ON SUBTRACTIVE EXTENSION OF SUBSEMIMODULES OF SEMIMODULES

Jayprakash Ninu Chaudhari * and Dipak Ravindra Bonde **

Abstract

Let R be a commutative semiring with $1_{R} \neq 0_{R}$. Characterization of subsemimodules, prime subsemimodules and primary subsemimodules which are subtractive extensions of Q-subsemimodules in R-semimodules are investigated.

1. Introduction

Let R be a commutative semiring with $1_{R} \neq 0_{R}$. A commutative monoid $(M,+)$ with a scalar multiplication $R \times M \rightarrow M$, defined by $(r, x) \mapsto r x$ is called left R-semimodule if it satisfies the following conditions for all $r, r^{\prime} \in R$ and $x, y \in M$:

1) $\left(r r^{\prime}\right) x=r\left(r^{\prime} x\right)$;
2) $r(x+y)=r x+r y$;
3) $\left(r+r^{\prime}\right) x=r x+r^{\prime} x$;
4) $1_{R} x=x$;
5) $r 0_{M}=0_{M}=0_{R} x$.

Clearly every ring is a semiring and hence every left module over a ring R is a left semimodule over a semiring R. Throughout by an R semimodule we mean a left R-semimodule. Denote the sets of all nonnegative, and positive integers respectively by \mathbb{Z}_{0}^{+}, and \mathbb{N}. The set \mathbb{Z}_{0}^{+} is a semiring under usual addition and multiplication of non-negative integers but it is not a ring. If $(M,+)$ is an idempotent commutative monoid, then M is $\left(\mathbb{Z}_{0}^{+},+, \cdot\right)$-semimodule with scalar multiplication defined by $r m=0$ if $r=0$ and $r m=m$ if $r>0$ for all $r \in \mathbb{Z}_{0}^{+}$and $m \in$ M [6, P.151]. A non-empty subset N of an R-semimodule M is called

[^0]subsemimodule of M if N is closed under addition and closed under scalar multiplication. A subsemimodule N of an R-semimodule M is called subtractive subsemimodule ($=k$-subsemimodule) if $x, x+y \in N$, $y \in M$, then $y \in N$. A proper subsemimodule N of an R-semimodule M is said to be prime (primary) if $r m \in N, r \in R, m \in M$, then either $r M \subseteq N$ or $m \in N\left(r^{n} M \subseteq N\right.$ for some $n \in \mathbb{N}$ or $\left.m \in N\right)$. A proper subsemimodule N of an R-semimodule M is said to be weakly prime (weakly primary) if $0 \neq r m \in N, r \in R, m \in M$, then either $r M \subseteq N$ or $m \in N\left(r^{n} M \subseteq N\right.$ for some $n \in \mathbb{N}$ or $\left.m \in N\right)$. Consider $M=\left(\mathbb{Z}_{0}^{+},+\right)$ an R-semimodule where $R=\left(\mathbb{Z}_{0}^{+},+, \cdot\right)$. For $m \in M$, we denote the subsemimodule $\{a m \in M: a \in R\}$ of M by $m \mathbb{Z}_{0}^{+}$.

Example 1.1. Consider a semiring $R=\left(\mathbb{Z}_{0}^{+},+, \cdot\right)$. Then

1) $9 \mathbb{Z}_{0}^{+}$is a primary subsemimodule of an R-semimodule $\left(\mathbb{Z}_{0}^{+},+\right)$but it is not a prime subsemimodule.
2) $4 \mathbb{Z}_{0}^{+}$is a weakly primary subsemimodule of an R-semimodule $\left(\mathbb{Z}_{0}^{+},+\right)$ but it is not a weakly prime subsemimodule.
3) $6 \mathbb{Z}_{0}^{+}$is neither a prime, primary, weakly prime nor a weakly primary subsemimodule of an R-semimodule ($\mathbb{Z}_{0}^{+},+$).
4) $\{0\}$ is a weakly prime (weakly primary) subsemimodule of an R semimodule $\left(\mathbb{Z}_{6},+_{6}\right)$ but it is not a prime (primary)subsemimodule.
A subsemimodule N of an R-semimodule M is called a Q-subsemimodule (= partitioning subsemimodule) if there exists a subset Q of M such that
5) $M=\cup\{q+N: q \in Q\}$.
6) if $q_{1}, q_{2} \in Q$, then $\left(q_{1}+N\right) \cap\left(q_{2}+N\right) \neq \emptyset \Leftrightarrow q_{1}=q_{2}$.

