NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

Basudeb Dhara and Vincenzo De Filippis

Abstract

Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^{s} H(u) u^{t}=0$ for all $u \in L$, where $s \geq 0, t \geq 0$ are fixed integers. Then $H(x)=0$ for all $x \in R$ unless char $R=2$ and R satisfies S_{4}, the standard identity in four variables.

Let R be an associative ring with center $Z(R)$. For $x, y \in R$, the commutator $x y-y x$ will be denoted by $[x, y]$. An additive mapping d from R to R is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. A derivation d is inner if there exists $a \in R$ such that $d(x)=[a, x]$ holds for all $x \in R$. An additive subgroup L of R is said to be a Lie ideal of R if $[u, r] \in L$ for all $u \in L$, $r \in R$. The Lie ideal L is said to be noncommutative if $[L, L] \neq 0$. Hvala [8] introduced the notion of generalized derivation in rings. An additive mapping H from R to R is called a generalized derivation if there exists a derivation d from R to R such that $H(x y)=H(x) y+x d(y)$ holds for all $x, y \in R$. Thus the generalized derivation covers both the concepts of derivation and left multiplier mapping. The left multiplier mapping means an additive mapping F from R to R satisfying $F(x y)=F(x) y$ for all $x, y \in R$.

Throughout this paper R will always present a prime ring with center $Z(R)$, extended centroid C and U its Utumi quotient ring. It is well known that if ρ is a right ideal of R such that $u^{n}=0$ for all $u \in \rho$, where n is a fixed positive integer, then $\rho=0$ [7, Lemma 1.1]. In [2], Chang and Lin consider the situation when $d(u) u^{n}=0$ for all $u \in \rho$ and $u^{n} d(u)=0$ for all $u \in \rho$, where ρ is a nonzero right ideal of R. More precisely, they proved the following:

Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and n a fixed positive integer. If $d(u) u^{n}=0$ for all $u \in \rho$, then $d(\rho) \rho=0$ and if $u^{n} d(u)=0$ for all $u \in \rho$, then $d=0$ unless $R \cong M_{2}(F)$, the 2×2 matrices over a field F of two elements.

[^0]Recently, for noncommutative Lie ideal L of R, Dhara and Sharma obtained results [4] that if $a \in R$ such that $a u^{s} d(u)^{n} u^{t}=0$ for all $u \in L$, where $s(\geq$ $0), t(\geq 0), n(\geq 1)$ are fixed integers, then either $a=0$ or $d(R)=0$ unless char $R=2$ and R satisfies S_{4}, the standard identity in four variables.

From this line of investigation, our aim in this paper is to study the situation when $u^{s} H(u) u^{t}=0$ for all $u \in L$, where L a noncommutative Lie ideal of R, H a generalized derivation of R and $s \geq 0, t \geq 0$ are fixed integers.
Remark 1. It is well known that if L is a noncommutative Lie ideal of a prime ring R and I is the ideal of R generated by $[L, L]$, then $I \subseteq L+L^{2}$ and $[I, I] \subseteq L$ (see [11, Lemma 2 (i),(ii)]).
Proof. To give its brief proof, let $a, b \in L$ and $r \in R$. We have $[a, b] r=$ $[a r, b]-a[r, b] \in L+L^{2}$. For $s \in R$, we get commuting both sides by s that $s[a, b] r=[a, b] r s+[[a r, b], s]-[a[r, b], s] \in L+L^{2}$, since $[a[r, b], s]=$ $a[[r, b], s]+[a, s][r, b] \in L^{2}$. Thus $I \subseteq L+L^{2}$. Now since $\left[L^{2}, I\right] \subseteq L$ holds true by using the identity $[x y, z]=[x, y z]+[y, z x]$ for $x, y \in L$ and $z \in I$, we have $[I, I] \subseteq L$.
Remark 2. Let R be a prime ring and U be the Utumi quotient ring of R and $C=Z(U)$, the center of U (see [1] for more details). It is well known that any derivation of R can be uniquely extended to a derivation of U. In [13, Theorem 3], Lee proved that every generalized derivation H on a dense right ideal of R can be uniquely extended to a generalized derivation of U and assume the form $H(x)=a x+d(x)$ for all $x \in U$, for some $a \in U$ and a derivation d of U.
Lemma 1. Let $R=M_{k}(F)$, the ring of $k \times k$ matrices over a field F and $a, b \in R$ such that $\left[x_{1}, x_{2}\right]^{s}\left(a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t}=0$ for all $x_{1}, x_{2} \in R$, where $s \geq 0, t \geq 0$ are fixed integers. If char $F=2$, then $a=b$ and if char $R \neq 2$, then $a \in F \cdot I_{k}, b \in F \cdot I_{k}$ and $a+b=0$.

