JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 1, 2013

ON SUBTRACTIVE EXTENSION OF SUBSEMIMODULES OF SEMIMODULES

JAYPRAKASH NINU CHAUDHARI * AND DIPAK RAVINDRA BONDE **

ABSTRACT. Let R be a commutative semiring with $1_R \neq 0_R$. Characterization of subsemimodules, prime subsemimodules and primary subsemimodules which are subtractive extensions of Q-subsemimodules in *R*-semimodules are investigated.

1. Introduction

Let R be a commutative semiring with $1_R \neq 0_R$. A commutative monoid (M, +) with a scalar multiplication $R \times M \to M$, defined by $(r, x) \mapsto rx$ is called left *R*-semimodule if it satisfies the following conditions for all $r, r' \in R$ and $x, y \in M$:

- 1) (rr')x = r(r'x);
- 2) r(x+y) = rx + ry;3) (r+r')x = rx + r'x;
- 4) $1_R x = x;$
- 5) $r0_M = 0_M = 0_R x$.

Clearly every ring is a semiring and hence every left module over a ring R is a left semimodule over a semiring R. Throughout by an Rsemimodule we mean a left R-semimodule. Denote the sets of all nonnegative, and positive integers respectively by \mathbb{Z}_0^+ , and \mathbb{N} . The set \mathbb{Z}_0^+ is a semiring under usual addition and multiplication of non-negative integers but it is not a ring. If (M, +) is an idempotent commutative monoid, then M is $(\mathbb{Z}_0^+, +, \cdot)$ -semimodule with scalar multiplication defined by rm = 0 if r = 0 and rm = m if r > 0 for all $r \in \mathbb{Z}_0^+$ and $m \in$ M [6, P.151]. A non-empty subset N of an R-semimodule M is called

Received June 14, 2012; Accepted January 11, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 16Y60.

Key words and phrases: semiring, subtractive subsemimodule, Q-subsemimodule, quotient semimodule, subtractive extension of a subsemimodule.

Correspondence should be addressed to Jayprakash Ninu Chaudhari, jnchaudhari@ rediffmail.com.

subsemimodule of M if N is closed under addition and closed under scalar multiplication. A subsemimodule N of an R-semimodule M is called subtractive subsemimodule (= k-subsemimodule) if $x, x + y \in N$, $y \in M$, then $y \in N$. A proper subsemimodule N of an R-semimodule M is said to be prime (primary) if $rm \in N, r \in R, m \in M$, then either $rM \subseteq N$ or $m \in N$ ($r^nM \subseteq N$ for some $n \in \mathbb{N}$ or $m \in N$). A proper subsemimodule N of an R-semimodule M is said to be weakly prime (weakly primary) if $0 \neq rm \in N, r \in R, m \in M$, then either $rM \subseteq N$ or $m \in N$ ($r^nM \subseteq N$ for some $n \in \mathbb{N}$ or $m \in N$). Consider $M = (\mathbb{Z}_0^+, +)$ an R-semimodule where $R = (\mathbb{Z}_0^+, +, \cdot)$. For $m \in M$, we denote the subsemimodule { $am \in M : a \in R$ } of M by $m\mathbb{Z}_0^+$.

EXAMPLE 1.1. Consider a semiring $R = (\mathbb{Z}_0^+, +, \cdot)$. Then

- 1) $9\mathbb{Z}_0^+$ is a primary subsemimodule of an *R*-semimodule $(\mathbb{Z}_0^+, +)$ but it is not a prime subsemimodule.
- 2) $4\mathbb{Z}_0^+$ is a weakly primary subsemimodule of an *R*-semimodule $(\mathbb{Z}_0^+, +)$ but it is not a weakly prime subsemimodule.
- 3) $6\mathbb{Z}_0^+$ is neither a prime, primary, weakly prime nor a weakly primary subsemimodule of an *R*-semimodule $(\mathbb{Z}_0^+, +)$.
- 4) {0} is a weakly prime (weakly primary) subsemimodule of an *R*-semimodule ($\mathbb{Z}_6, +_6$) but it is not a prime (primary) subsemimodule.

A subsemimodule N of an R-semimodule M is called a Q-subsemimodule (= partitioning subsemimodule) if there exists a subset Q of M such that

- 1) $M = \bigcup \{q + N : q \in Q\}.$
- 2) if $q_1, q_2 \in Q$, then $(q_1 + N) \cap (q_2 + N) \neq \emptyset \Leftrightarrow q_1 = q_2$.

