NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

BASUDEB DHARA AND VINCENZO DE FILIPPIS

ABSTRACT. Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t = 0$ for all $u \in L$, where $s \ge 0, t \ge 0$ are fixed integers. Then H(x) = 0 for all $x \in R$ unless char R = 2 and R satisfies S_4 , the standard identity in four variables.

Let R be an associative ring with center Z(R). For $x, y \in R$, the commutator xy - yx will be denoted by [x, y]. An additive mapping d from R to R is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. A derivation d is inner if there exists $a \in R$ such that d(x) = [a, x] holds for all $x \in R$. An additive subgroup L of R is said to be a Lie ideal of R if $[u, r] \in L$ for all $u \in L$, $r \in R$. The Lie ideal L is said to be noncommutative if $[L, L] \neq 0$. Hvala [8] introduced the notion of generalized derivation in rings. An additive mapping H from R to R is called a generalized derivation if there exists a derivation d from R to R such that H(xy) = H(x)y + xd(y) holds for all $x, y \in R$. Thus the generalized derivation covers both the concepts of derivation and left multiplier mapping. The left multiplier mapping means an additive mapping F from R to R satisfying F(xy) = F(x)y for all $x, y \in R$.

Throughout this paper R will always present a prime ring with center Z(R), extended centroid C and U its Utumi quotient ring. It is well known that if ρ is a right ideal of R such that $u^n = 0$ for all $u \in \rho$, where n is a fixed positive integer, then $\rho = 0$ [7, Lemma 1.1]. In [2], Chang and Lin consider the situation when $d(u)u^n = 0$ for all $u \in \rho$ and $u^n d(u) = 0$ for all $u \in \rho$, where ρ is a nonzero right ideal of R. More precisely, they proved the following:

Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and n a fixed positive integer. If $d(u)u^n = 0$ for all $u \in \rho$, then $d(\rho)\rho = 0$ and if $u^n d(u) = 0$ for all $u \in \rho$, then d = 0 unless $R \cong M_2(F)$, the 2×2 matrices over a field F of two elements.

O2009 The Korean Mathematical Society

Received July 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16W25, 16N60, 16R50.

Key words and phrases. prime ring, derivation, generalized derivation, extended centroid, Utumi quotient ring.

Recently, for noncommutative Lie ideal L of R, Dhara and Sharma obtained results [4] that if $a \in R$ such that $au^s d(u)^n u^t = 0$ for all $u \in L$, where $s(\geq 0), t(\geq 0), n(\geq 1)$ are fixed integers, then either a = 0 or d(R) = 0 unless char R = 2 and R satisfies S_4 , the standard identity in four variables.

From this line of investigation, our aim in this paper is to study the situation when $u^s H(u)u^t = 0$ for all $u \in L$, where L a noncommutative Lie ideal of R, H a generalized derivation of R and $s \ge 0, t \ge 0$ are fixed integers.

Remark 1. It is well known that if L is a noncommutative Lie ideal of a prime ring R and I is the ideal of R generated by [L, L], then $I \subseteq L+L^2$ and $[I, I] \subseteq L$ (see [11, Lemma 2 (i),(ii)]).

Proof. To give its brief proof, let $a, b \in L$ and $r \in R$. We have $[a, b]r = [ar, b] - a[r, b] \in L + L^2$. For $s \in R$, we get commuting both sides by s that $s[a, b]r = [a, b]rs + [[ar, b], s] - [a[r, b], s] \in L + L^2$, since $[a[r, b], s] = a[[r, b], s] + [a, s][r, b] \in L^2$. Thus $I \subseteq L + L^2$. Now since $[L^2, I] \subseteq L$ holds true by using the identity [xy, z] = [x, yz] + [y, zx] for $x, y \in L$ and $z \in I$, we have $[I, I] \subseteq L$.

Remark 2. Let R be a prime ring and U be the Utumi quotient ring of R and C = Z(U), the center of U (see [1] for more details). It is well known that any derivation of R can be uniquely extended to a derivation of U. In [13, Theorem 3], Lee proved that every generalized derivation H on a dense right ideal of R can be uniquely extended to a generalized derivation of U and assume the form H(x) = ax + d(x) for all $x \in U$, for some $a \in U$ and a derivation d of U.

