KYUNGPOOK Math. J. 63(2023), 325-331 https://doi.org/10.5666/KMJ.2023.63.3.325 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Annihilating Conditions of Generalized Skew Derivations on Lie Ideals

NADEEM UR REHMAN AND SAJAD AHMAD PARY

Department of Mathematics, Aligarh Muslim University, 202002 Aligarh, India e-mail: nu.rehman.mm@amu.ac.in and paryamu@gmail.com

Junaid Nisar *

Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India e-mail: junaidnisar730gmail.com; junaid.nisar0sitpune.edu.in

ABSTRACT. Let \mathfrak{A} be a prime ring of $char(\mathfrak{A}) \neq 2$, \mathscr{L} a non-central Lie ideal of $\mathfrak{A}, \mathscr{F}$ a generalized skew derivation of \mathfrak{A} and $p \in \mathfrak{A}$, a nonzero fixed element. If $p\mathscr{F}(\eta)\eta \in C$ for any $\eta \in \mathscr{L}$, then \mathfrak{A} satisfies S_4 .

1. Introduction

Throughout this article, \mathfrak{A} is a prime ring with center $Z(\mathfrak{A})$, right Martindale quotient ring \mathscr{Q} , extended centroid C and $p \in \mathfrak{A}$, a nonzero fixed element. Any information about definitions and main properties can be found in [3]. The standard polynomial identity S_4 in four variables is defined as $S_4(\eta_1, \eta_2, \eta_4, \eta_4) = \sum (-1)^{\sigma} \eta_{\sigma(1)} \eta_{\sigma(2)} \eta_{\sigma(3)} \eta_{\sigma(4)}$, where $(-1)^{\sigma}$ is +1 when σ is an even permutation, and $(-1)^{\sigma}$ is (-1), when σ is an odd permutation in the symmetric group S_4 . An additive map $d : \mathfrak{A} \to \mathfrak{A}$ is a skew derivation of \mathfrak{A} if $d(\eta\omega) = d(\eta)\omega + \alpha(\eta)d(\omega)$ for all $\eta, \omega \in \mathfrak{A}$, where α is associated automorphism of d. If α is an identity automorphism of \mathfrak{A} then d is derivation called an inner derivation of \mathfrak{A} . An additive map $\mathscr{F} : \mathfrak{A} \to \mathfrak{A}$ is a generalized skew derivation if $\mathscr{F}(\eta\omega) = \mathscr{F}(\eta)\omega + \alpha(\eta)d(\omega)$ for all $\eta, \omega \in \mathfrak{A}$, where d is an skew derivation of \mathfrak{A} with associated automorphism α . Further, a generalized skew derivation $\mathscr{F} : \mathfrak{A} \to \mathfrak{A}$ is called X - inner if there exist elements $a, b \in \mathscr{Q}$ and an automorphism α of \mathfrak{A} such that $\mathscr{F}(\eta) = a\eta + \alpha(\eta)b$ for all

^{*} Corresponding Author.

Received March 29, 2022; revised August 7, 2022; accepted August 22, 2022.

²⁰²⁰ Mathematics Subject Classification: 16N60, 16W10, 16W25.

Key words and phrases: Prime ring, Generalized skew derivation.

For the first author, this research is supported by the National Board of Higher Mathematics (NBHM), India, Grant No. 02011/16/2020 NBHM (R. P.) R and D II/7786.

 $\eta \in \mathfrak{A}$, otherwise it is outer. Similarly, a skew derivation $d : \mathfrak{A} \to \mathfrak{A}$ is called X- inner if there is element $a \in \mathscr{Q}$ and an automorphism α of \mathfrak{A} such that $d(\eta) = a\eta - \alpha(\eta)a$ for all $\eta \in \mathfrak{A}$, otherwise, it is X-outer. The notion of a generalized skew derivation is combination of the notions of skew derivation and generalized derivation.