Let N be a Q-subsemimodule of an R-semimodule M. Then $M / N_{(Q)}=$ $\{q+N: q \in Q\}$ forms an R-semimodule under the following addition " \oplus " and scalar multiplication " \odot ", $\left(q_{1}+N\right) \oplus\left(q_{2}+N\right)=q_{3}+N$ where $q_{3} \in Q$ is unique such that $q_{1}+q_{2}+N \subseteq q_{3}+N$, and $r \odot$ $\left(q_{1}+N\right)=q_{4}+N$ where $q_{4} \in Q$ is unique such that $r q_{1}+N \subseteq q_{4}$ $+N$. This R-semimodule $M / N_{(Q)}$ is called the quotient semimodule of M by N and denoted by $\left(M / N_{(Q)}, \oplus, \odot\right)$ or just $M / N_{(Q)}$. If N is Q-subsemimodule of an R-semimodule M, then there exists a unique $q_{0} \in Q$ such that $q_{0}+N=N$ [3, Lemma 2.3]. This $q_{0}+N$ is the zero element of $M / N_{(Q)}$.

Chaudhari and Bonde [3], have introduced Q-subsemimodule and obtained a relation between subtractive subsemimodules and Q-subsemimodules. Some works on Q-subsemimodules, quotient semimodules, prime subsemimodules and maximal k-subsemimodules may be found in
[2, 8 and 9]. Theory of Q-subsemimodules, prime subsemimodules, primary subsemimodules, direct sum of subsemimodules is recently studied by Chaudhari and Bonde [4 and 5].

In this paper, we introduce the notion of subtractive extension of a subsemimodule of an R-semimodule M and prove its existence. Some characterizations of subtractive extension of Q-subsemimodule in R semimodules are also obtained.

The following lemma will be used to prove our results.
Lemma 1.2. [3, Lemma1.3] Let N be subsemimodule of an R-semimodule M and $x, y \in M$ such that $x+N \subseteq y+N$. Then $x+z+N \subseteq$ $y+z+N$ and $r x+N \subseteq r y+N$ for all $z \in M, r \in R$.

2. Subtractive extension of a subsemimodule

In this section, we introduce the notion of subtractive extension of a subsemimodule of an R-semimodule M and prove its existence.

Definition 2.1. Let N be a subsemimodule of an R-semimodule M. A subsemimodule A of M with $N \subseteq A$ is said to be subtractive extension of N if $x \in N, x+y \in A, y \in M$, then $y \in A$.

Every subtractive subsemimodule of an R-semimodule M containing a subsemimodule N is a subtractive extension of N. But the converse is not true.

Example 2.2. Let $R=\left(\mathbb{Z}_{0}^{+},+, \cdot\right)$ be a semiring.

1) Consider $M=\left(\mathbb{Z}_{0}^{+} \cup\{\infty\}\right.$, max $)$ an R-semimodule. Let $N=$ $\{0,1,2,3,4,5\}$ be a subsemimodule of M. Now $A=\{0,1,2,3,4,5$, $6,7,8, \infty\}$ is a subsemimodule of M with $N \subseteq A$. Clearly, if $x \in N, x+y \in A$ and $y \in M$, then $y \in A$. Hence A is a subtractive extension of N. But A is not a subtractive subsemimodule of M because $\infty \in A, \infty+9 \in A$ and $9 \notin A$.
2) Consider $M=\left(\mathbb{Z}_{0}^{+},+\right)$an R-semimodule. For $m \in M$, we have $m \mathbb{Z}_{0}^{+}$is a Q-subsemimodule of M where $Q=\{0,1,2,3, \ldots,(m-1)\}$. By [2, Theorem 3.2], $m \mathbb{Z}_{0}^{+}$is a subtractive subsemimodule of M. Hence $m \mathbb{Z}_{0}^{+}$is a subtractive extension of every subsemimodule N of M where $N \subseteq m \mathbb{Z}_{0}^{+}$.

