ a nonzero twosided ideal of $\mathfrak{A}$ such that $\left[p a\left[\eta_{1}, \eta_{2}\right]^{2},\left[\omega_{1}, \omega_{2}\right]\right]=0$ for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$. Then $\mathfrak{A}$ satisfies $S_{4}$.

Proof. By hypothesis, $I$ satisfies $\left[p a\left[\eta_{1}, \eta_{2}\right]^{2},\left[\omega, \omega_{2}\right]\right]=0$ for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$. In particular $\eta_{1}=b$, we get $\left[p a\left[b, \eta_{2}\right]^{2},\left[\omega_{1}, \omega_{2}\right]\right]=0$. Then by [1, Lemma 2.2], we get $p a\left[b, \eta_{2}\right]^{2} \in C$. Since $\left[b, \eta_{2}\right]$ is an nonzero inner derivation of $\mathfrak{A}$ then $p a\left[b, \eta_{2}\right]^{2}$ is a central $D I$ for $I$. Thus by [4, Lemma 2], $\operatorname{dim}_{C} \mathfrak{A} C \leq 4$. Hence, by Fact $2.2, \mathfrak{A}$ satisfies $S_{4}$.

Proposition 3.3. Let $\mathfrak{A}$ be a prime ring, $a, b \in \mathfrak{A}, I$ be a nonzero two-sided ideal of $\mathfrak{A}$ such that $\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+\left[\eta_{1}, \eta_{2}\right] b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0$ for any $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$. Then $\mathfrak{A}$ satisfies $S_{4}$.

Proof. Suppose $b \in C$, then by given hyphothesis $\left.\left[p(a+b)\left[\eta_{1}, \eta_{2}\right]\right]^{2},\left[\omega_{1}, \omega_{2}\right]\right]=0$ for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$. Hence, by Lemma 3.2 the required conclusion follows. In case $b \notin C$, assume $\operatorname{dim}_{C} V \geq 3$ then $\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+\left[\eta_{1}, \eta_{2}\right] b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0$ is a non-trivial generalized polynomial identity (GPI) for $I$. Then by Fact 2.1 $\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+\left[\eta_{1}, \eta_{2}\right] b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0$ is a non-trivial GPI for $\mathfrak{A}$ and $\mathscr{Q}$ also. By Martindale Theorem [12], $\mathscr{Q}$ is a primitive ring having non-zero socle and its associated division ring is finite dimensional over $C$. Hence, by Jacobson Theorem in [10, Page 75], $\mathscr{Q}$ is isomorphic to a dense ring of linear transformation on some vector space $V$ over $C$. Assume that $\mathfrak{s} \in V$ exists such that $\{\mathfrak{s}, b \mathfrak{s}\}$ are linearly C-independent. Since $\operatorname{dim}_{C} V \geq 3$, then there exists $w \in V$ such that $\{\mathfrak{s}, b \mathfrak{s}, w\}$ are linearly C-independent. By the density of $\mathscr{Q}$, there exists $h_{1}, h_{2}, k_{1}, k_{2} \in \mathscr{Q}$ such that

$$
\begin{gathered}
h_{1} \mathfrak{s}=\mathfrak{s}, \quad h_{2} \mathfrak{s}=0, k_{1} w=w, k_{2} \mathfrak{s}=w, k_{1} \mathfrak{s}=0 \\
h_{1} w=0, h_{2} w=\mathfrak{s}, h_{1} b \mathfrak{s}=0, \quad h_{2} b \mathfrak{s}=\mathfrak{s} .
\end{gathered}
$$

This gives, $\left.0=\left(p\left(a\left[h_{1}, h_{2}\right]+\left[h_{1}, h_{2}\right] b\right)\left[h_{1}, h_{2}\right],\left[k_{1}, k_{2}\right]\right]\right) \mathfrak{s}=p \mathfrak{s}$. Hence, we have proved $p \mathfrak{s}=0$ for any vector $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, b \mathfrak{s}\}$ are linearly C-independent. By

