
Bull. Korean Math. Soc. 61 (2024), No. 3, pp. 763–777

https://doi.org/10.4134/BKMS.b230348

pISSN: 1015-8634 / eISSN: 2234-3016

RINGS WHOSE ASSOCIATED EXTENDED ZERO-DIVISOR

GRAPHS ARE COMPLEMENTED

Driss Bennis, Brahim El Alaoui, and Raja L’hamri

Abstract. Let R be a commutative ring with identity 1 ̸= 0. In this

paper, we continue the study started in [10] to further investigate when

the extended zero-divisor graph of R, denoted as Γ(R), is complemented.

We also study when Γ(R) is uniquely complemented. We give a complete

characterization of when Γ(R) of a finite ring R is complemented. Various

examples are given using the direct product of rings and idealizations of

modules.

1. Introduction

Throughout the paper, R will be a commutative ring with identity and Z(R)
will be its set of zero-divisors. Let x be an element of R. The annihilator of
x is defined as AnnR(x) := {y ∈ R |xy = 0} and if there is no confusion, we

denote it simply by Ann(x). For an ideal I of R,
√
I means the radical of I.

An element x of R is called nilpotent if xn = 0 for some positive integer n and
we denote nx its index of nilpotency; that is, the smallest integer n such that
xn = 0. The set of all nilpotent elements is denoted by Nil(R) :=

√
0. The ring

Z/nZ of the residues modulo an integer n will be denoted by Zn. For a subset
X of R, we denote by X∗ the set X \ {0}.

Recall that the zero-divisor graph, denoted by Γ(R), is the simple graph
whose vertex set is the set of nonzero zero-divisors, Z(R)∗, and two distinct
vertices x and y are adjacent if and only if xy = 0. The extended zero-divisor
graph, denoted by Γ(R), is the simple graph which has the same vertex set like
Γ(R) and two distinct vertices x and y are adjacent if and only if xnym = 0 with
xn ̸= 0 and ym ̸= 0 for some integers n,m ∈ N∗. We assume the reader has
a basic familiarity with the zero-divisor graph theory. For general background
on the zero-divisor graph theory, we refer the reader to [1, 3–5,7–10].

This paper deals with complementedness and uniquely complementedness
notions of graphs. A graph G = (V,E) is said to be complemented if every
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vertex v has an orthogonal; that is, an adjacent vertex u to v such that the
edge v − u is not a part of a triangle, we write v ⊥ u. The graph G is said
to be uniquely complemented if it is complemented and, for any three vertices
u, v, w ∈ V , if v is orthogonal to both u and w, then u ∼ w, where ∼ is the
equivalence relation on G given by u ∼ w if their open neighborhoods coincide.
In [2, Theorem 3.5], these notions were used, for the classical zero-divisor graph,
to characterize when the total quotient ring of a reduced ring R is von Neumann
regular. Also, [10, Proposition 4.8] gives a similar result. Namely, it was shown
that, when Γ(R) ̸= Γ(R), Γ(R) is complemented is a sufficient condition so that
the total quotient ring of R is zero-dimensional. But, it seems that the proof
holds true only when girth(Γ(R)) = 4. In this paper, using a new treatment, we
prove that [10, Proposition 4.8] still holds true without any further assumption
(see Theorem 4.2). Namely, in this paper, we continue the investigation begun
in [10] to further study when Γ(R) is complemented and when it is uniquely
complemented.

This article is organized as follows: In Section 2, we study when the extended
zero-divisor graph of a commutative ring is complemented. We start by showing
that, if Γ(R) is complemented such that |Z(R)| ≥ 4, then the ring R has at
most one nonzero nilpotent element (see Theorem 2.4 and Example 2.5). When
R is finite, we get the converse of Theorem 2.4 (see Corollary 2.8). In fact,
this is a consequence of the characterization of finite rings with complemented
extended zero-divisor graphs (see Theorem 2.6). In Section 3, we show as a
main result that, when Γ(R) ̸= Γ(R), the complementedness and the uniquely
complementedness notions coincide (see Theorem 3.2). In Section 4, we show
that, when Γ(R) ̸= Γ(R), the total quotient ring T (R) of R is zero-dimensional
once Γ(R) is complemented (see Theorem 4.2). The proof of this result leads
us to show that when Γ(R) is complemented, every non nilpotent element
has an orthogonal which is not nilpotent (see Theorem 4.4). Also, if Γ(R) is
complemented such that Γ(R) ̸= Γ(R), then orthogonals to the unique nonzero
nilpotent element cannot be an end (see Corollary 4.5). At the end of this
section we prove that, for any ring R such that |Nil(R)| = 2, R is not local or
Γ(R) is not complemented (see Proposition 4.6). Finally, Section 5 is devoted
to the study of when the extended zero-divisor graph of a finite direct product
of rings as well as the one of an idealization of an R-module are complemented
(see Theorems 5.1, 5.2 and 5.3, and Proposition 5.4).

