• Title/Summary/Keyword: 0.18 ${\mu}m$ CMOS

Search Result 599, Processing Time 0.025 seconds

Design of Low Power 4th order ΣΔ Modulator with Single Reconfigurable Amplifier (재구성가능 연산증폭기를 사용한 저전력 4차 델타-시그마 변조기 설계)

  • Sung, Jae-Hyeon;Lee, Dong-Hyun;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.24-32
    • /
    • 2017
  • In this paper, a low power 4th order delta-sigma modulator was designed with a high resolution of 12 bits or more for the biological signal processing. Using time-interleaving technique, 4th order delta-sigma modulator was designed with one operational amplifier. So power consumption can be reduced to 1/4 than a conventional structure. To operate stably in the big difference between the two capacitor for kT/C noise and chip size, the variable-stage amplifier was designed. In the first phase and second phase, the operational amplifier is operating in a 2-stage. In the third and fourth phase, the operational amplifier is operating in a 1-stage. This was significantly improved the stability of the modulator because the phase margin exists within 60~90deg. The proposed delta-sigma modulator is designed in a standard $0.18{\mu}m$ CMOS n-well 1 poly 6 Metal technology and dissipates the power of $354{\mu}W$ with supply voltage of 1.8V. The ENOB of 11.8bit and SNDR of 72.8dB at 250Hz input frequency and 256kHz sampling frequency. From measurement results FOM1 is calculated to 49.6pJ/step and FOM2 is calculated to 154.5dB.

Design of a 48MHz~1675MHz Frequency Synthesizer for DTV Tuners (DTV 튜너를 위한 48MHz~1675MHz 주파수합성기 설계)

  • Ko, Seung-O;Seo, Hee-Teak;Kwon, Duck-Ki;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1125-1134
    • /
    • 2011
  • In this paper a wideband frequency synthesizer is designed for DTV tuners using a $0.18{\mu}m$ CMOS process. It satisfies the DTV frequency band(48~1675MHz). A scheme is proposed to cover the full band using only one VCO and reliable broadband characteristics are achieved by reducing the variations of VCO gains and frequency steps. The simulation results show that the designed VCO has frequency range of 1.85~4.22GHz, phase noise at 4.22GHz of -89.7dBc/Hz@100kHz, gains of 62.4~95.8MHz/V(${\pm}21.0%$) and frequency steps of 22.9~47.9MHz(${\pm}35.3%$). The designed VCO has a phase noise of -89.75dBc/Hz at 100kHz offset. The designed synthesizer has a lock time less than $0.15{\mu}s$. The measured VCO tuning range is 2.05~3.4GHz. The frequency range is shifted down but still satisfy the target range owing to the design for enough margin. The designed circuit consumes 23~27mA from a 1.8V supply, and the chip size including PADs is $2.0mm{\times}1.5mm$.

Design of a Time-to-Digital Converter Using Counter (카운터를 사용하는 시간-디지털 변환기의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.577-582
    • /
    • 2016
  • The synchronous TDC(Time-to-Digital Converter) of counter-type using current-conveyor is designed by $0.18{\mu}m$ CMOS process and the supply voltage is 3 volts. In order to compensate the disadvantage of a asynchronous TDC the clock is generated when the start signal is applied and the clock is synchronized with the start signal. In the asynchronous TDC the error range of digital output is from $-T_{CK}$ to $T_{CK}$. But the error range of digital output is from 0 to $T_{CK}$ in the synchronous TDC. The error range of output is reduced by the synchronization between the start signal and the clock when the timing-interval signal is converted to digital value. Also the structure of the synchronous TDC is simple because there is no the high frequency external clock. The operation of designed TDC is confirmed by the HSPICE simulation.

Analog Front-End Design Techniques and Method for Saturation of Hemoglobin with Oxygen Sensor (센서 기반 헤모글로빈의 산소 포화도 측정을 위한 아날로그 프런트 엔드 설계 기술 및 방법)

  • Park, Sejin;Lee, Hokyu;Park, Jongsun;Kim, Chulwoo
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.172-178
    • /
    • 2014
  • This paper describes the design technique and the method of analog front-end to measure the saturation of hemoglobin with oxygen sensor. To process the $SpO_2$ value from the sensor, the current data from the sensor should be converted into voltage domain. Designed analog front-end usually converts the current data from the sensor into voltage domain data to pass it on analog-to-digital converter called ADC with a different level of gain characteristics. This circuit was fabricated in a $0.11{\mu}m$ CMOS technology and has 4 level of gain properties. The occupied area is $0.174mm^2$.

Power Management Circuits for Self-Powered Systems Based on Solar Energy Harvesting (빛 에너지 하베스팅을 이용한 자가발전 시스템용 전력관리 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1660-1671
    • /
    • 2013
  • In this paper two types of power management circuits for solar energy harvesting self-powered systems are proposed. First, if the output voltage of a solar cell is enough to drive load, a power management unit(PMU) directly supplies load with solar energy. Second, if a solar cell outputs very low voltage less than 0.5V as in miniature solar cells or monolithic integrated solar cells such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then PMU delivers the boosted voltage to the load. The proposed power management systems are designed and fabricated in a $0.18{\mu}m$ CMOS process, and their performances are compared and analyzed through measurements.