In [13], Sharma and Dhara proved that if \mathfrak{A} is a prime ring with non-zero derivation d, \mathscr{L} a non-central Lie ideal and $a \in \mathfrak{A}$ such that $a\eta^n d(\eta)^m = 0$ for all $\eta \in \mathscr{L}$, where $n \geq 1$ and $m \geq 1$ are fixed integers, then one of the following holds:

- (1) a = 0 or $d(\mathscr{L}) = 0$ if $char(\mathfrak{A}) \neq 2$.
- (2) a = 0 or $d(\mathfrak{A}) = 0$ if $[\mathscr{L}, \mathscr{L}] \neq 0$ and $\mathfrak{A} \neq M_2(F)$.

In [8], Dhara and De Filippis considered generalized derivations. They proved for a prime ring \mathfrak{A} that if H is a generalized derivation of \mathfrak{A} and \mathscr{L} a non-commutative Lie ideal of \mathfrak{A} such that $\eta^s H(\eta) \eta^t = 0$ for all $\eta \in \mathscr{L}$, where $s \ge 0, t \ge 0$ are fixed integers, then $H(\eta) = 0$, for all $\eta \in \mathfrak{A}$, unless $Char(\mathfrak{A}) = 2$ and \mathfrak{A} satisfies S_4 .

In [9], Du and Wang demonstrated the following result for generalized derivations. Let \mathfrak{A} be a prime ring, U be its Utumi ring of quotients, H a nonzero generalized derivation of \mathfrak{A} , \mathscr{L} a non-central Lie ideal of \mathfrak{A} and $0 \neq a \in \mathfrak{A}$. Suppose that $a\eta^s H(\eta)\eta^t = 0$ for all $\eta \in \mathscr{L}$, where $s, t \geq 0$ and $n \geq 1$ are fixed integers. Then either s = 0 and there exists $b \in U$ such that $H(\eta) = b\eta$ for all $\eta \in \mathfrak{A}$ with ab = 0 or \mathfrak{A} satisfies S_4 .

Inspired by the above outcomes, in the present paper, we prove the following result about generalized skew derivations with an annihilating condition on the non-central Lie ideal.

Theorem 1.1. Let \mathfrak{A} be a prime ring of $Char(\mathfrak{A}) \neq 2$, \mathscr{L} a non-central Lie ideal of $\mathfrak{A}, \mathscr{F}$ a generalized skew derivation of \mathfrak{A} and $p \in \mathfrak{A}$, a nonzero fixed element. If $p\mathscr{F}(\eta)\eta \in C$ for any $\eta \in \mathscr{L}$, then \mathfrak{A} satisfies S_4 .

2. Preliminaries

The following facts are often referenced in the proofs of our results:

Fact 2.1. Let \mathfrak{A} be a prime ring and \mathscr{I} be a two sided ideal of \mathfrak{A} . Then $\mathscr{I}, \mathfrak{A}$ and \mathscr{Q} satisfy the same generalized polynomial identity with coefficients in \mathscr{Q} [5]. Furthermore, $\mathscr{I}, \mathfrak{A}$ and \mathscr{Q} satisfy the same generalized polynomial identity with automorphisms [6].

Fact 2.2. ([14, Lemma 2.1]) Let \mathfrak{A} be a prime ring with extended centroid C. Then the following conditions are equivalent:

- (1) $\dim_{\mathscr{C}} \mathfrak{A} \mathscr{C} \leq 4.$
- (2) \mathfrak{A} satisfies S_4 .
- (3) \mathfrak{A} is commutative or \mathfrak{A} embeds in $M_2(F)$, for F a field.
- (4) \mathfrak{A} is algebraic of bounded degree 2 over \mathscr{C} .

(5) \mathfrak{A} satisfies $[[a^2, b], [a, b]] = 0.$

Fact 2.3. ([7, Theorem 1]) Let \mathfrak{A} be a prime ring, D be an X-outer skew derivation of \mathfrak{A} and α be an X- outer automorphism of \mathfrak{A} . If $(\psi(a_i,), D(a_i), \alpha(a_i))$ is a generalized polynomial identity for \mathfrak{A} , then \mathfrak{A} also satisfies the generalized polynomial identity $\psi(a_i, b_i, c_i)$, where a_i, b_i, c_i are distinct indeterminates.