Proof. Let $a=\left(a_{i j}\right)_{k \times k}$ and $b=\left(b_{i j}\right)_{k \times k}$. Now in our assumption

$$
\left[x_{1}, x_{2}\right]^{s}\left(a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

we may assume that s and t both are even integers, because if they are not even, we multiply $\left[x_{1}, x_{2}\right]$ from left or right in both sides to make them even. Now putting $x_{1}=e_{i j}, x_{2}=e_{j i}$ for any $i \neq j$, we have

$$
\begin{aligned}
0 & =\left[e_{i j}, e_{j i}\right]^{s}\left(a\left[e_{i j}, e_{j i}\right]+\left[e_{i j}, e_{j i}\right] b\right)\left[e_{i j}, e_{j i}\right]^{t} \\
& =\left(e_{i i}+e_{j j}\right)\left(a\left(e_{i i}-e_{j j}\right)+\left(e_{i i}-e_{j j}\right) b\right)\left(e_{i i}+e_{j j}\right)
\end{aligned}
$$

Left multiplying by $e_{i i}$, we get

$$
\begin{aligned}
0 & =e_{i i}\left(a\left(e_{i i}-e_{j j}\right)+\left(e_{i i}-e_{j j}\right) b\right)\left(e_{i i}+e_{j j}\right) \\
& =a_{i i} e_{i i}-a_{i j} e_{i j}+b_{i i} e_{i i}+b_{i j} e_{i j} \\
& =\left(a_{i i}+b_{i i}\right) e_{i i}+\left(-a_{i j}+b_{i j}\right) e_{i j}
\end{aligned}
$$

implying $a_{i i}+b_{i i}=0$ and $a_{i j}=b_{i j}$ for any $i, j(i \neq j)$. This gives $a-b$ is diagonal. Let $a-b=\sum_{i=1}^{k} w_{i i} e_{i i}$. For some F-automorphism θ of R,
$(a-b)^{\theta}$ enjoys the same property as $a-b$ does, namely, $\left[x_{1}, x_{2}\right]^{s}\left(a^{\theta}\left[x_{1}, x_{2}\right]+\right.$ $\left.\left[x_{1}, x_{2}\right] b^{\theta}\right)\left[x_{1}, x_{2}\right]^{t}=0$ for all $x_{1}, x_{2} \in R$. Hence $a^{\theta}-b^{\theta}=(a-b)^{\theta}$ must be diagonal. For each $j \neq 1$, we have $\left(1+e_{1 j}\right)(a-b)\left(1-e_{1 j}\right)=\sum_{i=1}^{k} w_{i i} e_{i i}+$ $\left(w_{j j}-w_{11}\right) e_{1 j}$ diagonal. Therefore, $w_{j j}=w_{11}$ and so $a-b$ is central that is $a-b \in F \cdot I_{k}$. Clearly $a-b=w_{11} \cdot I_{k}=\left(a_{11}-b_{11}\right) \cdot I_{k}=2 a_{11} \cdot I_{k}$. If char $F=2$, then $a=b$. Let char $F \neq 2$. Then $a=b+2 a_{11} \cdot I_{k}$. Now $w_{11}=w_{22}=\cdots=w_{k k}$ and $a_{i i}+b_{i i}=0$ for $i=1, \ldots, k$ together implies $a_{11}=a_{22}=\cdots=a_{k k}$ and $b_{11}=b_{22}=\cdots=b_{k k}$. Therefore the identity becomes,

$$
\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t}+2 a_{11}\left[x_{1}, x_{2}\right]^{s+t+1}=0 .
$$