2. When the extended zero-divisor graph of a commutative ring is
complemented?

In this section we study when the extended zero-divisor graph of a commu-
tative ring is complemented. We start by showing that the ring R will have at
most one nonzero nilpotent element if Γ(R) is complemented and |Z(R)| ≥ 4.
But first, we need the following lemmas which will be very useful throughout
this paper.
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Lemma 2.1. Let R be a non reduced ring. If Γ(R) is complemented, then
every nonzero nilpotent element has index 2.

Proof. Assume that Nil(R) ̸= {0}. Let x ∈ Nil(R) such that nx ≥ 3. Let
z ∈ Z(R) such that z is adjacent to x. If xnx−1 ̸= z, then xnx−1 is adjacent to
both z and x. Otherwise, we can easily see that xnx−1 + x is adjacent to both
xnx−1 and x. Hence, Γ(R) is not complemented. □

Notice that the converse of this lemma does not hold in general since, for
instance, the extended zero-divisor graph Γ(Z18), illustrated in Figure 1, is not
complemented (since, for example, 6 has not an orthogonal element) even if
the index of nilpotency of every nilpotent element is 2.

Figure 1. Γ(Z18)

Example 2.2. (1) Let p be a prime number and n be a positive integer. Then,
Γ(Zpn) is complemented if and only if n = 2 and p = 3 (since K2 is the only
complete graph that is complemented).

(2) Consider the ring R[X,Y ]/(X3, XY 3). The index of nilpotency of X is
3, so the graph Γ(R[X,Y ]/(X3, XY 3)) is not complemented.

Lemma 2.3. Let R be a ring such that |Z(R)∗| ≥ 3. If Γ(R) is complemented,
then the following assertions hold:

(1) For every α ∈ Nil(R)∗, 2α = 0.
(2) For every α ∈ Nil(R)∗, if β ∈ Z(R)∗ such that β ⊥ α, then β /∈ Nil(R).

Proof. (1) Assume that there exists α ∈ Nil(R)∗ such that 2α ̸= 0. Then, α is
adjacent to (−α). On the other hand, |Z(R)∗| ≥ 3 and since Γ(R) is connected,
there exists z ∈ Z(R)∗ \ {α,−α} which is adjacent to α. But, such an element
is adjacent to (−α). Namely, this means that α has not an orthogonal, which
is a contradiction with the fact that Γ(R) is complemented.

(2) Let α ∈ Nil(R)∗ and consider β ∈ Z(R)∗ such that α ⊥ β. If β ∈ Nil(R)∗,
then α + β ̸= 0, otherwise α = −β and with the fact that 2α = 0, α = β, a
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contradiction since α ⊥ β. Thus, α + β is adjacent to both α and β (since α
and β are adjacent, and by Lemma 2.1, β2 = α2 = 0). So, α and β are not
orthogonal, a contradiction. □

Now, we are in position to show that when Γ(R) is complemented and
|Z(R)| ≥ 4, the ring R has at most one nonzero nilpotent element.

Notice that, if |Z(R)| = 2, which means that R is isomorphic to Z4 or
Z2[X]/(X2), Γ(R) is not complemented. If |Z(R)| = 3, then Γ(R) is comple-
mented. Explicitly, R is either isomorphic to Z9 or Z3[X]/(X2) (and in this
case Nil(R) = {0, a,−a} = Z(R) for some 0 ̸= a ∈ R), or R is isomorphic to
Z2 × Z2 (and in this case Nil(R) = {0}).

Theorem 2.4. Let R be a ring such that |Z(R)| ≥ 4. If Γ(R) is complemented,
then |Nil(R)| ≤ 2.

Proof. Assume that there exist a, b ∈ Nil(R)∗ such that a ̸= b. Then, a + b ∈
Nil(R)∗ by Lemma 2.3. Let x, y, z ∈ Z(R) \Nil(R) such that x ⊥ a, y ⊥ b and
z ⊥ a + b. Let n be a positive integer such that zn(a + b) = 0. We have the
two following cases:
Case ab ̸= 0: Since zn(a+ b) = 0, znab = −znb2 = 0 by Lemma 2.1. Thus, ab
is adjacent to both z and a+ b (ab ̸= z since ab ∈ Nil(R)∗ and also ab ̸= a+ b),
a contradiction.
Case ab = 0: If zna = 0, then a is adjacent to both z and a+b, a contradiction.
Then, zna ̸= 0. If zna ̸= a, then zna is adjacent to both a and x, a contra-
diction. Otherwise, since zn(a + b) = 0 and b ∈ Nil(R)∗, zna = −znb = znb.
Then, zna = a = znb is adjacent to both b and y, a contradiction. □

Example 2.5. (1) Consider the ring R = D × Z2[X]/(X2), where D is an
integral domain. Then, Nil(R) = {(0, 0̄), (0, X̄)} and its extended zero-divisor
graph is illustrated in Figure 2. Namely, Γ(R) is a complete bipartite graph
and hence it is complemented.

