• Title/Summary/Keyword: 0-commutative

Search Result 144, Processing Time 0.022 seconds

RINGS WHOSE ASSOCIATED EXTENDED ZERO-DIVISOR GRAPHS ARE COMPLEMENTED

  • Driss Bennis;Brahim El Alaoui;Raja L'hamri
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.763-777
    • /
    • 2024
  • Let R be a commutative ring with identity 1≠ 0. In this paper, we continue the study started in [10] to further investigate when the extended zero-divisor graph of R, denoted as $\bar{\Gamma}$(R), is complemented. We also study when $\bar{\Gamma}$(R) is uniquely complemented. We give a complete characterization of when $\bar{\Gamma}$(R) of a finite ring R is complemented. Various examples are given using the direct product of rings and idealizations of modules.

RESULTS OF CERTAIN LOCAL COHOMOLOGY MODULES

  • Mafi, Amir;Talemi, Atiyeh Pour Eshmanan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.653-657
    • /
    • 2014
  • Let R be a commutative Noetherian ring, I and J two ideals of R, and M a finitely generated R-module. We prove that $$Ext^i{_R}(R/I,H^t{_{I,J}}(M))$$ is finitely generated for i = 0, 1 where t=inf{$i{\in}\mathbb{N}_0:H^2{_{I,J}}(M)$ is not finitely generated}. Also, we prove that $H^i{_{I+J}}(H^t{_{I,J}}(M))$ is Artinian when dim(R/I + J) = 0 and i = 0, 1.

A CONDITION FOR THE COMMUTATIVITY OF RINGS

  • Quadri, Murtaza A.;Ashraf, Mohd.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.187-189
    • /
    • 1987
  • In the present paper a result [10] of the authors has been generalized as follows: Let l, m, n be fixed positive integers and R be a semi prime ring in which $[(xy)^l,(xy)^m-(yx)^n]=0$ for all $x,y{\in}R$, then R is commutative.

  • PDF

KINEMATIC STRUCTURES OF CERTAIN LOOPS

  • Im, Bok-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.543-551
    • /
    • 1997
  • In this paper, we call a loop F kinematic if for $a, b \in F\{0}$, the following two conditions are valid : (i) the centralizer Z(a) of a is a commutative group under the induced operation from the loop F, and (ii) Z(a) = Z(b) or $Z(a) \cap Z(b) = {0}$, where 0 is the identity of F. Some example of kinematic loops are given.

  • PDF

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

SOME RESULTS ON 1-ABSORBING PRIMARY AND WEAKLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Nikandish, Reza;Nikmehr, Mohammad Javad;Yassine, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1069-1078
    • /
    • 2021
  • Let R be a commutative ring with identity. A proper ideal I of R is called 1-absorbing primary ([4]) if for all nonunit a, b, c ∈ R such that abc ∈ I, then either ab ∈ I or c ∈ ${\sqrt{1}}$. The concept of 1-absorbing primary ideals in a polynomial ring, in a PID and in idealization of a module is studied. Moreover, we introduce weakly 1-absorbing primary ideals which are generalization of weakly prime ideals and 1-absorbing primary ideals. A proper ideal I of R is called weakly 1-absorbing primary if for all nonunit a, b, c ∈ R such that 0 ≠ abc ∈ I, then either ab ∈ I or c ∈ ${\sqrt{1}}$. Some properties of weakly 1-absorbing primary ideals are investigated. For instance, weakly 1-absorbing primary ideals in decomposable rings are characterized. Among other things, it is proved that if I is a weakly 1-absorbing primary ideal of a ring R and 0 ≠ I1I2I3 ⊆ I for some ideals I1, I2, I3 of R such that I is free triple-zero with respect to I1I2I3, then I1I2 ⊆ I or I3 ⊆ I.

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

THE ZERO-DIVISOR GRAPH UNDER A GROUP ACTION IN A COMMUTATIVE RING

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1097-1106
    • /
    • 2010
  • Let R be a commutative ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will investigate some ring theoretic properties of R by considering $\Gamma$(R), the zero-divisor graph of R, under the regular action on X by G as follows: (1) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then there is a vertex of $\Gamma$(R) which is adjacent to every other vertex in $\Gamma$(R) if and only if R is a local ring or $R\;{\simeq}\;\mathbb{Z}_2\;{\times}\;F$ where F is a field; (2) If R is a local ring such that X is a union of n distinct orbits under the regular action of G on X, then all ideals of R consist of {{0}, J, $J^2$, $\ldots$, $J^n$, R} where J is the Jacobson radical of R; (3) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then the number of all ideals is finite and is greater than equal to the number of orbits.