Fact 2.4. Let \mathfrak{A} be a prime ring and \mathscr{L} a be non-central Lie ideal of \mathfrak{A} . If $char(\mathfrak{A}) \neq 2$, by [3, Lemma 1] there exists a nonzero ideal \mathscr{I} of \mathfrak{A} such that $0 \neq [\mathscr{I}, \mathfrak{A}] \subseteq \mathscr{L}$. If $char(\mathfrak{A}) = 2$ and $dim_{\mathscr{C}}\mathfrak{A}\mathscr{C} > 4$, i.e., $char(\mathfrak{A}) = 2$ and \mathfrak{A} does not satisfy S_4 , then by [11, Theorem 13] there exists a nonzero ideal \mathscr{I} of \mathfrak{A} such that $0 \neq [\mathscr{I}, \mathfrak{A}] \subseteq \mathscr{L}$. Thus, if either $char(\mathfrak{A}) \neq 2$ or \mathfrak{A} does not satisfy S_4 , then we may conclude that there exists a nonzero ideal \mathscr{I} of \mathfrak{A} such that $[\mathscr{I}, \mathscr{I}] \subseteq \mathscr{L}$.

Fact 2.5. ([2, Lemma 7.1]) Let V_D be a vector space over a division ring D with $\dim V_D \geq 2$ and $T \in End(V)$. If \mathfrak{s} and $T\mathfrak{s}$ are D-dependent for every $\mathfrak{s} \in V$, then there exists $\chi \in D$ such that $T\mathfrak{s} = \chi \mathfrak{s}$ for every $\mathfrak{s} \in \mathscr{V}$.

3. Some Important Results

We start with the following lemma and proposition; they are required for the development of our theorems:

Lemma 3.1. Suppose \mathfrak{A} is a primitive ring isomorphic to a dense ring of linear transformations on some vector space V over a division ring $D, \dim_D V \ge 2, f \in End(V)$ and $a \in \mathfrak{A}$. If $a\mathfrak{s} = 0$, for any $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, f(\mathfrak{s})\}$ is linearly D-independent, then a = 0, unless $\dim_D V = 2$ and $char(\mathfrak{A}) = 2$.

Proof. A vector $\mathfrak{s} \in V$ is fixed such that $\{\mathfrak{s}, f(\mathfrak{s})\}$ is linearly *D*-independent, then $a\mathfrak{s} = 0$. Let $\mathfrak{r} \in V$ such that $\{\mathfrak{r}, \mathfrak{s}\}$ is linearly *D*-dependent. Then both $a\mathfrak{r} = 0$ and $\mathfrak{r} \in \text{span} \{\mathfrak{s}, f(\mathfrak{s})\}$ are trivial.

Now, let $\mathfrak{r} \in V$ such that $\{\mathfrak{r}, \mathfrak{s}\}$ is linearly *D*-independent and $a\mathfrak{r} \neq 0$. By the hypothesis, we have $\{\mathfrak{r}, f(\mathfrak{r})\}$ is linearly *D*-dependent, as are $\{\mathfrak{r} + \mathfrak{s}, f(\mathfrak{r} + \mathfrak{s})\}$ and $\{\mathfrak{r} - \mathfrak{s}, f(\mathfrak{r} - \mathfrak{s})\}$. Thus, there exists $\kappa_{\mathfrak{r}}, \kappa_{\mathfrak{r}+\mathfrak{s}}, \kappa_{\mathfrak{r}-\mathfrak{s}} \in D$ such that

$$f(\mathfrak{r}) = \mathfrak{r}\kappa_{\mathfrak{r}}, \ f(\mathfrak{r} + \mathfrak{s}) = (\mathfrak{r} + \mathfrak{s})\kappa_{\mathfrak{r} + \mathfrak{s}}, \ f(\mathfrak{r} - \mathfrak{s}) = (\mathfrak{r} - \mathfrak{s})\kappa_{\mathfrak{r} - \mathfrak{s}}.$$

In other words, we have

(3.1)
$$\mathfrak{r}\kappa_{\mathfrak{r}} + f(\mathfrak{s}) = \mathfrak{r}\kappa_{\mathfrak{r}+\mathfrak{s}} + \mathfrak{s}\kappa_{\mathfrak{r}+\mathfrak{s}}$$

and

(3.2)
$$\mathfrak{r}\kappa_{\mathfrak{r}} - f(\mathfrak{s}) = \mathfrak{r}\kappa_{\mathfrak{r}-\mathfrak{s}} - \mathfrak{s}\kappa_{\mathfrak{r}-\mathfrak{s}}.$$