Lemma 1. Let $R = M_k(F)$, the ring of $k \times k$ matrices over a field F and $a, b \in R$ such that $[x_1, x_2]^s(a[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t = 0$ for all $x_1, x_2 \in R$, where $s \ge 0, t \ge 0$ are fixed integers. If char F = 2, then a = b and if char $R \ne 2$, then $a \in F \cdot I_k$, $b \in F \cdot I_k$ and a + b = 0.

Proof. Let $a = (a_{ij})_{k \times k}$ and $b = (b_{ij})_{k \times k}$. Now in our assumption

$$[x_1, x_2]^s (a[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t = 0,$$

we may assume that s and t both are even integers, because if they are not even, we multiply $[x_1, x_2]$ from left or right in both sides to make them even. Now putting $x_1 = e_{ij}$, $x_2 = e_{ji}$ for any $i \neq j$, we have

$$0 = [e_{ij}, e_{ji}]^{s} (a[e_{ij}, e_{ji}] + [e_{ij}, e_{ji}]b)[e_{ij}, e_{ji}]^{t}$$

= $(e_{ii} + e_{jj})(a(e_{ii} - e_{jj}) + (e_{ii} - e_{jj})b)(e_{ii} + e_{jj}).$

Left multiplying by e_{ii} , we get

$$0 = e_{ii}(a(e_{ii} - e_{jj}) + (e_{ii} - e_{jj})b)(e_{ii} + e_{jj})$$

= $a_{ii}e_{ii} - a_{ij}e_{ij} + b_{ii}e_{ii} + b_{ij}e_{ij}$
= $(a_{ii} + b_{ii})e_{ii} + (-a_{ij} + b_{ij})e_{ij}$

implying $a_{ii} + b_{ii} = 0$ and $a_{ij} = b_{ij}$ for any $i, j(i \neq j)$. This gives a - b is diagonal. Let $a - b = \sum_{i=1}^{k} w_{ii}e_{ii}$. For some *F*-automorphism θ of *R*,

600

 $(a-b)^{\theta}$ enjoys the same property as a-b does, namely, $[x_1, x_2]^s (a^{\theta}[x_1, x_2] + [x_1, x_2]b^{\theta})[x_1, x_2]^t = 0$ for all $x_1, x_2 \in R$. Hence $a^{\theta} - b^{\theta} = (a-b)^{\theta}$ must be diagonal. For each $j \neq 1$, we have $(1 + e_{1j})(a-b)(1 - e_{1j}) = \sum_{i=1}^k w_{ii}e_{ii} + (w_{jj} - w_{11})e_{1j}$ diagonal. Therefore, $w_{jj} = w_{11}$ and so a-b is central that is $a-b \in F \cdot I_k$. Clearly $a-b = w_{11} \cdot I_k = (a_{11}-b_{11}) \cdot I_k = 2a_{11} \cdot I_k$. If char F = 2, then a = b. Let char $F \neq 2$. Then $a = b+2a_{11} \cdot I_k$. Now $w_{11} = w_{22} = \cdots = w_{kk}$ and $a_{ii} + b_{ii} = 0$ for $i = 1, \ldots, k$ together implies $a_{11} = a_{22} = \cdots = a_{kk}$ and $b_{11} = b_{22} = \cdots = b_{kk}$. Therefore the identity becomes,

$$[x_1, x_2]^s (b[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t + 2a_{11}[x_1, x_2]^{s+t+1} = 0.$$

Now, putting $x_1 = e_{ii}, x_2 = e_{ij} - e_{ji} \ (i \neq j)$, we obtain,

$$(e_{ij} + e_{ji})^s (b(e_{ij} + e_{ji}) + (e_{ij} + e_{ji})b)(e_{ij} + e_{ji})^t + 2a_{11}(e_{ij} + e_{ji})^{s+t+1} = 0$$

which implies

$$(e_{ii} + e_{jj})(b(e_{ij} + e_{ji}) + (e_{ij} + e_{ji})b)(e_{ii} + e_{jj}) + 2a_{11}(e_{ij} + e_{ji}) = 0.$$

Left multiplying by e_{ii} yields

$$b_{ii}e_{ij} + b_{ij}e_{ii} + b_{ji}e_{ii} + b_{jj}e_{ij} + 2a_{11}e_{ij} = 0.$$

Since $b_{ii} + b_{jj} + 2a_{11} = 0$, above relation implies that $(b_{ij} + b_{ji})e_{ii} = 0$ and so $b_{ij} + b_{ji} = 0$ for any $i \neq j$.