(2) For the ring R = Z2 × Z2 × Z4, we have Nil(R) = {(0̄, 0̄, 0̄), (0̄, 0̄, 2̄)}.
The extended zero-divisor graph of this ring is illustrated in Figure 3. We can
easily show that Γ(R) is complemented.

(3) For the ring Z2[X,Y ]/(X3, XY ), we have Nil(Z2[X,Y ]/(X3, XY )) =
{0̄, X̄, X̄2, X̄ + X̄2}. The extended zero-divisor of this ring is illustrated in
Figure 4.

Since X̄ + Ȳ has not an orthogonal element, Γ(Z2[X,Y ]/(X3, XY )) is not
complemented.

When R is finite, the converse of Theorem 2.4 holds as shown in Corollary
2.8 which is a consequence of the following one.

Theorem 2.6. Let R be a finite ring such that Γ(R) ̸= Γ(R). Then, Γ(R)
is complemented if and only if R ∼= B × A1 × · · · × An such that B ∼= Z4 or
Z2[X]/(X2) and A1, . . . , An are finite fields.
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Figure 2. Γ(D × Z2[X]/(X2))

Figure 3. Γ(Z2 × Z2 × Z4)

Proof. (⇐) This follows by induction using Theorems 5.1 and 5.2 given in
Section 5.

(⇒) Since R is a finite ring, R ∼= A1 × · · · ×An such that Ai is a finite local
ring for all i ∈ {1, . . . , n}, by [6, Theorem 87]. Then, for all i ∈ {1, . . . , n},
Z(Ai) = Nil(Ai). By Theorem 2.4, |Nil(R)| ≤ 2, and since Γ(R) ̸= Γ(R),
|Nil(R)| = 2. So, one of the Ai’s is isomorphic to Z4 or Z2[X]/(X2) and the
other rings are finite fields. Notice that Γ(Z4) and Γ(Z2[X]/(X2)) are not
complemented which guarantee the existence of the fields. □

Corollary 2.7. Let n ∈ N∗ such that Γ(Zn) ̸= Γ(Zn). Then, Γ(Zn) is comple-
mented if and only if n = 22p1 · · · pr with p1, . . . , pr are distinct prime numbers
and r ≥ 1 is a positive integer.

Now, let us prove the converse of Theorem 2.4 in the case of a finite ring.
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Figure 4. Γ(Z2[X,Y ]/(X3, XY ))

Corollary 2.8. Let R be a finite ring such that Γ(R) ̸= Γ(R). If Nil(R) =
{0, a} for some a ∈ R∗, then Γ(R) is complemented.

Proof. Since R is a finite ring, by [6, Theorem 87], R ∼= A1 × · · · × An such
that Ai is a finite local ring for all i ∈ {1, . . . , n}. If R is indecomposable, then
using the fact that |Nil(R)| = 2 = |Z(R)|, R ∼= Z4 or R ∼= Z2[X]/(X2). Then,
this contradicts the fact that Γ(R) ̸= Γ(R). Thus, R ∼= A1×· · ·×An such that
Z(Ai) = Nil(Ai) for every i ∈ {1, . . . , n} and n ≥ 2. Since |Nil(R)| = 2, one
of the Ai’s is isomorphic to Z4 or Z2[X]/(X2) and the other rings are integral
domains. Then, by Theorem 2.6, Γ(R) is complemented. □

The authors are not able to prove the equivalence of Theorem 2.6 for infinite
rings. We let it then as an open important question.

3. Complementedness and uniquely complementedness notions
coincide for the extended zero-divisor graphs

In [2, Theorem 3.5], it was shown that, when R is reduced, Γ(R)(= Γ(R)) is
uniquely complemented if and only if Γ(R) is complemented if and only if T (R)
is von Neumann regular. The main result of this section generalizes [2, Theorem
3.5]. Namely, it shows that, when R is not reduced, the complementedness and
the uniquely complementedness notions coincide. To show this, we first prove
the following lemma.

Lemma 3.1. Let R be a ring and a, b, c ∈ Z(R) \ Nil(R). If a ⊥ b and a ⊥ c
in Γ(R), then b ∼ c.