Suppose $\dim_D V \geq 3$. It is obvious that $\mathfrak{r} \in Span\{\mathfrak{s}, f(\mathfrak{s})\}$, otherwise equation (3.1) is contradicted. Thus for any $\mathfrak{r} \in V$, we have $\mathfrak{r} \in Span\{\mathfrak{s}, f(\mathfrak{s})\}$, that is $V = Span\{\mathfrak{s}, f(\mathfrak{s})\}$, a contradiction.

To complete the proof, suppose $dim_D V = 2$ and suppose $char(\mathfrak{A}) \neq 2$, if not we are done.

By equating (3.1) and (3.2), we get both

(3.3)
$$\mathfrak{r}(2\kappa_{\mathfrak{r}} - \kappa_{\mathfrak{r}+\mathfrak{s}} - \kappa_{\mathfrak{r}-\mathfrak{s}}) + \mathfrak{s}(\kappa_{\mathfrak{r}-\mathfrak{s}} - \kappa_{\mathfrak{r}+\mathfrak{s}}) = 0$$

and

(3.4)
$$2f(\mathfrak{s}) = \mathfrak{r}(\kappa_{\mathfrak{r}+\mathfrak{s}} - \kappa_{\mathfrak{r}-\mathfrak{s}}) + \mathfrak{s}(\kappa_{\mathfrak{r}+\mathfrak{s}} + \kappa_{\mathfrak{r}-\mathfrak{s}}).$$

By (3.3) and since $\{\mathfrak{r},\mathfrak{s}\}$ is *D*-independent and $char(\mathfrak{A}) \neq 2$, we have $\kappa_{\mathfrak{r}} = \kappa_{\mathfrak{r}+\mathfrak{s}} = \kappa_{\mathfrak{r}-\mathfrak{s}}$. Thus, $2f(\mathfrak{s}) = 2\mathfrak{s}\kappa_{\mathfrak{r}}$ by (3.4). Since $\{\mathfrak{s}, f(\mathfrak{s})\}$ is *D*-independent, the conclusion $\kappa_{\mathfrak{r}} = \kappa_{\mathfrak{r}+\mathfrak{s}} = 0$ follows, that is $f(\mathfrak{r}) = 0$ and $char(\mathfrak{A}) \neq 2$, it follows that $a\mathfrak{r} = 0$, for any $\mathfrak{r} \in V$, i.e. aV = (0). Hence, a = 0 follows.

Lemma 3.2. Let \mathfrak{A} be a non-commutative prime ring, $a \in \mathfrak{A}$, I a nonzero twosided ideal of \mathfrak{A} such that $[pa[\eta_1, \eta_2]^2, [\omega_1, \omega_2]] = 0$ for all $\eta_1, \eta_2, \omega_1, \omega_2 \in I$. Then \mathfrak{A} satisfies S_4 .

Proof. By hypothesis, I satisfies $[pa[\eta_1, \eta_2]^2, [\omega, \omega_2]] = 0$ for all $\eta_1, \eta_2, \omega_1, \omega_2 \in I$. In particular $\eta_1 = b$, we get $[pa[b, \eta_2]^2, [\omega_1, \omega_2]] = 0$. Then by [1, Lemma 2.2], we get $pa[b, \eta_2]^2 \in C$. Since $[b, \eta_2]$ is an nonzero inner derivation of \mathfrak{A} then $pa[b, \eta_2]^2$ is a central DI for I. Thus by [4, Lemma 2], $dim_C \mathfrak{A}C \leq 4$. Hence, by Fact 2.2, \mathfrak{A} satisfies S_4 .

Proposition 3.3. Let \mathfrak{A} be a prime ring, $a, b \in \mathfrak{A}$, I be a nonzero two-sided ideal of \mathfrak{A} such that $[p(a[\eta_1, \eta_2] + [\eta_1, \eta_2]b)[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$ for any $\eta_1, \eta_2, \omega_1, \omega_2 \in I$. Then \mathfrak{A} satisfies S_4 .