Now, putting $x_1 = e_{ii}, x_2 = e_{ij} + e_{ji}$ $(i \neq j)$, we obtain $[x_1, x_2]^n = (-1)^{n/2}(e_{ii} + e_{jj})$ if *n* is even and $(-1)^{(n-1)/2}(e_{ij} - e_{ji})$ if *n* is odd. Thus we have

$$(-1)^{s/2}(e_{ii} + e_{jj})(b(e_{ij} - e_{ji}) + (e_{ij} - e_{ji})b)(-1)^{t/2}(e_{ii} + e_{jj}) + (-1)^{(s+t)/2}2a_{11}(e_{ij} - e_{ji}) = 0.$$

Left multiplying by e_{ii} , we get

$$(-1)^{(s+t)/2} \{ b_{ii}e_{ij} - b_{ij}e_{ii} + b_{ji}e_{ii} + b_{jj}e_{ij} + 2a_{11}e_{ij} \} = 0.$$

Again, since $b_{ii}+b_{jj}+2a_{11}=0$, we have $(-b_{ij}+b_{ji})e_{ii}=0$ and so $-b_{ij}+b_{ji}=0$ for any $i \neq j$. Addition and subtraction of $b_{ij}+b_{ji}=0$ and $-b_{ij}+b_{ji}=0$ yields that $b_{ij}=0=b_{ji}$ for any $i\neq j$. Therefore, b is central in R that is $b=b_{11}\cdot I_k\in F\cdot I_k$ and so $a=b_{11}\cdot I_k+2a_{11}\cdot I_k=a_{11}\cdot I_k\in F\cdot I_k$. Thus the identity becomes $(a+b)[x_1,x_2]^{s+t+1}=0$ for all $x_1,x_2\in R$. Since $a+b\in F\cdot I_k$, either a+b=0 or $[x_1,x_2]^{s+t+1}=0$ for all $x_1,x_2\in R$. But $[x_1,x_2]^{s+t+1}=0$ gives contradiction by choosing $x_1=e_{12}$ and $x_2=e_{21}$. Thus a+b=0. \Box

Lemma 2. Let R be a prime ring with extended centroid C and $a, b \in R$. If $[x_1, x_2]^s (a[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t = 0$ for all $x_1, x_2 \in R$, then either R satisfies a nontrivial generalized polynomial identity (GPI) or $a \in C$, $b \in C$ and a + b = 0. *Proof.* Suppose on contrary that R does not satisfy any nontrivial GPI. Let $T = U *_C C\{X_1, X_2\}$, the free product of U and $C\{X_1, X_2\}$, the free C-algebra in noncommuting indeterminates X_1 and X_2 . Then, since $[x_1, x_2]^s(a[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t$ is a GPI for R, we see that

$$[X_1, X_2]^s (a[X_1, X_2] + [X_1, X_2]b)[X_1, X_2]^t$$

is zero element in $T = U *_C C\{X_1, X_2\}$. If $a \notin C$, then a and 1 are linearly independent over C. Thus,

$$[X_1, X_2]^s a[X_1, X_2]^{t+1} = 0$$

and

$$[X_1, X_2]^{s+1}b[X_1, X_2]^t = 0$$

in T, which implies a = 0, a contradiction. Therefore, we conclude that $a \in C$ and hence

$$[X_1, X_2]^s (a[X_1, X_2] + [X_1, X_2]b)[X_1, X_2]^t = [X_1, X_2]^{s+1}(a+b)[X_1, X_2]^t$$

is zero element in T, again implying a + b = 0 that is $b = -a \in C$.

Lemma 3. Let R be a prime ring with extended centroid C and $a, b \in R$. Suppose that $[x_1, x_2]^s (a[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t = 0$ for all $x_1, x_2 \in R$. Then

- (i) if char $R \neq 2$, $a \in C$, $b \in C$ and a + b = 0;
- (ii) if char R = 2, $a = b \in C$ unless R satisfies S_4 .