Proof. We have an1bm1 = an2cm2 = 0 for some n1,m1, n2,m2 ∈ N∗. We first
show that b and c are not adjacent; that is, bαcβ ̸= 0 for every α, β ∈ N∗. If
bαcβ = 0 for some α, β ∈ N, then, b = c or a = c (since a ⊥ b and a ⊥ c).
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Thus, b ∈ Nil(R) or a ∈ Nil(R), a contradiction. Then, b and c are not
adjacent. Now, let us prove that N(b) = N(c). Let d ∈ N(b). Then dnbm = 0
with dn ̸= 0 for some n,m ∈ N. Thus, (dncm2)an2 = dn(cm2an2) = 0 and
(dncm2)bm = (dnbm)cm2 = 0. Then, dncm2 = 0, otherwise dncm2 is adjacent
to both a and b (and dncm2 ̸= a and dncm2 ̸= b since a, b /∈ Nil(R)) which
contradicts the fact that a ⊥ b. This shows that N(b) ⊆ N(c). Similarly, we
show the other inclusion and then b ∼ c. □

Now, we are ready to prove the main result of this section.

Theorem 3.2. Let R be a ring such that Γ(R) ̸= Γ(R). Then, Γ(R) is uniquely
complemented if and only if Γ(R) is complemented.

Proof. (⇒) By definition of uniquely complemented.
(⇐) Suppose that Γ(R) is complemented. Then, by Theorem 2.4, Nil(R) =

{0, α} for some 0 ̸= α ∈ R. So, by Lemma 3.1, we have just to prove that, for
every b, c ∈ Z(R)∗, if α ⊥ b and α ⊥ c, then b ∼ c, and if α ⊥ c and b ⊥ c,
then α ∼ b. Let us prove the first implication. So, suppose by contradiction
that there exist b, c ∈ Z(R)∗ such that α ⊥ b and α ⊥ c but b ≁ c. Then, there
exists x ∈ N(c)\N(b); that is, xn1cm1 = 0 for some n1,m1 ∈ N∗ and xnbm ̸= 0
for every n,m ∈ N∗. Assume that xb ̸= c. Then, (xb)n1cm1 = 0 and so xb
and c are adjacent. On the other hand, α and b are adjacent. Then, αbt = 0
for some t ∈ N∗. Thus, α(xb)t = 0 which shows that xb is adjacent to both α
and c, a contradiction since α ⊥ c. Then, xb = c, and with xn1cm1 = 0 we get
xn1+m1bm1 = xn1(xb)m1 = 0, a contradiction.

Now, we prove the second implication. Assume that α ⊥ c and b ⊥ c. Then,
αcm1 = bn1cm2 = 0 for some n1,m1,m2 ∈ N∗. Thus, α is not adjacent to
b, otherwise b is adjacent to both α and c, a contradiction since α ⊥ c. Let
d ∈ N(α). Then dnα = 0 for some n ∈ N∗ and so (dnbn1)cm2 = dn(bn1cm2) = 0
and (dnbn1)α = bn1dnα = 0. If dnbn1 ∈ Z(R) \ Nil(R), then dnbn1 ̸= α and
dnbn1 ̸= c. Thus, dnbn1 is adjacent to both c and α, a contradiction (since
α ⊥ c). Then, dnbn1 ∈ Nil(R). If dnbn1 = 0, then d is adjacent to b (d ̸= b since
d, b ∈ Z(R) \ Nil(R)). Thus, d ∈ N(b). If dnbn1 = α, then d2nb2n1 = α2 = 0
(d2n ̸= 0, b2n1 ̸= 0 and d ̸= b since b, d ∈ Z(R) \Nil(R)). Thus, d ∈ N(b). This
shows that α ∼ b. Therefore, Γ(R) is uniquely complemented. □

Corollary 3.3. Let R be a ring such that Γ(R) ̸= Γ(R) and Γ(R) is comple-
mented. Then, for every orthogonal b ∈ Z(R)∗ to the nonzero nilpotent element
α, we have b ∼ α+ b.

Proof. Assume that Γ(R) ̸= Γ(R) and Γ(R) is complemented. Then, by The-
orem 2.3, Nil(R) = {0, α} for some 0 ̸= α ∈ R. Let b ∈ Z(R)∗ \ {α} such
that α ⊥ b; that is, αbn = 0 for some positive integer n and there is no
vertex adjacent to both α and b. Let us prove that α ⊥ (α + b). We have
α(α + b)n = α(bn + nαbn−1 + · · · + αn) = αbn = 0. Since α + b ̸= α
and (α + b)n ̸= 0 (because b /∈ Nil(R)), α and α + b are adjacent. Now,
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assume that there exists c which is adjacent to both α and α + b. Then,
cn1α = 0 = cn1(α + b)m1 = m1c

n1αbm1−1 + cn1bm1 = 0 + cn1bm1 . So, c is
adjacent to b, a contradiction since α ⊥ b. Therefore, α ⊥ (α+ b), which shows
using Theorem 3.2 that b ∼ α+ b. □