Proof. Suppose $b \in C$, then by given hyphothesis $[p(a + b)[\eta_1, \eta_2]]^2$, $[\omega_1, \omega_2]] = 0$ for all $\eta_1, \eta_2, \omega_1, \omega_2 \in I$. Hence, by Lemma 3.2 the required conclusion follows. In case $b \notin C$, assume $\dim_C V \geq 3$ then $[p(a[\eta_1, \eta_2] + [\eta_1, \eta_2]b)[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$ is a non-trivial generalized polynomial identity (GPI) for I. Then by Fact 2.1 $[p(a[\eta_1, \eta_2] + [\eta_1, \eta_2]b)[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$ is a non-trivial GPI for \mathfrak{A} and \mathscr{Q} also. By Martindale Theorem [12], \mathscr{Q} is a primitive ring having non-zero socle and its associated division ring is finite dimensional over C. Hence, by Jacobson Theorem in [10, Page 75], \mathscr{Q} is isomorphic to a dense ring of linear transformation on some vector space V over C. Assume that $\mathfrak{s} \in V$ exists such that $\{\mathfrak{s}, b\mathfrak{s}\}$ are linearly C-independent. Since $\dim_C V \geq 3$, then there exists $w \in V$ such that $\{\mathfrak{s}, b\mathfrak{s}, w\}$ are linearly C-independent. By the density of \mathscr{Q} , there exists $h_1, h_2, k_1, k_2 \in \mathscr{Q}$ such that

$$\begin{split} h_1\mathfrak{s} &= \mathfrak{s}, \ h_2\mathfrak{s} = 0, \ k_1w = w, \ k_2\mathfrak{s} = w, \ k_1\mathfrak{s} = 0, \\ h_1w &= 0, \ h_2w = \mathfrak{s}, \ h_1b\mathfrak{s} = 0, \ h_2b\mathfrak{s} = \mathfrak{s}. \end{split}$$

This gives, $0 = (p(a[h_1, h_2] + [h_1, h_2]b)[h_1, h_2], [k_1, k_2]])\mathfrak{s} = p\mathfrak{s}$. Hence, we have proved $p\mathfrak{s} = 0$ for any vector $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, b\mathfrak{s}\}$ are linearly C-independent. By

328

Lemma 3.1, p = 0 follows a contradiction. Thus, $\{\mathfrak{s}, \mathfrak{b}\mathfrak{s}\}$ are linearly C-dependent for all $\mathfrak{s} \in V$. Then by Fact 2.5, there exists $\kappa \in C$ such that $b\mathfrak{s} = \kappa\mathfrak{s}$ for any $\mathfrak{s} \in V$. For any $r \in \mathfrak{A}$, we have that $[b, r]\mathfrak{s} = b(r\mathfrak{s}) - rb\mathfrak{s} = \kappa r\mathfrak{s} - \kappa r\mathfrak{s} = 0$, that is, [b, r]V = 0. Hence [b, r] = 0 for any $r \in \mathfrak{A}$, which implies that $b \in C$. This is a contradiction. Thus, $\dim_C V \leq 2$. Hence, \mathfrak{A} satisfies S_4 .

4. Case of inner generalized skew derivation

In this case, we have $a, b \in \mathscr{Q}$ such that $F(\eta) = a\eta + \alpha(\eta)b$ for all $\eta \in \mathfrak{A}$, where $\alpha \in Aut(\mathscr{Q})$.

Lemma 4.1. Let \mathfrak{A} be a prime ring of $Char(\mathfrak{A}) \neq 2$ and $a, b, q \in \mathcal{Q}$. If q is an invertible element of \mathcal{Q} and I be a nonzero two-sided ideal of \mathfrak{A} such that

(4.1)
$$[p(a[\eta_1\eta_2] + q[\eta_1,\eta_2]q^{-1}b)[\eta_1,\eta_2], [\omega_1,\omega_2]] = 0$$

for any $\eta_1, \eta_2, \omega_1, \omega_2 \in I$. Then \mathfrak{A} satisfies S_4 .