Lemma 3.1, $p=0$ follows a contradiction. Thus, $\{\mathfrak{s}, b \mathfrak{s}\}$ are linearly C-dependent for all $\mathfrak{s} \in V$. Then by Fact 2.5 , there exists $\kappa \in C$ such that $b \mathfrak{s}=\kappa \mathfrak{s}$ for any $\mathfrak{s} \in V$. For any $r \in \mathfrak{A}$, we have that $[b, r] \mathfrak{s}=b(r \mathfrak{s})-r b \mathfrak{s}=\kappa r \mathfrak{s}-\kappa r \mathfrak{s}=0$, that is, $[b, r] V=0$. Hence $[b, r]=0$ for any $r \in \mathfrak{A}$, which implies that $b \in C$. This is a contradiction. Thus, $\operatorname{dim}_{C} V \leq 2$. Hence, $\mathfrak{A}$ satisfies $S_{4}$.

## 4. Case of inner generalized skew derivation

In this case, we have $a, b \in \mathscr{Q}$ such that $F(\eta)=a \eta+\alpha(\eta) b$ for all $\eta \in \mathfrak{A}$, where $\alpha \in \operatorname{Aut}(\mathscr{Q})$.

Lemma 4.1. Let $\mathfrak{A}$ be a prime ring of $\operatorname{Char}(\mathfrak{A}) \neq 2$ and $a, b, q \in \mathscr{Q}$. If $q$ is an invertible element of $\mathscr{Q}$ and $I$ be a nonzero two-sided ideal of $\mathfrak{A}$ such that

$$
\begin{equation*}
\left[p\left(a\left[\eta_{1} \eta_{2}\right]+q\left[\eta_{1}, \eta_{2}\right] q^{-1} b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0 \tag{4.1}
\end{equation*}
$$

for any $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$. Then $\mathfrak{A}$ satisfies $S_{4}$.
Proof. Suppose $q^{-1} b \in C$, then by (4.1), we have $\left[p(a+b)\left[\eta_{1}, \eta_{2}\right]^{2},\left[\omega_{1}, \omega_{2}\right]\right]=0$, for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$. Hence by Lemma $3.2, \mathfrak{A}$ satisfies $S_{4}$. Furthermore, in case $q \in C$, we have $\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+\left[\eta_{1}, \eta_{2}\right] b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0$ for any $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$, and hence by Proposition 3.3, we get the conclusion. From now, we have $q^{-1} b \notin C$ and $q \notin C$. So, (4.1) is a non-trivial GPI for $I$. Then by Fact 2.1, (4.1) is a nontrivial GPI for $\mathfrak{A}$ and $\mathscr{Q}$ also. By Martindale Theorem in [12], $\mathscr{Q}$ is a primitive ring having non-zero socle and its associated division ring is finite dimensional over $C$. Hence, by Jacobson Theorem in [10, page 75], $\mathscr{Q}$ is isomorphic to a dense ring of linear transformation on some vector space $V$ over $C$. Assume $\operatorname{dim}_{C} V \geq 3$ and suppose that there exists $\mathfrak{s} \in V$ such that $\left\{\mathfrak{s}, q^{-1} b \mathfrak{s}\right\}$ are linearly C-independent. Since $\operatorname{dim}_{C} V \geq 3$, then there exists $w \in V$ such that $\left\{\mathfrak{s}, q^{-1} b \mathfrak{s}, w\right\}$ are linearly C-independent. By the density of $\mathscr{Q}$, there is $h_{1}, h_{2}, k_{1}, k_{2}$ such that

$$
\begin{aligned}
& h_{1} \mathfrak{s}=\mathfrak{s}, \quad h_{2} \mathfrak{s}=0, \quad k_{1} \mathfrak{s}=0, k_{2} \mathfrak{s}=w, \quad k_{1} w=w \\
& h_{1} w=0, h_{2} w=\mathfrak{s}, h_{1} q^{-1} b \mathfrak{s}=0, h_{2} q^{-1} b \mathfrak{s}=\mathfrak{s}
\end{aligned}
$$