4. Complemented extended zero-divisor graphs and
zero-dimensional rings

If |Z(R)| = 2, then R is isomorphic to Z4 or Z2[X]/(X2) and so T (R)
is zero-dimensional. If |Z(R)| = 3, then R is isomorphic to Z2 × Z2, Z9 or
Z3[X]/(X2) and so, Γ(R) is complemented and T (R) is zero-dimensional. In
this section, we show that, when Γ(R) ̸= Γ(R) (in particular |Z(R)| ≥ 4), T (R)
is zero-dimensional once Γ(R) is complemented. In fact, this result was already
given in [10, Proposition 4.8]. But, in the third line of the proof, [10, Corollary
3.4] is used to show that an element z0 is not nilpotent. This means that we
have supposed that the girth of Γ(R) is not 3. But, there are Γ(R) which are
complemented with girth equal to 3. For this consider Γ(Z2 × Z2 × Z4) (see
Figure 3). Now, using a new way, we show that [10, Proposition 4.8] holds true.
To show that, we need the following lemma.

Lemma 4.1. Let R be a ring such that Γ(R) ̸= Γ(R). If Γ(R) is uniquely
complemented, then Γ(R) is not complemented.

Proof. The result holds because once Γ(R) is uniquely complemented it will be
a star graph by [2, Theorem 3.9]. In this case Γ(R) is not complemented. □

Using the previous lemma, we get the main result of this section.

Theorem 4.2. Let R be a ring such that Γ(R) ̸= Γ(R). If Γ(R) is comple-
mented, then T (R) is zero-dimensional.

Proof. There are two cases to discuss:
Case 1. For every x ∈ Z(R)∗, x⊥ ∩ (Z(R) \ Nil(R)) ̸= ∅. In this case, we
show that for every x1

x2
in T (R), there exists m1

m2
∈ T (R) such that x1

x2
+ m1

m2

is a unit and x1

x2

m1

m2
is nilpotent. This shows that T (R) is π-regular and so

zero-dimensional (see [11, Theorems 3.1 and 3.2]). Then, let x1

x2
in T (R). We

distinguish three sub-cases:
Sub-case 1. Assume that x1 ∈ R \ Z(R). Since Γ(R) is complemented and
Γ(R) ̸= Γ(R), |Nil(R)| = 2. We denote by α the nonzero nilpotent element of
R. Using Lemma 2.3, we have α2 = 2α = 0. It is clear that x1

x2

α
x2

is nilpotent

and also x1

x2
+ α

x2
is a unit since (x1 + α)2 = x1

2 /∈ Z(R).

Sub-case 2. Assume that x1 = α. We have x1

x2

1
x2

is nilpotent and also x1

x2
+ 1

x2

is a unit since (x1 + 1)2 = 1 /∈ Z(R).
Sub-case 3. Assume that x1 ∈ Z(R) \ Nil(R). Then, there exists m1 ∈
x1

⊥ ∩ (Z(R) \Nil(R)). Since x1 and m1 are adjacent, x1

x2

m1

x2
is nilpotent. So, it

remains to show that x1

x2
+m1

x2
is a unit, which means to prove that x1+m1 does
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not belong to Z(R). Otherwise, there exists z ∈ R∗ such that z(x1 +m1) = 0.
We have x1m1 is nilpotent (since x1 and m1 are adjacent), then there are the
two following sub-subcases to discuss:
Sub-subcase 1. Suppose that x1m1 = 0. We have z(x1 + m1) = 0, then
zx1m1 + zm1

2 = 0 and zx1
2 + zx1m1 = 0, so zm1

2 = 0 and zx1
2 = 0. Then,

z ̸= x1 and z ̸= m1 since x1 and m1 are not nilpotent. Thus, z is adjacent to
both x1 and m1, a contradiction (since x1 and m1 are orthogonal).
Sub-subcase 2. Suppose that x1m1 = α. We have zx1

2 + zx1m1 = 0 and
zx1m1+zm1

2 = 0, then zx1
2+zα = 0 and zα+zm1

2 = 0. Thus, zαx1
2 = 0 and

zαm1
2 = 0. Then, zα ̸= x1 and zα ̸= m1 since x1 and m1 are not nilpotent.