Proof. Suppose $q^{-1}b \in C$, then by (4.1), we have $[p(a + b)[\eta_1, \eta_2]^2, [\omega_1, \omega_2]] = 0$, for all $\eta_1, \eta_2, \omega_1, \omega_2 \in I$. Hence by Lemma 3.2, \mathfrak{A} satisfies S_4 . Furthermore, in case $q \in C$, we have $[p(a[\eta_1, \eta_2] + [\eta_1, \eta_2]b)[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$ for any $\eta_1, \eta_2, \omega_1, \omega_2 \in I$, and hence by Proposition 3.3, we get the conclusion. From now, we have $q^{-1}b \notin C$ and $q \notin C$. So, (4.1) is a non-trivial GPI for I. Then by Fact 2.1, (4.1) is a nontrivial GPI for \mathfrak{A} and \mathscr{Q} also. By Martindale Theorem in [12], \mathscr{Q} is a primitive ring having non-zero socle and its associated division ring is finite dimensional over C. Hence, by Jacobson Theorem in [10, page 75], \mathscr{Q} is isomorphic to a dense ring of linear transformation on some vector space V over C. Assume $dim_C V \geq 3$ and suppose that there exists $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, q^{-1}b\mathfrak{s}\}$ are linearly C-independent. Since $dim_C V \geq 3$, then there exists $w \in V$ such that $\{\mathfrak{s}, q^{-1}b\mathfrak{s}, w\}$ are linearly C-independent. By the density of \mathscr{Q} , there is h_1, h_2, k_1, k_2 such that

$$h_1 \mathfrak{s} = \mathfrak{s}, \ h_2 \mathfrak{s} = 0, \ k_1 \mathfrak{s} = 0, \ k_2 \mathfrak{s} = w, \ k_1 w = w$$

 $h_1 w = 0, \ h_2 w = \mathfrak{s}, \ h_1 q^{-1} b \mathfrak{s} = 0, \ h_2 q^{-1} b \mathfrak{s} = \mathfrak{s}$

This gives, $0 = ([p(a[h_1, h_2] + q[h_1, h_2]q^{-1}b)[h_1, h_2], [k_1, k_2]])\mathfrak{s} = p\mathfrak{q}\mathfrak{s}$. Hence, we have proved $p\mathfrak{q}\mathfrak{s} = 0$ for any vector $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, q^{-1}b\mathfrak{s}\}$ are linearly C-independent. By Lemma 3.1, pq = 0 follows a contradiction. Thus, $\{\mathfrak{s}, q^{-1}b\mathfrak{s}\}$ are linearly C-dependent for all $\mathfrak{s} \in V$. Then by Fact 2.5, there exists $\kappa \in C$ such that $q^{-1}b\mathfrak{s} = \kappa\mathfrak{s}$ for any $\mathfrak{s} \in V$. For any $r \in \mathfrak{A}$, we have that $[q^{-1}b, r]\mathfrak{s} = q^{-1}b(r\mathfrak{s}) - rq^{-1}b\mathfrak{s} = \kappa r\mathfrak{s} - \kappa r\mathfrak{s} = 0$, that is, $[q^{-1}b, r]V = 0$. Hence $[q^{-1}b, r] = 0$ for any $r \in \mathfrak{A}$, which implies that $q^{-1}b \in C$. This is a contradiction. Thus, $dim_C V \leq 2$. Hence, \mathfrak{A} satisfies S_4 .

Lemma 4.2. Let \mathfrak{A} be a prime ring of $char(\mathfrak{A}) \neq 2$, $\alpha : \mathfrak{A} \to \mathfrak{A}$ be an outer automorphism of \mathfrak{A} . suppose that $a, b \in \mathfrak{A}$ such that

(4.2)
$$[p(a[\eta_1, \eta_2] + \alpha([\eta_1, \eta_2])b)[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$$

for all $\eta_1, \eta_2, \omega_1, \omega_2 \in \mathfrak{A}$. Then \mathfrak{A} satisfies S_4 .