Theorem 2.3. Let N be a Q-subsemimodule of an R-semimodule M and A be a subsemimodule of M with $N \subseteq A$. Denote $\widetilde{A}=\{x \in M$: there exists $q+N \in M / N_{(Q)}$ such that $x \in q+N$ and $(q+$
$N) \cap A \neq \emptyset\}$. Then \widetilde{A} is the smallest subtractive extension of N containing A.

Proof. We have $q_{0}+N=N$ is the zero element of $M / N_{(Q)}$ and $N \subseteq A \Rightarrow q_{0} \in\left(q_{0}+N\right) \cap A \Rightarrow q_{0} \in \widetilde{A} \Rightarrow \widetilde{A} \neq \emptyset$. Let $x, y \in \widetilde{A}, r \in R$. Then there exist unique $q_{1}, q_{2} \in Q$ such that $x \in q_{1}+N, y \in q_{2}+N$ and $\left(q_{1}+N\right) \cap A \neq \emptyset,\left(q_{2}+N\right) \cap A \neq \emptyset$. Now $x+y \in\left(q_{1}+N\right) \oplus\left(q_{2}+N\right)=q+N$ where q is a unique element of Q such that $q_{1}+q_{2}+N \subseteq q+N$. Since $\left(q_{1}+N\right) \cap A \neq \emptyset$ and $\left(q_{2}+N\right) \cap A \neq \emptyset,(q+N) \cap A \neq \emptyset$. So $x+y \in \widetilde{A}$. Similarly $r x \in \widetilde{A}$. If $a \in A$, then there exists a unique $q \in Q$ such that $a \in q+N$. So $(q+N) \cap A \neq \emptyset$. Now $a \in \widetilde{A}$. Thus \widetilde{A} is a subsemimodule of M containing A. Let $x \in N, x+y \in \widetilde{A}, y \in M$. So $x+y \in q^{\prime}+N$ where $q^{\prime}+N \in M / N_{(Q)}$ and $\left(q^{\prime}+N\right) \cap A \neq \emptyset$. Since N is a Q-subsemimodule of M, there exists a unique $q^{\prime \prime} \in Q$ such that $y \in q^{\prime \prime}+N$. As $x \in N \Rightarrow x+y \in q^{\prime \prime}+N$. So $\left(q^{\prime}+N\right) \cap\left(q^{\prime \prime}+N\right) \neq$ $\emptyset \Rightarrow q^{\prime}=q^{\prime \prime} \Rightarrow q^{\prime \prime}+N=q^{\prime}+N \Rightarrow\left(q^{\prime \prime}+N\right) \cap A=\left(q^{\prime}+N\right) \cap A \neq \emptyset$. Hence $y \in \widetilde{A}$. Thus \widetilde{A} is a subtractive extension of N. Now let B be any subtractive extension of N containing A. Now $a \in \widetilde{A} \Rightarrow a \in q^{\prime \prime \prime}+N$ and $\left(q^{\prime \prime \prime}+N\right) \cap A \neq \emptyset \Rightarrow\left(q^{\prime \prime \prime}+N\right) \cap B \neq \emptyset$. Let $b=q^{\prime \prime \prime}+n \in\left(q^{\prime \prime \prime}+N\right) \cap B$ for some $n \in N$. Since B is a subtractive extension of $N, q^{\prime \prime \prime} \in B$. So $a \in q^{\prime \prime \prime}+N \subseteq B$. Thus \widetilde{A} is the smallest subtractive extension of N containing A.