Proof. By assumption, R satisfies generalized polynomial identity

$$f(x_1, x_2) = [x_1, x_2]^s (a[x_1, x_2] + [x_1, x_2]b)[x_1, x_2]^t.$$

If R does not satisfy any nontrivial GPI, by Lemma 2, $a \in C$, $b \in C$ and a + b = 0 which gives conclusion (i) and (ii). Next assume that R satisfies a nontrivial GPI. Since R and U satisfy same generalized polynomial identity (see [3]), U satisfies $f(x_1, x_2)$. In case C is infinite, we have $f(x_1, x_2) = 0$ for all $x_1, x_2 \in U \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Since both U and $U \otimes_C \overline{C}$ are prime and centrally closed [5], we may replace R by U or $U \otimes_C \overline{C}$ according to C finite or infinite. Thus we may assume that R is centrally closed over C (i.e., RC = R) which is either finite or algebraically closed and $f(x_1, x_2) = 0$ for all $x_1, x_2 \in R$. By Martindale's theorem [15], R is then a primitive ring having nonzero socle H with C as the associated division ring. Hence by Jacobson's theorem [9, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V over C, and H consists of the linear transformations in R of finite rank.

Let $\dim_C V = k$. Then the density of R on V implies that $R \cong M_k(C)$. If char $R \neq 2$, then by Lemma 1, we have that, $a \in C$, $b \in C$ and a+b=0 which is conclusion (i). If char R = 2, then by Lemma 1, a = b and so R satisfies the generalized identity $f(x_1, x_2) = [x_1, x_2]^s [a, [x_1, x_2]][x_1, x_2]^t$. Suppose that $\dim_C V \geq 3$. Then we show that for any $v \in V$, v and av are linearly Cdependent. Suppose that v and av are linearly C-independent for some $v \in V$. Since $\dim_C V \ge 3$, there exists $w \in V$ such that v, av, w are linearly independent over C. By density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0, \qquad x_1av = v, \qquad x_1w = v$$

 $x_2v = av, \qquad x_2av = w, \qquad x_2w = 0.$

Then $[x_1, x_2]v = (x_1x_2 + x_2x_1)v = v$, $[x_1, x_2]av = (x_1x_2 + x_2x_1)av = x_1w + x_2v = v + av$ and so $[a, [x_1, x_2]]v = v$. Hence

$$0 = [x_1, x_2]^s [a, [x_1, x_2]] [x_1, x_2]^t v = v,$$

a contradiction.

Thus v and av are linearly C-dependent. Hence for each $v \in V$, $av = v\alpha_v$ for some $\alpha_v \in C$. It is very easy to prove that α_v is independent of the choice of $v \in V$. Thus we can write $av = v\alpha$ for all $v \in V$ and $\alpha \in C$ fixed.

Now, let $r \in R$, $v \in V$. Since $av = v\alpha$,

$$[a, r]v = (ar)v + (ra)v = a(rv) + r(av) = (rv)\alpha + r(v\alpha) = 0$$

that is [a,r]V = 0. Hence [a,r] = 0 for all $r \in R$, implying $a \in C$. Now, if $\dim_C V = 2$, then $R \cong M_2(C)$ that is R satisfies S_4 . Thus we obtain $a = b \in C$ unless R satisfies S_4 , which is conclusion (ii).

If $\dim_C V = \infty$, then for any $e^2 = e \in H = soc(R)$ we have $eRe \cong M_t(C)$ with $t = \dim_C Ve$. Assume that either $a \notin C$ or $b \notin C$. Then one of them does not centralize the nonzero ideal H = soc(R). Hence there exist $h_1, h_2 \in H$ such that either $[a, h_1] \neq 0$ or $[b, h_2] \neq 0$. By Litoff's theorem [6], there exists idempotent $e \in H$ such that $ah_1, h_1a, bh_2, h_2b, h_1, h_2 \in eRe$. We have $eRe \cong$ $M_k(C)$ with $k = \dim_C Ve$. Since R satisfies generalized identity $f(ex_1e, ex_2e) =$ $[ex_1e, ex_2e]^s(a[ex_1e, ex_2e] + [ex_1e, ex_2e]b)[ex_1e, ex_2e]^t$, the subring eRe satisfies $f(x_1, x_2) = [x_1, x_2]^s(eae[x_1, x_2] + [x_1, x_2]ebe)[x_1, x_2]^t$. Then by the above finite dimensional case, eae, ebe are central elements of eRe. Thus $ah_1 = (eae)h_1 =$ $h_1eae = h_1a$ and $bh_2 = (ebe)h_2 = h_2(ebe) = h_2b$, a contradiction.

Thus we conclude that $a, b \in C$. Then we have that R satisfies

$$f(x_1, x_2) = (a+b)[x_1, x_2]^{s+t+1}$$

implying a + b = 0. In case char R = 2, $a = b \in C$. Thus we get conclusion (i) and (ii).