This gives, $0=\left(\left[p\left(a\left[h_{1}, h_{2}\right]+q\left[h_{1}, h_{2}\right] q^{-1} b\right)\left[h_{1}, h_{2}\right],\left[k_{1}, k_{2}\right]\right]\right) \mathfrak{s}=p q \mathfrak{s}$. Hence, we have proved $p q \mathfrak{s}=0$ for any vector $\mathfrak{s} \in V$ such that $\left\{\mathfrak{s}, q^{-1} b \mathfrak{s}\right\}$ are linearly Cindependent. By Lemma 3.1, $p q=0$ follows a contradiction. Thus, $\left\{\mathfrak{s}, q^{-1} b \mathfrak{s}\right\}$ are linearly C-dependent for all $\mathfrak{s} \in V$. Then by Fact 2.5 , there exists $\kappa \in C$ such that $q^{-1} b \mathfrak{s}=\kappa \mathfrak{s}$ for any $\mathfrak{s} \in V$. For any $r \in \mathfrak{A}$, we have that $\left[q^{-1} b, r\right] \mathfrak{s}=$ $q^{-1} b(r \mathfrak{s})-r q^{-1} b \mathfrak{s}=\kappa r \mathfrak{s}-\kappa r \mathfrak{s}=0$, that is, $\left[q^{-1} b, r\right] V=0$. Hence $\left[q^{-1} b, r\right]=0$ for any $r \in \mathfrak{A}$, which implies that $q^{-1} b \in C$. This is a contradiction. Thus, $\operatorname{dim}_{C} V \leq 2$. Hence, $\mathfrak{A}$ satisfies $S_{4}$.

Lemma 4.2. Let $\mathfrak{A}$ be a prime ring of $\operatorname{char}(\mathfrak{A}) \neq 2, \alpha: \mathfrak{A} \rightarrow \mathfrak{A}$ be an outer automorphism of $\mathfrak{A}$. suppose that $a, b \in \mathfrak{A}$ such that

$$
\begin{equation*}
\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+\alpha\left(\left[\eta_{1}, \eta_{2}\right]\right) b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0 \tag{4.2}
\end{equation*}
$$

for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in \mathfrak{A}$. Then $\mathfrak{A}$ satisfies $S_{4}$.
Proof. Assume $\alpha \neq I$, otherwise the conclusion directly follows from Proposition 3.3. By Fact 2.1, $\mathfrak{A}$ is a GPI-ring and $Q$ is also a GPI-ring. By Martindale Theorem in [12], $\mathscr{Q}$ is a primitive ring having non-zero socle and its associated division ring is finite dimensional over $C$. Hence, by Jacobson Theorem in [10, page 79], $\mathscr{Q}$ is isomorphic to a dense ring of linear transformation on some vector space $V$ over $C$. By [13, page 79], there exists a semi-linear transformation $T \in \operatorname{End}(V)$ such that $\alpha(\eta)=T \eta T^{-1}$ for all $\eta \in \mathscr{Q}$. Assume that $\mathfrak{s}$ and $T^{-1} b \mathfrak{s}$ are linearly C-dependent for all $\mathfrak{s} \in V$. By Fact 2.5, there exists $\kappa \in C$ such that $T^{-1} b \mathfrak{s}=\kappa \mathfrak{s}$ for all $\mathfrak{s} \in V$. In this case for all $\eta \in \mathscr{Q},(a \eta+\alpha(\eta) b) \mathfrak{s}=\left(a \eta+T \eta T^{-1} b\right) \mathfrak{s}=a \eta \mathfrak{s}+T \eta T^{-1} b \mathfrak{s}=$ $a \eta \mathfrak{s}+T(\kappa \eta \mathfrak{s})=a \eta \mathfrak{s}+T(\kappa(\eta \mathfrak{s}))=a \eta \mathfrak{s}+T\left(T^{-1} b\right)(\eta \mathfrak{s})=(a+b) \eta \mathfrak{s}$. This means that $(a \eta+\alpha(\eta) b) \mathfrak{s}=(a+b) \eta \mathfrak{s}$ for all $\eta \in \mathscr{Q}$ and $\mathfrak{s} \in V$, since $V$ is faithful, it follows that $(a \eta+\alpha(\eta) b)=(a+b) \eta$. Thus, (4.2) reduces to $\left[p(a+b)\left[\eta_{1}, \eta_{2}\right]^{2},\left[\omega_{1}, \omega_{2}\right]\right]=0$. Hence, by Lemma 3.2, $\mathfrak{A}$ satisfies $S_{4}$. Now, Suppose there exists $\mathfrak{s} \in V$ such that $\left\{\mathfrak{s}, T^{-1} b \mathfrak{s}\right\}$ are linearly $C$-independent. Assume $\operatorname{dim}_{C} V \geq 3$, then there exists $\mathfrak{w} \in V$ such that $\left\{\mathfrak{s}, T^{-1} b \mathfrak{s}, \mathfrak{w}\right\}$ are linearly $C$-independent. By the density of $\mathscr{Q}$, there exists $h_{1}, h_{2}, k_{1}, k_{2}$ such that