Let N be a Q-subsemimodule of an R-semimodule M. Then $M/N_{(Q)} = \{q + N : q \in Q\}$ forms an R-semimodule under the following addition " \oplus " and scalar multiplication " \odot ", $(q_1 + N) \oplus (q_2 + N) = q_3 + N$ where $q_3 \in Q$ is unique such that $q_1 + q_2 + N \subseteq q_3 + N$, and $r \odot (q_1 + N) = q_4 + N$ where $q_4 \in Q$ is unique such that $rq_1 + N \subseteq q_4 + N$. This R-semimodule $M/N_{(Q)}$ is called the quotient semimodule of M by N and denoted by $(M/N_{(Q)}, \oplus, \odot)$ or just $M/N_{(Q)}$. If N is Q-subsemimodule of an R-semimodule M, then there exists a unique $q_0 \in Q$ such that $q_0 + N = N$ [3, Lemma 2.3]. This $q_0 + N$ is the zero element of $M/N_{(Q)}$.

Chaudhari and Bonde [3], have introduced Q-subsemimodule and obtained a relation between subtractive subsemimodules and Q-subsemimodules. Some works on Q-subsemimodules, quotient semimodules, prime subsemimodules and maximal k-subsemimodules may be found in

[2, 8 and 9]. Theory of Q-subsemimodules, prime subsemimodules, primary subsemimodules, direct sum of subsemimodules is recently studied by Chaudhari and Bonde [4 and 5].

In this paper, we introduce the notion of subtractive extension of a subsemimodule of an R-semimodule M and prove its existence. Some characterizations of subtractive extension of Q-subsemimodule in R-semimodules are also obtained.

The following lemma will be used to prove our results.

LEMMA 1.2. [3, Lemma1.3] Let N be subsemimodule of an R-semimodule M and $x, y \in M$ such that $x + N \subseteq y + N$. Then $x + z + N \subseteq$ y + z + N and $rx + N \subseteq ry + N$ for all $z \in M, r \in R$.

2. Subtractive extension of a subsemimodule

In this section, we introduce the notion of subtractive extension of a subsemimodule of an R-semimodule M and prove its existence.

DEFINITION 2.1. Let N be a subsemimodule of an R-semimodule M. A subsemimodule A of M with $N \subseteq A$ is said to be subtractive extension of N if $x \in N, x + y \in A, y \in M$, then $y \in A$.

Every subtractive subsemimodule of an R-semimodule M containing a subsemimodule N is a subtractive extension of N. But the converse is not true.

EXAMPLE 2.2. Let $R = (\mathbb{Z}_0^+, +, \cdot)$ be a semiring.

- 1) Consider $M = (\mathbb{Z}_0^+ \cup \{\infty\}, max)$ an *R*-semimodule. Let $N = \{0, 1, 2, 3, 4, 5\}$ be a subsemimodule of *M*. Now $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, \infty\}$ is a subsemimodule of *M* with $N \subseteq A$. Clearly, if $x \in N, x + y \in A$ and $y \in M$, then $y \in A$. Hence *A* is a subtractive extension of *N*. But *A* is not a subtractive subsemimodule of *M* because $\infty \in A, \infty + 9 \in A$ and $9 \notin A$.
- 2) Consider $M = (\mathbb{Z}_0^+, +)$ an *R*-semimodule. For $m \in M$, we have $m\mathbb{Z}_0^+$ is a *Q*-subsemimodule of *M* where $Q = \{0, 1, 2, 3, ..., (m-1)\}$. By [2, Theorem 3.2], $m\mathbb{Z}_0^+$ is a subtractive subsemimodule of *M*. Hence $m\mathbb{Z}_0^+$ is a subtractive extension of every subsemimodule *N* of *M* where $N \subseteq m\mathbb{Z}_0^+$.

THEOREM 2.3. Let N be a Q-subsemimodule of an R-semimodule M and A be a subsemimodule of M with $N \subseteq A$. Denote $\widetilde{A} = \{x \in M :$ there exists $q + N \in M/N_{(Q)}$ such that $x \in q + N$ and (q + M) $N \cap A \neq \emptyset$. Then \widetilde{A} is the smallest subtractive extension of N containing A.