Proof. Assume $\alpha \neq I$, otherwise the conclusion directly follows from Proposition 3.3. By Fact 2.1, \mathfrak{A} is a GPI-ring and Q is also a GPI-ring. By Martindale Theorem in [12], \mathscr{Q} is a primitive ring having non-zero socle and its associated division ring is finite dimensional over C. Hence, by Jacobson Theorem in [10, page 79], \mathcal{Q} is isomorphic to a dense ring of linear transformation on some vector space V over C. By [13, page 79], there exists a semi-linear transformation $T \in End(V)$ such that $\alpha(\eta) = T\eta T^{-1}$ for all $\eta \in \mathscr{Q}$. Assume that \mathfrak{s} and $T^{-1}b\mathfrak{s}$ are linearly C-dependent for all $\mathfrak{s} \in V$. By Fact 2.5, there exists $\kappa \in C$ such that $T^{-1}b\mathfrak{s} = \kappa\mathfrak{s}$ for all $\mathfrak{s} \in V$. In this case for all $\eta \in \mathcal{Q}$, $(a\eta + \alpha(\eta)b)\mathfrak{s} = (a\eta + T\eta T^{-1}b)\mathfrak{s} = a\eta\mathfrak{s} + T\eta T^{-1}b\mathfrak{s} =$ $a\eta\mathfrak{s} + T(\kappa\eta\mathfrak{s}) = a\eta\mathfrak{s} + T(\kappa(\eta\mathfrak{s})) = a\eta\mathfrak{s} + T(T^{-1}b)(\eta\mathfrak{s}) = (a+b)\eta\mathfrak{s}$. This means that $(a\eta + \alpha(\eta)b)\mathfrak{s} = (a+b)\eta\mathfrak{s}$ for all $\eta \in \mathscr{Q}$ and $\mathfrak{s} \in V$, since V is faithful, it follows that $(a\eta + \alpha(\eta)b) = (a+b)\eta$. Thus, (4.2) reduces to $[p(a+b)[\eta_1, \eta_2]^2, [\omega_1, \omega_2]] = 0$. Hence, by Lemma 3.2, \mathfrak{A} satisfies S_4 . Now, Suppose there exists $\mathfrak{s} \in V$ such that $\{\mathfrak{s}, T^{-1}b\mathfrak{s}\}\$ are linearly C-independent. Assume $\dim_C V \geq 3$, then there exists $\mathfrak{w} \in V$ such that $\{\mathfrak{s}, T^{-1}b\mathfrak{s}, \mathfrak{w}\}$ are linearly *C*-independent. By the density of \mathscr{Q} , there exists h_1, h_2, k_1, k_2 such that

$$h_1 T^{-1} b \mathfrak{s} = 0, \ h_2 T^{-1} b \mathfrak{s} = \mathfrak{s}, \ k_1 \mathfrak{s} = 0, \ k_2 \mathfrak{s} = \mathfrak{w}, \ k_1 \mathfrak{w} = \mathfrak{w}$$

 $h_1 \mathfrak{s} = \mathfrak{s}, \ h_2 \mathfrak{s} = 0, \ h_1 \mathfrak{w} = 0, \ h_2 \mathfrak{w} = \mathfrak{s}$

 $\begin{array}{l} 0 = \left(\left[p(a[h_1, h_2] + T[h_1, h_2]T^{-1}b)[h_1, h_2], [k_1, k_2] \right] \right) \mathfrak{s} = pT(\mathfrak{s}). \end{array} \\ \text{Hence, we have proved that } pT(\mathfrak{s}) = 0 \text{ for every } \mathfrak{s} \in V \text{ such that } \{\mathfrak{s}, T^{-1}b\mathfrak{s}\} \text{ are linearly } C\text{-independent.} \\ \text{By Lemma 3.1, } p = 0 \text{ follows a contradiction. Thus } dim_C V \leq 2. \\ \text{Hence } \mathfrak{A} \text{ satisfies } \\ S_4. \end{array}$

Proof of Theorem 1.1. In view of the Fact 2.4, a nonzero two-sided ideal I exists such that $0 \neq [I, \mathfrak{A}] \subseteq L$. Therefore, I satisfies $[pF([\eta_1, \eta_2])[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$. we known there exists a skew derivation d of \mathfrak{A} and an element $a \in \mathscr{Q}$ such that $F(\eta) = a\eta + d(\eta)$ for all $\eta \in \mathfrak{A}$.