$$
\begin{gathered}
h_{1} T^{-1} b \mathfrak{s}=0, h_{2} T^{-1} b \mathfrak{s}=\mathfrak{s}, k_{1} \mathfrak{s}=0, k_{2} \mathfrak{s}=\mathfrak{w}, k_{1} \mathfrak{w}=\mathfrak{w} \\
h_{1} \mathfrak{s}=\mathfrak{s}, h_{2} \mathfrak{s}=0, h_{1} \mathfrak{w}=0, h_{2} \mathfrak{w}=\mathfrak{s}
\end{gathered}
$$

$0=\left(\left[p\left(a\left[h_{1}, h_{2}\right]+T\left[h_{1}, h_{2}\right] T^{-1} b\right)\left[h_{1}, h_{2}\right],\left[k_{1}, k_{2}\right]\right]\right) \mathfrak{s}=p T(\mathfrak{s})$. Hence, we have proved that $p T(\mathfrak{s})=0$ for every $\mathfrak{s} \in V$ such that $\left\{\mathfrak{s}, T^{-1} b \mathfrak{s}\right\}$ are linearly $C$-independent. By Lemma 3.1, $p=0$ follows a contradiction. Thus $\operatorname{dim}_{C} V \leq 2$. Hence $\mathfrak{A}$ satisfies $S_{4}$.

Proof of Theorem 1.1. In view of the Fact 2.4, a nonzero two-sided ideal $I$ exists such that $0 \neq[I, \mathfrak{A}] \subseteq L$. Therefore, $I$ satisfies $\left[p F\left(\left[\eta_{1}, \eta_{2}\right]\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0$. we known there exists a skew derivation $d$ of $\mathfrak{A}$ and an element $a \in \mathscr{Q}$ such that $F(\eta)=a \eta+d(\eta)$ for all $\eta \in \mathfrak{A}$.

Case 1: If $d$ is inner, then $d(\eta)=b \eta-\alpha(\eta) b$ for some $b \in \mathscr{Q}$ for all $\eta \in \mathscr{Q}$, So that $F(\eta)=(a+b) \eta-\alpha(\eta) b$. Then, we have $\left[p\left((a+b)\left[\eta_{1}, \eta_{2}\right]-\alpha\left(\left[\eta_{1}, \eta_{2}\right]\right) b\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0$ for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in I$
Subcase 1: When $\alpha$ is an identity map, then the conclusion follows from Proposition 3.3.
Subcase 2: When $\alpha$ is inner, then there is $q \in \mathscr{Q}-C$, such that $\alpha(\eta)=q \eta q^{-1}$ for all $\eta \in \mathscr{Q}$, then the conclusion follows from Lemma 4.1.
Subcase 3: When $\alpha$ is outer, then the conclusion follows from Lemma 4.2.
Case 2: When $d$ is outer, then we get