Proof. We have $q_0 + N = N$ is the zero element of $M/N_{(Q)}$ and $N \subseteq A \Rightarrow q_0 \in (q_0 + N) \cap A \Rightarrow q_0 \in A \Rightarrow A \neq \emptyset$. Let $x, y \in A, r \in R$. Then there exist unique $q_1, q_2 \in Q$ such that $x \in q_1 + N, y \in q_2 + N$ and $(q_1+N)\cap A\neq \emptyset, (q_2+N)\cap A\neq \emptyset$. Now $x+y\in (q_1+N)\oplus (q_2+N)=q+N$ where q is a unique element of Q such that $q_1 + q_2 + N \subseteq q + N$. Since $(q_1 + N) \cap A \neq \emptyset$ and $(q_2 + N) \cap A \neq \emptyset$, $(q + N) \cap A \neq \emptyset$. So $x + y \in A$. Similarly $rx \in A$. If $a \in A$, then there exists a unique $q \in Q$ such that $a \in q + N$. So $(q + N) \cap A \neq \emptyset$. Now $a \in \widetilde{A}$. Thus \widetilde{A} is a subsemimodule of M containing A. Let $x \in N, x + y \in A, y \in M$. So $x + y \in q' + N$ where $q' + N \in M/N_{(Q)}$ and $(q' + N) \cap A \neq \emptyset$. Since N is a Q-subsemimodule of M, there exists a unique $q'' \in Q$ such that $y \in q'' + N$. As $x \in N \Rightarrow x + y \in q'' + N$. So $(q' + N) \cap (q'' + N) \neq$ $\overset{\circ}{\emptyset} \Rightarrow q' = q'' \Rightarrow q'' + N = q' + \overset{\circ}{N} \Rightarrow (q'' + N) \cap \overset{\circ}{A} = (q' + \overset{\circ}{N}) \cap A \neq \overset{\circ}{\emptyset}.$ Hence $y \in A$. Thus A is a subtractive extension of N. Now let B be any subtractive extension of N containing A. Now $a \in A \Rightarrow a \in q'' + N$ and $(q'''+N) \cap A \neq \emptyset \Rightarrow (q'''+N) \cap B \neq \emptyset$. Let $b = q'''+n \in (q'''+N) \cap B$ for some $n \in N$. Since B is a subtractive extension of $N, q'' \in B$. So $a \in q''' + N \subseteq B$. Thus \widetilde{A} is the smallest subtractive extension of N containing A.

THEOREM 2.4. Let N be a Q-subsemimodule of an R-semimodule M. If A, B are subsemimodules of M containing N, then

- 1) A is a subtractive extension of $N \Leftrightarrow A = A$
- 2) $\widetilde{A} = \widetilde{A}$ 2) $A \subset B \rightarrow$
- 3) $A \subseteq B \Rightarrow \widetilde{A} \subseteq \widetilde{B}$ 4) $A = B \Rightarrow \widetilde{A} = \widetilde{B}$.

Proof. Trivial.

In the above theorem, reverse implications are not true.

EXAMPLE 2.5. Consider $M = (\mathbb{Z}_0^+, +)$ a semimodule over $R = (\mathbb{Z}_0^+, +, \cdot)$.

- 1) Let $N = 8\mathbb{Z}_0^+$ be a Q-subsemimodule of M, $A = 4\mathbb{Z}_0^+, B = \{0, 6, 8, 10, \ldots\}$. Then A, B are subsemimodules of M with $N \subseteq A, B$ and $\widetilde{A} = 4\mathbb{Z}_0^+ \subseteq 2\mathbb{Z}_0^+ = \widetilde{B}$ but A is not a subset of B.

2) Let $N = 6\mathbb{Z}_0^+$ be a Q-subsemimodule of M, $A = 2\mathbb{Z}_0^+, B = \{0, 6, 8, 10, \ldots\}$. Then A, B are subsemimodules of M with $A \neq B$ and $N \subseteq A, B$. Here $\widetilde{A} = 2\mathbb{Z}_0^+ = \widetilde{B}$.

Chaudhari and Bonde [3, Lemma 3.4], proved that if A, N are subsemimodules of an R-semimodule M with N a Q-subsemimodule and $N \subseteq A$, then N is a $Q \cap A$ -subsemimodule of A. However, we prove the following lemma which gives a characterization of a subtractive extension of a Q-subsemimodule N of an R-semimodule M and will be used in the subsequent theorem.

LEMMA 2.6. Let N be a Q-subsemimodule of an R-semimodule M and A be a subsemimodule of M with $N \subseteq A$. Then A is a subtractive extension of N if and only if N is a $Q \cap A$ -subsemimodule of A.