Theorem 2.4. Let N be a Q-subsemimodule of an R-semimodule M. If A, B are subsemimodules of M containing N, then

1) A is a subtractive extension of $N \Leftrightarrow A=\widetilde{A}$
2) $\widetilde{\widetilde{A}}=\widetilde{A}$
3) $A \subseteq B \Rightarrow \widetilde{A} \subseteq \widetilde{B}$
4) $A=B \Rightarrow \widetilde{A}=\widetilde{B}$.

Proof. Trivial.
In the above theorem, reverse implications are not true.
Example 2.5. Consider $M=\left(\mathbb{Z}_{0}^{+},+\right)$a semimodule over $R=\left(\mathbb{Z}_{0}^{+}\right.$, $+, \cdot)$.

1) Let $N=8 \mathbb{Z}_{0}^{+}$be a Q-subsemimodule of $M, A=4 \mathbb{Z}_{0}^{+}, B=$ $\{0,6,8,10, \ldots\}$. Then A, B are subsemimodules of M with $N \subseteq$ A, B and $\widetilde{A}=4 \mathbb{Z}_{0}^{+} \subseteq 2 \mathbb{Z}_{0}^{+}=\widetilde{B}$ but A is not a subset of B.
2) Let $N=6 \mathbb{Z}_{0}^{+}$be a Q-subsemimodule of $M, A=2 \mathbb{Z}_{0}^{+}, B=$ $\{0,6,8,10, \ldots\}$. Then $\underset{\sim}{A}, B$ are subsemimodules of M with $A \neq B$ and $N \subseteq A, B$. Here $\widetilde{A}=2 \mathbb{Z}_{0}^{+}=\widetilde{B}$.

Chaudhari and Bonde [3, Lemma 3.4], proved that if A, N are subsemimodules of an R-semimodule M with N a Q-subsemimodule and $N \subseteq A$, then N is a $Q \cap A$-subsemimodule of A. However, we prove the following lemma which gives a characterization of a subtractive extension of a Q-subsemimodule N of an R-semimodule M and will be used in the subsequent theorem.

Lemma 2.6. Let N be a Q-subsemimodule of an R-semimodule M and A be a subsemimodule of M with $N \subseteq A$. Then A is a subtractive extension of N if and only if N is a $Q \cap A$-subsemimodule of A.

Proof. Let $q_{0}+N$ be the zero element of $M / N_{(Q)}$. Let A be a subtractive extension of N and $a \in A$. Then there exists unique $q \in Q$ such that $a \in q+N$. So $a=q+n$ for some $n \in N$. Since A is a subtractive extension of $N, q \in A$. Hence $q \in Q \cap A$. If $\left(q_{1}+N\right) \cap\left(q_{2}+N\right) \neq \emptyset$ for some $q_{1}, q_{2} \in Q \cap A$, then $q_{1}=q_{2}$ because N is a Q-subsemimodule of M. Thus N is a $Q \cap A$-subsemimodule of A. Conversely suppose that N is a $Q \cap A$-subsemimodule of A. Let $x \in N, x+y \in A$ for some $y \in M$. Since N is a $Q \cap A$-subsemimodule of A and N a Q-subsemimodule of M there exist unique $q_{1} \in Q \cap A, q_{2} \in Q$ such that $x+y \in q_{1}+N$ and $y \in q_{2}+N$. But then $x+y \in\left(q_{0}+N\right) \oplus\left(q_{2}+N\right)=q_{2}+N$, since $x \in N=q_{0}+N$. So $\left(q_{1}+N\right) \cap\left(q_{2}+N\right) \neq \emptyset$. Hence $q_{2}=q_{1} \in A$. Now $y \in q_{2}+N \subseteq A$.