If zα ̸= 0, then it is adjacent to both x1 and m1, a contradiction (since x1 and
m1 are orthogonal). Then, zα = 0 which implies that zx2

1 = 0 = zm2
1. Thus,

z ̸= x1 and z ̸= m1 since x1 and m1 are not nilpotent. Then, z is adjacent to
both x1 and m1, a contradiction (since x1 and m1 are orthogonal).
Case 2. There exists x ∈ Z(R)∗, x⊥ = {α} ⊂ Nil(R) = {0, α}. In this case,
one can show that NΓ(R)(x) = {α}. Otherwise, there exist s and t in NΓ(R)(x)

such that s and t are adjacent. Since x⊥ = {α}, sα = α. Also, since s and t are
adjacent, st = α or st = 0. Then, sαt = 0, which implies that αt = 0. Thus,
t and α are adjacent, which is a contradiction with the fact that x⊥ = {α}.
Thus, NΓ(R)(x) = {α}. On the other hand, Γ(R) is not uniquely complemented

(using Lemma 4.1). Then, in this case, there are two sub-cases to discuss:
Sub-case 1. Γ(R) is complemented. Since Γ(R) is not uniquely complemented,
by [2, Theorem 3.14], R ∼= Z4 × D or R ∼= Z2[X]/(X2) × D such that D is
an integral domain, but this contradicts the fact that |x⊥| = 1 (since for every
y ∈ Z(R)∗, |y⊥| > 1).
Sub-case 2. Γ(R) is not complemented. Then, there exists b ∈ Z(R)∗ which
has an orthogonal in Γ(R) and not in Γ(R) (one can see that b ̸= α and
bx /∈ {0, α} since α has x as an orthogonal in Γ(R) and NΓ(R)(x) = {α}).
Then, there exists t ∈ b⊥ such that bt = α. One can show that t ̸= α.
Otherwise, bα = α and so for every n ∈ N∗, bnα = α ̸= 0. Then, b and α are
not adjacent in Γ(R), which is a contradiction with the fact that t = α and b
are orthogonal. There are two sub-subcases to discuss:
Sub-subcase 1. bα ̸= 0. Then, bα = α. Since for every z ∈ NΓ(R)(b),

zb = α or zb = 0, z(bα) = 0 for every z ∈ NΓ(R)(b), then zα = 0 for every

z ∈ NΓ(R)(b) (since bα = α). In this case, we show that (bx)
⊥
= ∅, therefore,

we determine firstly NΓ(R)(bx). Let h ∈ NΓ(R)(bx). Then there exist n,m in

N∗ such that (bx)nhm = 0 with (bx)n ̸= 0 and hm ̸= 0. Then, (bh)nxn = 0
(resp., (bh)mxn = 0) if n ≥ m (resp., m ≥ n). If (bh)n ̸= 0, then bh = α since
NΓ(R)(x) = {α}. Then, h = α or h ∈ NΓ(R)(b). If (bh)n = 0, then h = α

or h ∈ NΓ(R)(b). Thus, NΓ(R)(bx) = NΓ(R)(b) ∪ {α}. Thus, (bx)
⊥

= ∅ since

zα = 0 for every z ∈ NΓ(R)(b), which is a contradiction with the fact that Γ(R)

is complemented.
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Sub-subcase 2. bα = 0. Then, tα ̸= 0 since t ∈ b⊥, which implies that tα = α.
As in the previous case, zα = 0 for every z ∈ NΓ(R)(t). In this case, we show

that (tx)
⊥

= ∅. First, let us determine NΓ(R)(tx). Let h ∈ NΓ(R)(tx). Then

there exist n,m in N∗ such that (tx)nhm = 0 with (tx)n ̸= 0 and hm ̸= 0. Then,
(th)nxn = 0 (resp., (th)mxn = 0) if n ≥ m (resp., m ≥ n). If (th)n ̸= 0, then
th = α since NΓ(R)(x) = {α}. Then, h = α or h ∈ NΓ(R)(t). If (th)

n = 0, then

h = α or h ∈ NΓ(R)(t). Thus, NΓ(R)(tx) = NΓ(R)(t) ∪ {α}. Then, (tx)
⊥

= ∅
since for every z ∈ NΓ(R)(t), zα = 0, which is a contradiction with the fact

that Γ(R) is complemented. □

The following example shows that T (R) is zero-dimensional does not imply
that Γ(R) is complemented.

Example 4.3. T (Z16) is zero dimensional and Γ(Z16) is not complemented.

Proof. Since Z16 is zero-dimensional, T (Z16) ∼= Z16 is zero-dimensional. On
the other hand, Γ(Z16) is not complemented (2 is a nilpotent element in Z16 of
index of nilpotency 4). Then, by Lemma 2.1, Γ(Z16) is not complemented. □

An observation of the proof of Theorem 4.2 leads us to show that, if Γ(R) is
complemented, then every non nilpotent element has a non nilpotent orthogo-
nal, as shown in the following result.

Theorem 4.4. Let R be a ring such that Γ(R) is complemented and Γ(R) ̸=
Γ(R). Then, for all x ∈ Z(R) \Nil(R), x⊥ ∩ (Z(R) \Nil(R)) ̸= ∅.