Proof. Let $q_0 + N$ be the zero element of $M/N_{(Q)}$. Let A be a subtractive extension of N and $a \in A$. Then there exists unique $q \in Q$ such that $a \in q + N$. So a = q + n for some $n \in N$. Since A is a subtractive extension of N, $q \in A$. Hence $q \in Q \cap A$. If $(q_1 + N) \cap (q_2 + N) \neq \emptyset$ for some $q_1, q_2 \in Q \cap A$, then $q_1 = q_2$ because N is a Q-subsemimodule of M. Thus N is a $Q \cap A$ -subsemimodule of A. Conversely suppose that N is a $Q \cap A$ -subsemimodule of A. Let $x \in N, x + y \in A$ for some $y \in M$. Since N is a $Q \cap A$ -subsemimodule of A and N a Q-subsemimodule of M there exist unique $q_1 \in Q \cap A, q_2 \in Q$ such that $x + y \in q_1 + N$ and $y \in q_2 + N$. But then $x + y \in (q_0 + N) \oplus (q_2 + N) = q_2 + N$, since $x \in N = q_0 + N$. So $(q_1 + N) \cap (q_2 + N) \neq \emptyset$. Hence $q_2 = q_1 \in A$. Now $y \in q_2 + N \subseteq A$.

THEOREM 2.7. Let N be a Q-subsemimodule of an R-semimodule M and A a subsemimodule of M. Then the following statements are equivalent:

- 1) A is a subtractive extension of N
- 2) $A/N_{(Q\cap A)}$ is a subsemimodule of an R-semimodule $M/N_{(Q)}$
- 3) $A/N_{(Q\cap A)} \subseteq M/N_{(Q)}$

Proof. (1) ⇒ (2) Let *A* be a subtractive extension of *N*. By Lemma 2.6, *N* is a *Q* ∩ *A*-subsemimodule of *A*. Let $q_1 + N, q_2 + N \in A/N_{(Q \cap A)}$. Therefore $q_1, q_2 \in Q \cap A \subseteq Q$. Hence there exists a unique $q_3 \in Q$ such that $(q_1 + N) \oplus (q_2 + N) = q_3 + N$ where $q_1 + q_2 + N \subseteq q_3 + N$. Now $q_1 + q_2 = q_3 + n$ for some $n \in N$. But $q_3 + n = q_1 + q_2 \in A$. Since *A* is a subtractive extension of *N*, $q_3 \in A$. Now $q_3 + N \in A/N_{(Q \cap A)}$. Similarly, if $r \in R, q + N \in A/N_{(Q \cap A)}$, then $r \odot (q + N) \in A/N_{(Q \cap A)}$. Hence $A/N_{(Q \cap A)}$ is a subsemimodule of $M/N_{(Q)}$.

Jayprakash Ninu Chaudhari and Dipak Ravindra Bonde

 $(2) \Rightarrow (3)$ Trivial.

 $(3) \Rightarrow (1) \text{ Let } x \in N, x + y \in A \text{ where } y \in M. \text{ Then } x \in N = q_0 + N \text{ where } q_0 + N \text{ is the zero element of } M/N_{(Q)} \text{ and hence zero element of } A/N_{(Q\cap A)}. \text{ Now there exist unique } q_1 \in Q \cap A, q_2 \in Q \text{ such that } x + y \in q_1 + N \text{ and } y \in q_2 + N. \text{ But then } x + y \in (q_0 + N) \oplus (q_2 + N) = q_2 + N. \text{ So } q_1, q_2 \in Q \text{ are such that } (q_1 + N) \cap (q_2 + N) \neq \emptyset. \text{ Hence } q_1 = q_2 \in A. \text{ So } y \in q_2 + N \subseteq A.$

If N is a Q-subsemimodule of an R-semimodule M, then following theorem gives a relationship between subsemimodules of the quotient semimodule $M/N_{(Q)}$ and subsemimodules of M which are subtractive extensions of N.

THEOREM 2.8. Let N be a Q-subsemimodule of an R-semimodule M. Then a subset L of $M/N_{(Q)}$ is a subsemimodule of $M/N_{(Q)}$ if and only if there exists a subsemimodule A of M such that A is a subtractive extension of N and $A/N_{(Q\cap A)} = L$.