Theorem 1. Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^s H(u)u^t = 0$ for all $u \in L$, where $s \ge 0, t \ge 0$ are fixed integers. Then H(x) = 0 for all $x \in R$ unless char R = 2 and R satisfies S_4 , the standard identity in four variables.

Proof. Since L is noncommutative, by Remark 1, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence without loss of generality we may assume L = [I, I]. By our assumption we have

$$[x_1, x_2]^s H([x_1, x_2])[x_1, x_2]^t = 0$$

for all $x_1, x_2 \in I$. Since I and U satisfy the same differential identities [14], we may assume that

$$[x_1, x_2]^s H([x_1, x_2])[x_1, x_2]^t = 0$$

for all $x \in U$. As we have already remarked in Remark 2, we may assume that for all $x \in U$, H(x) = bx + d(x) for some $a \in U$ and a derivation d of U. Hence U satisfies

$$[x_1, x_2]^s (b[x_1, x_2] + d([x_1, x_2]))[x_1, x_2]^t = 0.$$

Assume first that d is inner derivation of U, i.e., there exists $p \in U$ such that d(x) = [p, x] for all $x \in U$. Then

$$(x_1, x_2]^s (b[x_1, x_2] + [p, [x_1, x_2]])[x_1, x_2]^t = 0$$

for all $x_1, x_2 \in U$ that is

$$[x_1, x_2]^s((b+p)[x_1, x_2] - [x_1, x_2]p)[x_1, x_2]^t = 0$$

for all $x_1, x_2 \in U$. By Lemma 3, if char $R \neq 2, b+p \in C, p \in C$ and b+p-p=0implying that b = 0. Hence H(x) = 0 for all $x \in U$ and so for all $x \in R$. Now if char R = 2, by Lemma 3, $b+p = -p \in C$ implying b = 0 unless R satisfies S_4 . Hence H(x) = 0 for all $x \in U$ and so for all $x \in R$ unless R satisfies S_4 .

If d is not Q-inner, then by Kharchenko's theorem [10]

$$[x_1, x_2]^s (b[x_1, x_2] + [x_3, x_2] + [x_1, x_4])[x_1, x_2]^t = 0$$

for all $x_1, x_2, x_3, x_4 \in U$. In particular U satisfies its blended component

$$[x_1, x_2]^s([x_3, x_2] + [x_1, x_4])[x_1, x_2]^t.$$

This is a polynomial identity and hence there exists a field F such that $U \subseteq M_k(F)$ with k > 1 and U and $M_k(F)$ satisfy the same polynomial identity [12, Lemma 1]. But by choosing $x_1 = x_3 = e_{12}$, $x_2 = e_{21}$, $x_4 = 0$, we get

$$0 = [x_1, x_2]^s ([x_3, x_2] + [x_1, x_4]) [x_1, x_2]^t = \left(e_{11} + (-1)^{s+t+1} e_{22}\right),$$

which is a contradiction.

References

- K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, *Rings with Generalized Identities*, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
- [2] C.-M. Chang and Y.-C. Lin, Derivations on one-sided ideals of prime rings, Tamsui Oxf. J. Math. Sci. 17 (2001), no. 2, 139–145.
- [3] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728.
- [4] B. Dhara and R. K. Sharma, Derivations with annihilator conditions in prime rings, Publ. Math. Debrecen 71 (2007), no. 1-2, 11–20.
- [5] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, *Prime nonassociative algebras*, Pacific J. Math. **60** (1975), no. 1, 49–63.
- [6] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar 14 (1963), 369–371.
- [7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, IL, 1969.

604

- [8] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166.
- [9] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
- [10] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220–238, 242–243.
- [11] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), no. 2, 275–297.
- [12] _____, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731–734.
- [13] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057–4073.
- [14] _____, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27–38.
- [15] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.

BASUDEB DHARA DEPARTMENT OF MATHEMATICS BELDA COLLEGE BELDA, PASCHIM MEDINIPUR, 721424 (W.B.), INDIA *E-mail address*: basu.dhara@yahoo.com

VINCENZO DE FILIPPIS DI.S.I.A., FACULTY OF ENGINEERING UNIVERSITY OF MESSINA CONTRADA DI DIO, 98166, MESSINA, ITALY *E-mail address*: defilippis@unime.it