Theorem 2.7. Let N be a Q-subsemimodule of an R-semimodule M and A a subsemimodule of M. Then the following statements are equivalent:

1) A is a subtractive extension of N
2) $A / N_{(Q \cap A)}$ is a subsemimodule of an R-semimodule $M / N_{(Q)}$
3) $A / N_{(Q \cap A)} \subseteq M / N_{(Q)}$

Proof. (1) $\Rightarrow(2)$ Let A be a subtractive extension of N. By Lemma 2.6, N is a $Q \cap A$-subsemimodule of A. Let $q_{1}+N, q_{2}+N \in A / N_{(Q \cap A)}$. Therefore $q_{1}, q_{2} \in Q \cap A \subseteq Q$. Hence there exists a unique $q_{3} \in Q$ such that $\left(q_{1}+N\right) \oplus\left(q_{2}+N\right)=q_{3}+N$ where $q_{1}+q_{2}+N \subseteq q_{3}+N$. Now $q_{1}+q_{2}=q_{3}+n$ for some $n \in N$. But $q_{3}+n=q_{1}+q_{2} \in A$. Since A is a subtractive extension of $N, q_{3} \in A$. Now $q_{3}+N \in A / N_{(Q \cap A)}$. Similarly, if $r \in R, q+N \in A / N_{(Q \cap A)}$, then $r \odot(q+N) \in A / N_{(Q \cap A)}$. Hence $A / N_{(Q \cap A)}$ is a subsemimodule of $M / N_{(Q)}$.
$(2) \Rightarrow(3)$ Trivial.
$(3) \Rightarrow(1)$ Let $x \in N, x+y \in A$ where $y \in M$. Then $x \in N=q_{0}+N$ where $q_{0}+N$ is the zero element of $M / N_{(Q)}$ and hence zero element of $A / N_{(Q \cap A)}$. Now there exist unique $q_{1} \in Q \cap A, q_{2} \in Q$ such that $x+y \in$ $q_{1}+N$ and $y \in q_{2}+N$. But then $x+y \in\left(q_{0}+N\right) \oplus\left(q_{2}+N\right)=q_{2}+N$. So $q_{1}, q_{2} \in Q$ are such that $\left(q_{1}+N\right) \cap\left(q_{2}+N\right) \neq \emptyset$. Hence $q_{1}=q_{2} \in A$. So $y \in q_{2}+N \subseteq A$.

If N is a Q-subsemimodule of an R-semimodule M, then following theorem gives a relationship between subsemimodules of the quotient semimodule $M / N_{(Q)}$ and subsemimodules of M which are subtractive extensions of N.

Theorem 2.8. Let N be a Q-subsemimodule of an R-semimodule M. Then a subset L of $M / N_{(Q)}$ is a subsemimodule of $M / N_{(Q)}$ if and only if there exists a subsemimodule A of M such that A is a subtractive extension of N and $A / N_{(Q \cap A)}=L$.

Proof. Let L be a subsemimodule of an R-semimodule $M / N_{(Q)}$. Denote $A=\{x \in M$: there exists a unique $q \in Q$ such that $x+$ $N \subseteq q+N \in L\}$, clearly $N \subseteq A$. Let $x, y \in A, r \in R$. Then there exist unique $q_{1}, q_{2} \in Q$ such that $x+N \subseteq q_{1}+N \in L, y+N \subseteq q_{2}+N \in L$. Again there exist unique $q_{3}, q_{4} \in Q$ such that $\left(q_{1}+N\right) \oplus\left(q_{2}+N\right)=$ $q_{3}+N \in L$ and $r \odot\left(q_{1}+I\right)=q_{4}+N \in L$ where $q_{1}+q_{2}+N \subseteq q_{3}+N$ and $r q_{1}+N \subseteq q_{4}+N$. By Lemma 1.2, $x+y \in x+y+N \subseteq q_{1}+q_{2}+N \subseteq q_{3}+N$ and $r x \in r x+N \subseteq r q_{1}+N \subseteq q_{4}+N$. So $x+y, r x \in A$. Hence A is a subsemimodule of M with $N \subseteq A$. Now let $x \in N, x+y \in A, y \in M$. So there exists a unique $q \in Q$ such that $x+y \in q+N \in L$. Since N is a Q subsemimodule of M, there exists a unique $q^{\prime} \in Q$ such that $y \in q^{\prime}+N$. Since $x \in N, x+y \in q^{\prime}+N$. So $(q+N) \cap\left(q^{\prime}+N\right) \neq \emptyset \Rightarrow q=q^{\prime}$. Now $y \in q^{\prime}+N=q+N \in L$. Thus $y \in A$. Hence A is a subtractive extension of N. Clearly $A / N_{(Q \cap A)} \subseteq L$. Now if $q+N \in L$, then $q \in A$. So $L \subseteq A / N_{(Q \cap A)}$. Thus $A / N_{(Q \cap A)}=L$. Conversely, suppose that A is a subtractive extension of N and $A / N_{(Q \cap A)}=L$. Then by Theorem 2.7, L is a subsemimodule of $M / N_{(Q)}$.