Proof. Let L be a subsemimodule of an R-semimodule $M/N_{(Q)}$. Denote $A = \{x \in M : there \ exists \ a \ unique \ q \in Q \ such \ that \ x+$ $N \subseteq q + N \in L$, clearly $N \subseteq A$. Let $x, y \in A, r \in R$. Then there exist unique $q_1, q_2 \in Q$ such that $x + N \subseteq q_1 + N \in L, y + N \subseteq q_2 + N \in L$. Again there exist unique $q_3, q_4 \in Q$ such that $(q_1 + N) \oplus (q_2 + N) =$ $q_3 + N \in L$ and $r \odot (q_1 + I) = q_4 + N \in L$ where $q_1 + q_2 + N \subseteq q_3 + N$ and $rq_1+N \subseteq q_4+N$. By Lemma 1.2, $x+y \in x+y+N \subseteq q_1+q_2+N \subseteq q_3+N$ and $rx \in rx + N \subseteq rq_1 + N \subseteq q_4 + N$. So $x + y, rx \in A$. Hence A is a subsemimodule of M with $N\subseteq A.$ Now let $x\in N, x+y\in A, y\in M.$ So there exists a unique $q \in Q$ such that $x + y \in q + N \in L$. Since N is a Qsubsemimodule of M, there exists a unique $q' \in Q$ such that $y \in q' + N$. Since $x \in N, x + y \in q' + N$. So $(q + N) \cap (q' + N) \neq \emptyset \Rightarrow q = q'$. Now $y \in q' + N = q + N \in L$. Thus $y \in A$. Hence A is a subtractive extension of N. Clearly $A/N_{(Q\cap A)} \subseteq L$. Now if $q + N \in L$, then $q \in A$. So $L \subseteq A/N_{(Q \cap A)}$. Thus $A/N_{(Q \cap A)} = L$. Conversely, suppose that A is a subtractive extension of N and $A/N_{(Q\cap A)} = L$. Then by Theorem 2.7, L is a subsemimodule of $M/N_{(Q)}$.

COROLLARY 2.9. Let N be a Q-subsemimodule of an R-semimodule M and let T, L be subtractive extensions of N. Then $T/N_Q = L/N_Q$ if and only if T = L.

Proof. Let $T/N_Q = L/N_Q$ and $a \in T$. Then $a \in q_1 + N$ for some unique $q_1 \in Q$. So $a = q_1 + c$ for some unique $c \in N$. Since T is a subtractive extension of N, $q_1 \in T$. Thus $q_1 + N \subseteq T/N_Q = L/N_Q$.

It follows that $q_1 \in L$. Now $a = q_1 + c \in L$. Hence $T \subseteq L$. Similarly $L \subseteq T$. Converse is trivial.

The following theorem gives a relationship between prime subsemimodules of M which are subtractive extensions of a Q-subsemimodule N of M and prime subsemimodules of the quotient semimodule $M/N_{(Q)}$.

THEOREM 2.10. Let N be a Q-subsemimodule of an R-semimodule M and P be a subtractive extension of N. Then P is a prime subsemimodule of M if and only if $P/N_{(Q\cap P)}$ is a prime subsemimodule of $M/N_{(Q)}$.