Proof. Since Γ(R) is complemented and Γ(R) ̸= Γ(R), |Nil(R)∗| = 1 and nx ≤ 2
for every nilpotent element x. We denote by α the nonzero nilpotent element
of R. We suppose that there exists x1 ∈ Z(R) \ Nil(R) such that x1

⊥ = {α}.
On the other hand, by Theorem 4.2, T (R) is zero-dimensional. Then, using
[11, Theorems 3.1 and 3.2], there exists m1 in R such that x1

x2

m1

m2
is nilpotent

and x1

x2
+ m1

m2
is a unit for some m2, x2 ∈ R \ Z(R). Since x1

x2

m1

m2
is nilpotent,

x1m1 ∈ Nil(R). Then, there are two cases to discuss:
Case 1. Suppose that x1m1 = 0. Then, x1 and m1 are adjacent (x1 ̸= m1 and
m1 ̸= 0 since x1 ∈ Z(R) \ Nil(R) and x1

x2
+ m1

m2
is a unit). If m1 is nilpotent,

then m1(x1m2 + m1x2) = 0. Thus, x1

x2
+ m1

m2
is not a unit, a contradiction.

Otherwise, m1 and x1 are not orthogonal, then there exists z ∈ Z(R)∗ that is
adjacent to both x1 and m1. Then, z2x1

2 = z2m1
2 = 0 (since zx1 and zm1

are nilpotent). If z2x1 = 0 and z2m1 = 0, then z2(x1m2 + x2m1) = 0. Thus,
x1

x2
+ m1

m2
is not a unit, a contradiction. Otherwise, z2x1(x1m2 + x2m1) = 0

with z2x1 ̸= 0 or z2m1(x1m2 + x2m1) = 0 with z2x1 ̸= 0. Then, x1

x2
+ m1

m2
is

not a unit, a contradiction.
Case 2. Suppose that x1m1 = α. If m1 is nilpotent, then x1 and m1 are
adjacent. Thus, there exists n ∈ N∗ such that x1

nm1 = 0. Consider β such that
x1

βm1 = 0 and x1
(β−1)m1 ̸= 0. We have x1

(β−1)m1(x1m2 +m1x2) = 0, then
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x1

x2
+ m1

m2
is not a unit, a contradiction. If m1 is not nilpotent, then x1

2m1
2 = 0

with x1
2 ̸= 0 and m1

2 ̸= 0. Then, x1 and m1 are adjacent, but they are
not orthogonal (since m1 is not nilpotent). Then, there exists z ∈ Z(R)∗

that is adjacent to both x1 and m1. Thus, z2(x1)
2 = 0 and z2m1 = 0. If

z2x1 = 0 and z2m1 = 0, then z2(x1m2 + m1x2) = 0. Thus, x1

x2
+ m1

m2
is not

a unit, a contradiction. Otherwise, z2x1(x1m2 + m1x2) = 0 if z2x1 ̸= 0, or
z2m1(x1m2 + m1x2) = 0 if z2m1 ̸= 0 and z2x1 = 0. Then, x1

x2
+ m1

m2
is not a

unit, a contradiction. □

It was proven in [2, Lemma 3.7] that if Γ(R) is uniquely complemented and
|R| > 9, then there exists a unique nonzero nilpotent element in R and any
orthogonal to such an element is an end. This is not the case for Γ(R) as shown
in the following corollary.

Corollary 4.5. Let R be a ring such that Γ(R) ̸= Γ(R). If Γ(R) is com-
plemented, then every orthogonal to the nonzero nilpotent element is not an
end.

In Corollary 2.8, we showed, for a finite ring R, that when Γ(R) ̸= Γ(R) and
|Nil(R)| = 2, Γ(R) is complemented. For the infinite case we get the following
result.

Proposition 4.6. Let R be an infinite ring such that Nil(R) = {0, α} for some
α ∈ R∗. Then, either R is not local or Γ(R) is not complemented.

Proof. Assume that Nil(R) = {0, α} and suppose that R is local with the
maximal ideal Ann(α) and that Γ(R) is complemented. Let x ∈ Z(R) \ {0, α}.
Then, there exists y ∈ Z(R) \ {0, α} such that x ⊥ y, by Theorem 4.4. But,
since Ann(α) is the maximal ideal of R, x, y ∈ Ann(α). So, x − y is a part of
a triangle, a contradiction. □

5. When the graphs Γ(R1 ×R2) and Γ(R(+)M) are complemented?

In the first part of this section, we investigate when the extended zero-divisor
graph of the product of two rings, R1×R2, is complemented. Namely, we treat
three cases following the cardinality of Z(R2): |Z(R2)| = 1, |Z(R2)| = 2 and
|Z(R2)| ≥ 3.