Now, putting $x_{1}=e_{i i}, x_{2}=e_{i j}-e_{j i}(i \neq j)$, we obtain,

$$
\left(e_{i j}+e_{j i}\right)^{s}\left(b\left(e_{i j}+e_{j i}\right)+\left(e_{i j}+e_{j i}\right) b\right)\left(e_{i j}+e_{j i}\right)^{t}+2 a_{11}\left(e_{i j}+e_{j i}\right)^{s+t+1}=0
$$

which implies

$$
\left(e_{i i}+e_{j j}\right)\left(b\left(e_{i j}+e_{j i}\right)+\left(e_{i j}+e_{j i}\right) b\right)\left(e_{i i}+e_{j j}\right)+2 a_{11}\left(e_{i j}+e_{j i}\right)=0
$$

Left multiplying by $e_{i i}$ yields

$$
b_{i i} e_{i j}+b_{i j} e_{i i}+b_{j i} e_{i i}+b_{j j} e_{i j}+2 a_{11} e_{i j}=0
$$

Since $b_{i i}+b_{j j}+2 a_{11}=0$, above relation implies that $\left(b_{i j}+b_{j i}\right) e_{i i}=0$ and so $b_{i j}+b_{j i}=0$ for any $i \neq j$.

Now, putting $x_{1}=e_{i i}, x_{2}=e_{i j}+e_{j i}(i \neq j)$, we obtain $\left[x_{1}, x_{2}\right]^{n}=$ $(-1)^{n / 2}\left(e_{i i}+e_{j j}\right)$ if n is even and $(-1)^{(n-1) / 2}\left(e_{i j}-e_{j i}\right)$ if n is odd. Thus we have

$$
\begin{aligned}
(-1)^{s / 2}\left(e_{i i}+e_{j j}\right)\left(b\left(e_{i j}-e_{j i}\right)\right. & \left.+\left(e_{i j}-e_{j i}\right) b\right)(-1)^{t / 2}\left(e_{i i}+e_{j j}\right) \\
& +(-1)^{(s+t) / 2} 2 a_{11}\left(e_{i j}-e_{j i}\right)=0
\end{aligned}
$$

Left multiplying by $e_{i i}$, we get

$$
(-1)^{(s+t) / 2}\left\{b_{i i} e_{i j}-b_{i j} e_{i i}+b_{j i} e_{i i}+b_{j j} e_{i j}+2 a_{11} e_{i j}\right\}=0 .
$$

Again, since $b_{i i}+b_{j j}+2 a_{11}=0$, we have $\left(-b_{i j}+b_{j i}\right) e_{i i}=0$ and so $-b_{i j}+b_{j i}=0$ for any $i \neq j$. Addition and subtraction of $b_{i j}+b_{j i}=0$ and $-b_{i j}+b_{j i}=0$ yields that $b_{i j}=0=b_{j i}$ for any $i \neq j$. Therefore, b is central in R that is $b=b_{11} \cdot I_{k} \in F \cdot I_{k}$ and so $a=b_{11} \cdot I_{k}+2 a_{11} \cdot I_{k}=a_{11} \cdot I_{k} \in F \cdot I_{k}$. Thus the identity becomes $(a+b)\left[x_{1}, x_{2}\right]^{s+t+1}=0$ for all $x_{1}, x_{2} \in R$. Since $a+b \in F \cdot I_{k}$, either $a+b=0$ or $\left[x_{1}, x_{2}\right]^{s+t+1}=0$ for all $x_{1}, x_{2} \in R$. But $\left[x_{1}, x_{2}\right]^{s+t+1}=0$ gives contradiction by choosing $x_{1}=e_{12}$ and $x_{2}=e_{21}$. Thus $a+b=0$.