Case 1: If d is inner, then $d(\eta) = b\eta - \alpha(\eta)b$ for some $b \in \mathscr{Q}$ for all $\eta \in \mathscr{Q}$, So that $F(\eta) = (a+b)\eta - \alpha(\eta)b$. Then, we have

 $[p((a+b)[\eta_1,\eta_2] - \alpha([\eta_1,\eta_2])b)[\eta_1,\eta_2], [\omega_1,\omega_2]] = 0 \text{ for all } \eta_1,\eta_2,\omega_1,\omega_2 \in I$

Subcase 1: When α is an identity map, then the conclusion follows from Proposition 3.3.

Subcase 2: When α is inner, then there is $q \in \mathcal{Q} - C$, such that $\alpha(\eta) = q\eta q^{-1}$ for all $\eta \in \mathcal{Q}$, then the conclusion follows from Lemma 4.1.

Subcase 3: When α is outer, then the conclusion follows from Lemma 4.2.

Case 2: When d is outer, then we get

$$[p(a[\eta_1, \eta_2] + d([\eta_1, \eta_2])[\eta_1, \eta_2], [\omega_1, \omega_2]] = 0$$

for all $\eta_1, \eta_2, \omega_1, \omega_2 \in \mathscr{Q}$. This implies that

$$[p(a[\eta_1,\eta_2] + d(\eta_1)\eta_2 + \alpha(\eta_1)d(\eta_2) - d(\eta_2)\eta_1 - \alpha(\eta_2)d(\eta_1))[\eta_1,\eta_2], [\omega_1,\omega_2]] = 0$$

for all $\eta_1, \eta_2, \omega_1, \omega_2 \in \mathscr{Q}$.

Here d is not inner, by applying Fact 2.3, \mathfrak{A} satisfies

$$[p(a[\eta_1,\eta_2] + t_1\eta_2 + \alpha(\eta_1)t_2 - t_2\eta_1 - \alpha(\eta_2)t_1)[\eta_1,\eta_2], [\omega_1,\omega_2]] = 0$$

In particular, $t_1 = t_2 = 0$, we get $[pa[\eta_1, \eta_2]^2, [\omega_1, \omega_2]] = 0$, then again by Lemma 3.2, the given conclusion follows.

Acknowledgement. The authors are greatly indebted to the referee for his/her constructive comments and suggestions, which improved the quality of the paper.

References

- C. Abdioğlu and T. K. Lee, A basic functional identity with application to jordan σbiderivations, comm. Algebra, 45(4)(2017), 1741–1756
- [2] K. I. Beidar and M. Brešar, Extended Jacobson density theorem for rings with automorphisms and derivations, Israel J. Math., 122(2001), 317–346.
- J. Bergen, I. N. Herstein and J. W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra, **71**(1981), 259–267.
- [4] C. M. Chang and T. K. Lee, Annihilators of power values of derivations in prime rings, Comm. Algebra, 26(7)(1998), 2091–2113.
- [5] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3)(1988), 723–728.
- [6] C. L. Chuang, Differential identities with automorphism and anti-automorphisms II, J. Algebra, 160(1993), 292–335.
- [7] C. L. Chuang and T. K. Lee, *Identities with a single skew derivation*, J. Algebra, 288(1)(2005), 59–77.
- [8] B. Dhara and V. De Filippis, Notes on generalized derivation on Lie ideals in prime rings, Bull. Korean Math. Soc., 46(3)(2009), 599–605.
- Y. Du and Y. Wang, A result on generalized derivations in prime rings, Hacet. J. Math. Stat., 42(1)(2013), 81–85.
- [10] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37, (1964).
- C. Lanski and S. Montgomery, Lie structure of prime ring of characteristic 2, Pacific J. Math., 42(1)(1972), 117–136.
- [12] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12(1969), 576–584.
- [13] R. K. Sharma and B. Dhara, An annihilator condition on prime rings with derivations, Tamsui Oxf. J. Math. Sci., 21(1)(2005), 71–80.
- [14] Y. Wang, Power-centralizing automorphisms of Lie ideals in prime rings, Comm. Algebra, 34(2)(2006), 609–615.

331