$$
\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+d\left(\left[\eta_{1}, \eta_{2}\right]\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0\right.
$$

for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in \mathscr{Q}$.
This implies that

$$
\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+d\left(\eta_{1}\right) \eta_{2}+\alpha\left(\eta_{1}\right) d\left(\eta_{2}\right)-d\left(\eta_{2}\right) \eta_{1}-\alpha\left(\eta_{2}\right) d\left(\eta_{1}\right)\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0
$$

for all $\eta_{1}, \eta_{2}, \omega_{1}, \omega_{2} \in \mathscr{Q}$.
Here $d$ is not inner, by applying Fact $2.3, \mathfrak{A}$ satisfies

$$
\left[p\left(a\left[\eta_{1}, \eta_{2}\right]+t_{1} \eta_{2}+\alpha\left(\eta_{1}\right) t_{2}-t_{2} \eta_{1}-\alpha\left(\eta_{2}\right) t_{1}\right)\left[\eta_{1}, \eta_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right]=0
$$

In particular, $t_{1}=t_{2}=0$, we get $\left[p a\left[\eta_{1}, \eta_{2}\right]^{2},\left[\omega_{1}, \omega_{2}\right]\right]=0$, then again by Lemma 3.2 , the given conclusion follows.

Acknowledgement. The authors are greatly indebted to the referee for his/her constructive comments and suggestions, which improved the quality of the paper.

## References

[1] C. Abdioğlu and T. K. Lee, A basic functional identity with application to jordan $\sigma$ biderivations, comm. Algebra, 45(4)(2017), 1741-1756
[2] K. I. Beidar and M. Bres̆ar, Extended Jacobson density theorem for rings with automorphisms and derivations, Israel J. Math., 122(2001), 317-346.
[3] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71(1981), 259-267.
[4] C. M. Chang and T. K. Lee, Annihilators of power values of derivations in prime rings, Comm. Algebra, 26(7)(1998), 2091-2113.
[5] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3)(1988), 723-728.
[6] C. L. Chuang, Differential identities with automorphism and anti-automorphisms II, J. Algebra, 160(1993), 292-335.
[7] C. L. Chuang and T. K. Lee, Identities with a single skew derivation, J. Algebra, 288(1)(2005), 59-77.
[8] B. Dhara and V. De Filippis, Notes on generalized derivation on Lie ideals in prime rings, Bull. Korean Math. Soc., 46(3)(2009), 599-605.
[9] Y. Du and Y. Wang, A result on generalized derivations in prime rings, Hacet. J. Math. Stat., 42(1)(2013), 81-85.
[10] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37, (1964).
[11] C. Lanski and S. Montgomery, Lie structure of prime ring of characteristic 2, Pacific J. Math., 42(1)(1972), 117-136.
[12] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12(1969), 576-584.
[13] R. K. Sharma and B. Dhara, An annihilator condition on prime rings with derivations, Tamsui Oxf. J. Math. Sci., 21(1)(2005), 71-80.
[14] Y. Wang, Power-centralizing automorphisms of Lie ideals in prime rings, Comm. Algebra, 34(2)(2006), 609-615.


[^0]:    * Corresponding Author.

    Received March 29, 2022; revised August 7, 2022; accepted August 22, 2022.
    2020 Mathematics Subject Classification: 16N60, 16W10, 16W25.
    Key words and phrases: Prime ring, Generalized skew derivation.
    For the first author, this research is supported by the National Board of Higher Mathematics (NBHM), India, Grant No. 02011/16/2020 NBHM (R. P.) R and D II/7786.