Lemma 2. Let R be a prime ring with extended centroid C and $a, b \in R$. If $\left[x_{1}, x_{2}\right]^{s}\left(a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t}=0$ for all $x_{1}, x_{2} \in R$, then either R satisfies a nontrivial generalized polynomial identity (GPI) or $a \in C, b \in C$ and $a+b=0$.

Proof. Suppose on contrary that R does not satisfy any nontrivial GPI. Let $T=U *_{C} C\left\{X_{1}, X_{2}\right\}$, the free product of U and $C\left\{X_{1}, X_{2}\right\}$, the free C-algebra in noncommuting indeterminates X_{1} and X_{2}. Then, since $\left[x_{1}, x_{2}\right]^{s}\left(a\left[x_{1}, x_{2}\right]+\right.$ $\left.\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t}$ is a GPI for R, we see that

$$
\left[X_{1}, X_{2}\right]^{s}\left(a\left[X_{1}, X_{2}\right]+\left[X_{1}, X_{2}\right] b\right)\left[X_{1}, X_{2}\right]^{t}
$$

is zero element in $T=U *_{C} C\left\{X_{1}, X_{2}\right\}$. If $a \notin C$, then a and 1 are linearly independent over C. Thus,

$$
\left[X_{1}, X_{2}\right]^{s} a\left[X_{1}, X_{2}\right]^{t+1}=0
$$

and

$$
\left[X_{1}, X_{2}\right]^{s+1} b\left[X_{1}, X_{2}\right]^{t}=0
$$

in T, which implies $a=0$, a contradiction. Therefore, we conclude that $a \in C$ and hence

$$
\left[X_{1}, X_{2}\right]^{s}\left(a\left[X_{1}, X_{2}\right]+\left[X_{1}, X_{2}\right] b\right)\left[X_{1}, X_{2}\right]^{t}=\left[X_{1}, X_{2}\right]^{s+1}(a+b)\left[X_{1}, X_{2}\right]^{t}
$$

is zero element in T, again implying $a+b=0$ that is $b=-a \in C$.
Lemma 3. Let R be a prime ring with extended centroid C and $a, b \in R$. Suppose that $\left[x_{1}, x_{2}\right]^{s}\left(a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t}=0$ for all $x_{1}, x_{2} \in R$. Then
(i) if char $R \neq 2, a \in C, b \in C$ and $a+b=0$;
(ii) if char $R=2, a=b \in C$ unless R satisfies S_{4}.

Proof. By assumption, R satisfies generalized polynomial identity

$$
f\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]^{s}\left(a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b\right)\left[x_{1}, x_{2}\right]^{t} .
$$

If R does not satisfy any nontrivial GPI, by Lemma $2, a \in C, b \in C$ and $a+b=0$ which gives conclusion (i) and (ii). Next assume that R satisfies a nontrivial GPI. Since R and U satisfy same generalized polynomial identity (see [3]), U satisfies $f\left(x_{1}, x_{2}\right)$. In case C is infinite, we have $f\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed [5], we may replace R by U or $U \otimes_{C} \bar{C}$ according to C finite or infinite. Thus we may assume that R is centrally closed over C (i.e., $R C=R$) which is either finite or algebraically closed and $f\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in R$. By Martindale's theorem [15], R is then a primitive ring having nonzero socle H with C as the associated division ring. Hence by Jacobson's theorem [9, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V over C, and H consists of the linear transformations in R of finite rank.

Let $\operatorname{dim}_{C} V=k$. Then the density of R on V implies that $R \cong M_{k}(C)$. If char $R \neq 2$, then by Lemma 1 , we have that, $a \in C, b \in C$ and $a+b=0$ which is conclusion (i). If char $R=2$, then by Lemma $1, a=b$ and so R satisfies the generalized identity $f\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]^{s}\left[a,\left[x_{1}, x_{2}\right]\right]\left[x_{1}, x_{2}\right]^{t}$. Suppose that $\operatorname{dim}_{C} V \geq 3$. Then we show that for any $v \in V, v$ and $a v$ are linearly C dependent. Suppose that v and $a v$ are linearly C-independent for some $v \in V$.