Corollary 2.9. Let N be a Q-subsemimodule of an R-semimodule M and let T, L be subtractive extensions of N. Then $T / N_{Q}=L / N_{Q}$ if and only if $T=L$.

Proof. Let $T / N_{Q}=L / N_{Q}$ and $a \in T$. Then $a \in q_{1}+N$ for some unique $q_{1} \in Q$. So $a=q_{1}+c$ for some unique $c \in N$. Since T is a subtractive extension of $N, q_{1} \in T$. Thus $q_{1}+N \subseteq T / N_{Q}=L / N_{Q}$.

It follows that $q_{1} \in L$. Now $a=q_{1}+c \in L$. Hence $T \subseteq L$. Similarly $L \subseteq T$. Converse is trivial.

The following theorem gives a relationship between prime subsemimodules of M which are subtractive extensions of a Q-subsemimodule N of M and prime subsemimodules of the quotient semimodule $M / N_{(Q)}$.

Theorem 2.10. Let N be a Q-subsemimodule of an R-semimodule M and P be a subtractive extension of N. Then P is a prime subsemimodule of M if and only if $P / N_{(Q \cap P)}$ is a prime subsemimodule of $M / N_{(Q)}$.

Proof. Let P be a prime subsemimodule of M. Suppose that $r \in$ $R, q_{1}+N \in M / N_{(Q)}$ are such that $r \odot\left(q_{1}+N\right)=q_{2}+N \in P / N_{(Q \cap P)}$ where $q_{2} \in Q \cap P$ is unique such that $r q_{1}+N \subseteq q_{2}+N$. Therefore $r q_{1}=q_{2}+n \in P$ for some $n \in N \subseteq P$. As P is a prime subsemimodule, either $r M \subseteq P$ or $q_{1} \in P$. If $q_{1} \in P$, then $q_{1} \in Q \cap P$ and hence $q_{1}+N \in P / N_{(Q \cap P)}$. Suppose that $r M \subseteq P$. For $q+N \in M / N_{(Q)}$, let $r \odot(q+N)=q_{3}+N$ where q_{3} is a unique element of Q such that $r q+N \subseteq q_{3}+N$. Therefore $r q=q_{3}+n^{\prime} \in P$ for some $n^{\prime} \in N$, since P is a subtractive extension of $N, q_{3} \in P$. So $q_{3} \in Q \cap P$. Now $r \odot(q+N)=q_{3}+N \in P / N_{(Q \cap P)}$ and hence $r \odot M / N_{(Q)} \subseteq P / N_{(Q \cap P)}$. So $P / N_{(Q \cap P)}$ is a prime subsemimodule of $M / N_{(Q)}$. Conversely suppose that $P / N_{(Q \cap P)}$ is a prime subsemimodule of $M / N_{(Q)}$. Let $r m \in P$ where $r \in R, m \in M$. Now there exists a unique $q_{1} \in Q$ such that $m \in q_{1}+N$ and $r m \in r \odot\left(q_{1}+N\right)=q_{2}+N$ where q_{2} is a unique element of Q such that $r q_{1}+N \subseteq q_{2}+N$. Now $r m \in P, r m \in q_{2}+N$ implies $q_{2} \in P$, as P is a subtractive extension of N. Hence $r \odot\left(q_{1}+N\right)=q_{2}+N \in P / N_{(Q \cap P)}$. As $P / N_{(Q \cap P)}$ is a prime subsemimodule, either $r \odot M / N_{(Q)} \subseteq P / N_{(Q \cap P)}$ or $q_{1}+N \in P / N_{(Q \cap P)}$. If $q_{1}+N \in P / N_{(Q \cap P)}$, then $q_{1} \in P$. Hence $m \in$ $q_{1}+N \subseteq P$. So assume that $r \odot M / N_{(Q)} \subseteq P / N_{(Q \cap P)}$. For $x \in M$, there exists a unique $q_{3} \in Q$ such that $x \in q_{3}+N$ and $r x \in r \odot\left(q_{3}+N\right)=q_{4}+N$ where q_{4} is a unique element of Q such that $r q_{3}+N \subseteq q_{4}+N$. Now $q_{4}+N=r \odot\left(q_{3}+N\right) \in P / N_{(Q \cap P)} \Rightarrow q_{4} \in P$. Now $r x \in q_{4}+N \subseteq P$. So $r M \subseteq P$. Hence P is a prime subsemimodule of M.