A Reconfigurable Analog Front-end Integrated Circuit for Medical Ultrasound Imaging Systems (초음파 의료 영상 시스템을 위한 재구성 가능한 아날로그 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.66-71
    • /
    • 2014
  • This paper presents an analog front-end integrated circuit (IC) for medical ultrasound imaging systems using standard $0.18-{\mu}m$ CMOS process. The proposed front-end circuit includes the transmit part which consists of 15-V high-voltage pulser operating at 2.6 MHz, and the receive part which consists of switch and a low-power low-noise preamplifier. Depending on the operation mode, the output driver in the transmit pulser can be reconfigured as the switch in the receive path and thus the area of the overall front-end IC is reduced by over 70% in comparison to previous work. The designed single-channel front-end prototype consumes less than $0.045mm^2$ of core area and can be utilized as a key building block in highly-integrated multi-array ultrasound medical imaging systems.

A Charge Pump with Matched Delay Paths for Reduced Timing Mismatch (타이밍 부정합 감소를 위해 정합된 지연경로를 갖는 전하 펌프)

  • Heo, Joo-Il;Heo, Jung;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.5
    • /
    • pp.37-42
    • /
    • 2012
  • In this paper, a new charge pump is proposed to reduce the timing mismatch in the conventional current-steering charge pumps. Conventional current-steering charge pumps used NMOS input stages both for UP and DOWN signals, which resulted in different numbers of stage for UP and DOWN delay paths. The proposed charge pump has equalized the numbers of stages for UP and DOWN signals by using a PMOS stage for the DOWN signal. The simulation results show that the conventional current-steering charge pump has 14ns and 6ns for optimized timing mismatches between UP and DOWN signals for turn-on and turn-off, respectively. On the other hand, the proposed charge pump has improved timing mismatches of 6ns and 5ns for turn-on and turn-off, respectively. As a result, the reference spurs are reduced from -26dBc to -39dBc for the proposed charge pump. The proposed charge pump was designed by using $0.18{\mu}m$ CMOS technology. The measurement results show that the maximum variation of the charging and discharging current over the charge pump output voltage range of 0.3~1.5V is approximately 1.5%.

Class-D Digital Audio Amplifier Using 1-bit 4th-order Delta-Sigma Modulation (1-비트 4차 델타-시그마 변조기법을 이용한 D급 디지털 오디오 증폭기)

  • Kang, Kyoung-Sik;Choi, Young-Kil;Roh, Hyung-Dong;Nam, Hyun-Seok;Roh, Jeong-Gin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.44-53
    • /
    • 2008
  • In this paper, we present the design of delta-sigma modulation-based class-D amplifier for driving headphones in portable audio applications. The presented class-D amplifier generates PWM(pulse width modulation) signals using a single-bit fourth-order high-performance delta-sigma modulator. To achieve a high SNR(signal-to-noise ratio) and ensure system stability, the locations of the modulator loop filter poles and zeros are optimized and thoroughly simulated. The test chip is fabricated using a standard $0.18{\mu}m$ CMOS process. The active area of the chip is $1.6mm^2$. It operates for the signal bandwidth from 20Hz to 20kHz. The measured THD+N(total harmonic distortion plus noise) at the $32{\Omega}$ load terminal is less than 0.03% from a 3V power supply.

Design of a Frequency Synthesizer for UHF RFID Reader Application (UHF 대역 RFID 리더 응용을 위한 주파수합성기 설계)

  • Kim, Kyung-Hwan;Oh, Kun-Chang;Park, Jong-Tae;Yu, Chong-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.889-895
    • /
    • 2008
  • In this paper a Fractional-N frequency synthesizer is designed for UHF RFID readers. It satisfies the ISO/IEC frequency band($860{\sim}960MHz$) and is also applicable to mobile RFID readers. A VCO is designed to operate at 1.8GHz band such that the LO pulling effect is minimized. The 900MHz differential I/Q LO signals are obtained by dividing the differential signal from an integrated 1.8GHz VCO. It is designed using a $0.18{\mu}m$ RF CMOS process. The measured results show that the designed circuit has a phase noise of -103dBc/Hz at 100KHz offset and consumes 9mA from a 1.8V supply. The channel switching time of $10{\mu}s$ over 5MHz transition have been achieved, and the chip size including PADs is $1.8{\times}0.99mm^2$.

High-Efficiency CMOS Power Amplifier Using Uneven Bias for Wireless LAN Application

  • Ryu, Namsik;Jung, Jae-Ho;Jeong, Yongchae
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.885-891
    • /
    • 2012
  • This paper proposes a high-efficiency power amplifier (PA) with uneven bias. The proposed amplifier consists of a driver amplifier, power stages of the main amplifier with class AB bias, and an auxiliary amplifier with class C bias. Unlike other CMOS PAs, the amplifier adopts a current-mode transformer-based combiner to reduce the output stage loss and size. As a result, the amplifier can improve the efficiency and reduce the quiescent current. The fully integrated CMOS PA is implemented using the commercial Taiwan Semiconductor Manufacturing Company 0.18-${\mu}m$ RF-CMOS process with a supply voltage of 3.3 V. The measured gain, $P_{1dB}$, and efficiency at $P_{1dB}$ are 29 dB, 28.1 dBm, and 37.9%, respectively. When the PA is tested with 54 Mbps of an 802.11g WLAN orthogonal frequency division multiplexing signal, a 25-dB error vector magnitude compliant output power of 22 dBm and a 21.5% efficiency can be obtained.