Since $\operatorname{dim}_{C} V \geq 3$, there exists $w \in V$ such that $v, a v, w$ are linearly independent over C. By density there exist $x_{1}, x_{2} \in R$ such that

$$
\begin{aligned}
x_{1} v=0, & x_{1} a v=v, \\
x_{2} v=a v, & x_{1} w=v \\
x_{2} a v=w, & x_{2} w=0 .
\end{aligned}
$$

Then $\left[x_{1}, x_{2}\right] v=\left(x_{1} x_{2}+x_{2} x_{1}\right) v=v,\left[x_{1}, x_{2}\right] a v=\left(x_{1} x_{2}+x_{2} x_{1}\right) a v=x_{1} w+$ $x_{2} v=v+a v$ and so $\left[a,\left[x_{1}, x_{2}\right]\right] v=v$. Hence

$$
0=\left[x_{1}, x_{2}\right]^{s}\left[a,\left[x_{1}, x_{2}\right]\right]\left[x_{1}, x_{2}\right]^{t} v=v,
$$

a contradiction.
Thus v and $a v$ are linearly C-dependent. Hence for each $v \in V, a v=v \alpha_{v}$ for some $\alpha_{v} \in C$. It is very easy to prove that α_{v} is independent of the choice of $v \in V$. Thus we can write $a v=v \alpha$ for all $v \in V$ and $\alpha \in C$ fixed.

Now, let $r \in R, v \in V$. Since $a v=v \alpha$,

$$
[a, r] v=(a r) v+(r a) v=a(r v)+r(a v)=(r v) \alpha+r(v \alpha)=0
$$

that is $[a, r] V=0$. Hence $[a, r]=0$ for all $r \in R$, implying $a \in C$. Now, if $\operatorname{dim}_{C} V=2$, then $R \cong M_{2}(C)$ that is R satisfies S_{4}. Thus we obtain $a=b \in C$ unless R satisfies S_{4}, which is conclusion (ii).

If $\operatorname{dim}_{C} V=\infty$, then for any $e^{2}=e \in H=\operatorname{soc}(R)$ we have $e R e \cong M_{t}(C)$ with $t=\operatorname{dim}_{C} V e$. Assume that either $a \notin C$ or $b \notin C$. Then one of them does not centralize the nonzero ideal $H=\operatorname{soc}(R)$. Hence there exist $h_{1}, h_{2} \in H$ such that either $\left[a, h_{1}\right] \neq 0$ or $\left[b, h_{2}\right] \neq 0$. By Litoff's theorem [6], there exists idempotent $e \in H$ such that $a h_{1}, h_{1} a, b h_{2}, h_{2} b, h_{1}, h_{2} \in e R e$. We have $e R e \cong$ $M_{k}(C)$ with $k=\operatorname{dim}_{C} V e$. Since R satisfies generalized identity $f\left(e x_{1} e, e x_{2} e\right)=$ $\left[e x_{1} e, e x_{2} e\right]^{s}\left(a\left[e x_{1} e, e x_{2} e\right]+\left[e x_{1} e, e x_{2} e\right] b\right)\left[e x_{1} e, e x_{2} e\right]^{t}$, the subring $e R e$ satisfies $f\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]^{s}\left(\right.$ eae $\left.\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] e b e\right)\left[x_{1}, x_{2}\right]^{t}$. Then by the above finite dimensional case, eae, ebe are central elements of $e R e$. Thus $a h_{1}=(e a e) h_{1}=$ h_{1} eae $=h_{1} a$ and $b h_{2}=(e b e) h_{2}=h_{2}($ ebe $)=h_{2} b$, a contradiction.

Thus we conclude that $a, b \in C$. Then we have that R satisfies

$$
f\left(x_{1}, x_{2}\right)=(a+b)\left[x_{1}, x_{2}\right]^{s+t+1}
$$

implying $a+b=0$. In case char $R=2, a=b \in C$. Thus we get conclusion (i) and (ii).

Theorem 1. Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^{s} H(u) u^{t}=0$ for all $u \in L$, where $s \geq 0, t \geq 0$ are fixed integers. Then $H(x)=0$ for all $x \in R$ unless char $R=2$ and R satisfies S_{4}, the standard identity in four variables.