Adopting the proof of Theorem 2.10, we have the following theorems.
Theorem 2.11. Let N be a Q-subsemimodule of an R-semimodule M and P a subtractive extension of N. Then P is a primary subsemimodule of M if and only if $P / N_{(Q \cap P)}$ is a primary subsemimodule of $M / N_{(Q)}$.

Theorem 2.12. Let N be a Q-subsemimodule of an R-semimodule M and P be a subtractive extension of N. Then

1) If P is a weakly prime (weakly primary) subsemimodule of M, then $P / N_{(Q \cap P)}$ is a weakly prime (weakly primary) subsemimodule of $M / N_{(Q)}$.
2) If N and $P / N_{(Q \cap P)}$ are weakly prime (weakly primary) subsemimodules of M and $M / N_{(Q)}$ respectively, then P is a weakly prime (weakly primary) subsemimodule of M.

References

[1] P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
[2] R. E. Atani, S. E. Atani, On subsemimodules of semimodules, Buletinul Acad. Sci. Republ. Moldova, ser. Math., Number 2 (63) (2010), 20-30.
[3] J. N. Chaudhari and D. R. Bonde, On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings, Kyungpook Math. J. 50 (2010), 329336.
[4] J. N. Chaudhari and D. R. Bonde, weakly prime subsemimodules of semimodules over semirings, International J. Algebra, 5 (2011), no. 1-4, 167-174.
[5] J. N. Chaudhari and D. R. Bonde, On direct sum of partitioning subsemimodules of semimodules over semirings, Journal of Advanced Research in Pure Mathematics, 4 (2012), Issue. 1, 81-88.
[6] J. S. Golan, Semiring and their applications, Kluwer Academic publisher Dordrecht, 1999.
[7] V. G. and J. N. Chaudhari, Characterization of weakly prime subtractive ideals in semirings, Bull. Inst. Math. Acad. Sinica (New Series) 3 (2008), 347-352.
[8] G. Yesilot, On prime and maximal k-subsemimodules of semimodules, Hacettepe Journal of Mathematics and Statistics, 39 (3) (2010), 305-312.
[9] G. Yesilot, K. H. Oral and U. Tekir, On prime subsemimodules of semimodules, International Journal of Algebra, 4 (2010), no. 1, 53-60.

*

Department of Mathematics
M. J. College,

Jalgaon-425 002, India
E-mail: jnchaudhari@rediffmail.com
**
Department of Mathematics
ACS College,
Dharangaon-425 105, India
E-mail: drbonde@rediffmail.com

[^0]: Received June 14, 2012; Accepted January 11, 2013.
 2010 Mathematics Subject Classification: Primary 16Y60.
 Key words and phrases: semiring, subtractive subsemimodule, Q-subsemimodule, quotient semimodule, subtractive extension of a subsemimodule.

 Correspondence should be addressed to Jayprakash Ninu Chaudhari, jnchaudhari@ rediffmail.com.