Proof. Let P be a prime subsemimodule of M. Suppose that $r \in$ $R, q_1 + N \in M/N_{(Q)}$ are such that $r \odot (q_1 + N) = q_2 + N \in P/N_{(Q \cap P)}$ where $q_2 \in Q \cap P$ is unique such that $rq_1 + N \subseteq q_2 + N$. Therefore $rq_1 = q_2 + n \in P$ for some $n \in N \subseteq P$. As P is a prime subsemimodule, either $rM \subseteq P$ or $q_1 \in P$. If $q_1 \in P$, then $q_1 \in Q \cap P$ and hence $q_1 + N \in P/N_{(Q\cap P)}$. Suppose that $rM \subseteq P$. For $q + N \in M/N_{(Q)}$, let $r \odot (q + N) = q_3 + N$ where q_3 is a unique element of Q such that $rq + N \subseteq q_3 + N$. Therefore $rq = q_3 + n' \in P$ for some $n' \in N$, since P is a subtractive extension of $N, q_3 \in P$. So $q_3 \in Q \cap P$. Now $r \odot (q+N) = q_3 + N \in P/N_{(Q \cap P)}$ and hence $r \odot M/N_{(Q)} \subseteq P/N_{(Q \cap P)}$. So $P/N_{(Q \cap P)}$ is a prime subsemimodule of $M/N_{(Q)}$. Conversely suppose that $P/N_{(Q\cap P)}$ is a prime subsemimodule of $M/N_{(Q)}$. Let $rm \in P$ where $r \in R, m \in M$. Now there exists a unique $q_1 \in Q$ such that $m \in q_1 + N$ and $rm \in r \odot (q_1 + N) = q_2 + N$ where q_2 is a unique element of Q such that $rq_1 + N \subseteq q_2 + N$. Now $rm \in P, rm \in q_2 + N$ implies $q_2 \in P$, as P is a subtractive extension of N. Hence $r \odot (q_1 + N) = q_2 + N \in P/N_{(Q \cap P)}$. As $P/N_{(Q\cap P)}$ is a prime subsemimodule, either $r \odot M/N_{(Q)} \subseteq P/N_{(Q\cap P)}$ or $q_1 + N \in P/N_{(Q \cap P)}$. If $q_1 + N \in P/N_{(Q \cap P)}$, then $q_1 \in P$. Hence $m \in P$ $q_1 + N \subseteq P$. So assume that $r \odot M/N_{(Q)} \subseteq P/N_{(Q \cap P)}$. For $x \in M$, there exists a unique $q_3 \in Q$ such that $x \in q_3 + N$ and $rx \in r \odot (q_3 + N) = q_4 + N$ where q_4 is a unique element of Q such that $rq_3 + N \subseteq q_4 + N$. Now $q_4 + N = r \odot (q_3 + N) \in P/N_{(Q \cap P)} \Rightarrow q_4 \in P.$ Now $rx \in q_4 + N \subseteq P.$ So $rM \subseteq P$. Hence P is a prime subsemimodule of M.

Adopting the proof of Theorem 2.10, we have the following theorems.

THEOREM 2.11. Let N be a Q-subsemimodule of an R-semimodule M and P a subtractive extension of N. Then P is a primary subsemimodule of M if and only if $P/N_{(Q\cap P)}$ is a primary subsemimodule of $M/N_{(Q)}$.

THEOREM 2.12. Let N be a Q-subsemimodule of an R-semimodule M and P be a subtractive extension of N. Then

Jayprakash Ninu Chaudhari and Dipak Ravindra Bonde

- 1) If P is a weakly prime (weakly primary) subsemimodule of M, then $P/N_{(Q\cap P)}$ is a weakly prime (weakly primary) subsemimodule of $M/N_{(Q)}$.
- 2) If N and $P/N_{(Q\cap P)}$ are weakly prime (weakly primary) subsemimodules of M and $M/N_{(Q)}$ respectively, then P is a weakly prime (weakly primary) subsemimodule of M.

References

- P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
- [2] R. E. Atani, S. E. Atani, On subsemimodules of semimodules, Buletinul Acad. Sci. Republ. Moldova, ser. Math., Number 2 (63) (2010), 20-30.
- [3] J. N. Chaudhari and D. R. Bonde, On Partitioning and Subtractive Subsemimodules of Semimodules over Semirings, Kyungpook Math. J. 50 (2010), 329-336.
- [4] J. N. Chaudhari and D. R. Bonde, weakly prime subsemimodules of semimodules over semirings, International J. Algebra, 5 (2011), no. 1-4, 167-174.
- [5] J. N. Chaudhari and D. R. Bonde, On direct sum of partitioning subsemimodules of semimodules over semirings, Journal of Advanced Research in Pure Mathematics, 4 (2012), Issue. 1, 81-88.
- [6] J. S. Golan, Semiring and their applications, Kluwer Academic publisher Dordrecht, 1999.
- [7] V. G. and J. N. Chaudhari, Characterization of weakly prime subtractive ideals in semirings, Bull. Inst. Math. Acad. Sinica (New Series) 3 (2008), 347-352.
- [8] G. Yesilot, On prime and maximal k-subsemimodules of semimodules, Hacettepe Journal of Mathematics and Statistics, 39 (3) (2010), 305-312.
- [9] G. Yesilot, K. H. Oral and U. Tekir, On prime subsemimodules of semimodules, International Journal of Algebra, 4 (2010), no. 1, 53-60.

Department of Mathematics M. J. College, Jalgaon-425 002, India *E-mail*: jnchaudhari@rediffmail.com

**

Department of Mathematics ACS College, Dharangaon-425 105, India *E-mail*: drbonde@rediffmail.com

^{*}