Proof. Since L is noncommutative, by Remark 1, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence without loss of generality we may assume $L=[I, I]$. By our assumption we have

$$
\left[x_{1}, x_{2}\right]^{s} H\left(\left[x_{1}, x_{2}\right]\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in I$. Since I and U satisfy the same differential identities [14], we may assume that

$$
\left[x_{1}, x_{2}\right]^{s} H\left(\left[x_{1}, x_{2}\right]\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x \in U$. As we have already remarked in Remark 2, we may assume that for all $x \in U, H(x)=b x+d(x)$ for some $a \in U$ and a derivation d of U. Hence U satisfies

$$
\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

Assume first that d is inner derivation of U, i.e., there exists $p \in U$ such that $d(x)=[p, x]$ for all $x \in U$. Then

$$
\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+\left[p,\left[x_{1}, x_{2}\right]\right]\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in U$ that is

$$
\left[x_{1}, x_{2}\right]^{s}\left((b+p)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] p\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2} \in U$. By Lemma 3, if char $R \neq 2, b+p \in C, p \in C$ and $b+p-p=0$ implying that $b=0$. Hence $H(x)=0$ for all $x \in U$ and so for all $x \in R$. Now if char $R=2$, by Lemma $3, b+p=-p \in C$ implying $b=0$ unless R satisfies S_{4}. Hence $H(x)=0$ for all $x \in U$ and so for all $x \in R$ unless R satisfies S_{4}.

If d is not Q-inner, then by Kharchenko's theorem [10]

$$
\left[x_{1}, x_{2}\right]^{s}\left(b\left[x_{1}, x_{2}\right]+\left[x_{3}, x_{2}\right]+\left[x_{1}, x_{4}\right]\right)\left[x_{1}, x_{2}\right]^{t}=0
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in U$. In particular U satisfies its blended component

$$
\left[x_{1}, x_{2}\right]^{s}\left(\left[x_{3}, x_{2}\right]+\left[x_{1}, x_{4}\right]\right)\left[x_{1}, x_{2}\right]^{t}
$$

This is a polynomial identity and hence there exists a field F such that $U \subseteq$ $M_{k}(F)$ with $k>1$ and U and $M_{k}(F)$ satisfy the same polynomial identity [12, Lemma 1]. But by choosing $x_{1}=x_{3}=e_{12}, x_{2}=e_{21}, x_{4}=0$, we get

$$
0=\left[x_{1}, x_{2}\right]^{s}\left(\left[x_{3}, x_{2}\right]+\left[x_{1}, x_{4}\right]\right)\left[x_{1}, x_{2}\right]^{t}=\left(e_{11}+(-1)^{s+t+1} e_{22}\right)
$$

which is a contradiction.

References

[1] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
[2] C.-M. Chang and Y.-C. Lin, Derivations on one-sided ideals of prime rings, Tamsui Oxf. J. Math. Sci. 17 (2001), no. 2, 139-145.
[3] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728.
[4] B. Dhara and R. K. Sharma, Derivations with annihilator conditions in prime rings, Publ. Math. Debrecen 71 (2007), no. 1-2, 11-20.
[5] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63.
[6] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar 14 (1963), 369-371.
[7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, IL, 1969.
[8] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166.
[9] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
[10] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
[11] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), no. 2, 275-297.
[12] , An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731-734.
[13] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073.
[14] , Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
[15] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

Basudeb Dhara
Department of Mathematics
Belda College
Belda, Paschim Medinipur, 721424 (W.B.), India
E-mail address: basu_dhara@yahoo.com
Vincenzo De Filippis
DI.S.I.A., Faculty of Engineering

University of Messina
Contrada Di Dio, 98166, Messina, Italy
E-mail address: defilippis@unime.it

[^0]: Received July 28, 2008.
 2000 Mathematics Subject Classification. 16W25, 16N60, 16R50.
 Key words and phrases. prime ring, derivation, generalized derivation, extended centroid, Utumi quotient ring.