For the case when R2 is an integral domain, we have the following theorem.

Theorem 5.1. Let R1 and R2 be two rings such that R2 is an integral domain.
Then, Γ(R1 ×R2) is complemented if and only if either |Z(R1)| = 2 or (Γ(R1)
is complemented and |Nil(R1)| ≤ 2).

Proof. (⇒) Assume that Γ(R1 × R2) is complemented and |Z(R1)| ≠ 2. If
|Nil(R1)| ≥ 3, then |Nil(R1 × R2)| ≥ 3, a contradiction (by Theorem 2.4).
Now, suppose that Γ(R1) is not complemented. Then there exists z ∈ Z(R1)

∗

such that x is not an orthogonal to z for every x ∈ Z(R1)
∗. We have (z, 0) ∈

Z(R1 ×R2). Let (a, b) ∈ Z(R1 ×R2) such that (a, b) is adjacent to (z, 0). So,
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(a, b)n(z, 0)m = (0, 0) for some n,m ∈ N∗ with (a, b)n ̸= (0, 0) and (z, 0)m ̸=
(0, 0), then anzm = 0 and so we have three cases to discuss:
Case 1. If an = 0 and b ̸= 0, then for every vertex y adjacent to z, (y, 0) is
adjacent to both (a, b) and (z, 0).
Case 2. If an ̸= 0 and b ̸= 0, then a is adjacent to z and so there exists x
adjacent to both a and z since z is not orthogonal to a. Thus, (x, 0) is adjacent
to both (z, 0) and (a, b).
Case 3. If an ̸= 0 and b = 0, then (0, 1) is adjacent to both (a, b) and (z, 0).

In all cases, (z, 0) has not an orthogonal in Γ(R1 ×R2), a contradiction.
(⇐) If |Z(R1)| = 2, then R1

∼= Z4 or Z2[X]/(X2). Thus, Γ(R1 × R2) is a
complete bipartite graph. Then, Γ(R1 ×R2) is complemented.

Now, assume that Γ(R1) is complemented and |Nil(R1)| ≤ 2. If |Nil(R1)| =
1, then Z(R1 ×R2) = (R1 \ Z(R1)× {0}) ∪ (Z(R1)× {0}) ∪ (Z(R1)×R∗

2). If
(a, b) ∈ R1 \ Z(R1) × {0}, then (a, 0) ⊥ (0, 1). If (a, b) ∈ Z(R1) × {0}, then
b = 0 and (a, 0) ⊥ (c, 1) with c ∈ a⊥. If (a, b) ∈ Z(R1)×R∗

2, then (a, b) ⊥ (c, 0)
with c ∈ a⊥.

If |Nil(R1)| = 2, then Nil(R1) = {0, α} for some 0 ̸= α ∈ R1 and Z(R1 ×
R2) = (R1 \ Z(R1) × {0}) ∪ (Z(R1) \ Nil(R1) × R2) ∪ (Nil(R1) × R2). Let
(a, b) ∈ Z(R1 × R2)

∗. If (a, b) ∈ R1 \ Z(R1) × {0}, then (a, 0) ⊥ (0, 1). If
(a, b) ∈ Z(R1) \ Nil(R1) × R2, then if b = 0, (a, 0) ⊥ (c, b′) with c ∈ a⊥,
otherwise (a, b) ⊥ (c, 0) with c ∈ a⊥. For the case where (a, b) ∈ Nil(R1)×R2,
we distinguish three cases:

If a = α and b = 0, then (α, 0) ⊥ (c, b′) with c ∈ α⊥ and b′ ∈ R∗
2.

If a = α and b ̸= 0, then (α, b) ⊥ (c, 0) with c ∈ R1 \ Z(R1).
If a = 0 and b ̸= 0, then (0, b) ⊥ (c, 0) with c ∈ R1 \ Z(R1).
This completes the proof. □

Now, for the case when |Z(R2)| = 2, we have the following result.

Theorem 5.2. Let R1 and R2 be two rings such that |Z(R2)| = 2. Then,
Γ(R1 × R2) is complemented if and only if Γ(R1) is complemented and R1 is
reduced.

Proof. (⇒) Assume that Γ(R1 × R2) is complemented. We have |Nil(R2)| =
|Z(R2)| = 2, then if R1 is not reduced, |Nil(R1 × R2)| ≥ 3, a contradiction
(by Theorem 2.4). Now, suppose that Γ(R1) is not complemented. Then there
exists z ∈ Z(R1)

∗ which has not an orthogonal. We have (z, 0) ∈ Z(R1 ×R2).
Suppose that there exists (a, b) ∈ Z(R1 × R2) such that (z, 0) ⊥ (a, b). Then,
(a, b)n(z, 0)m = (0, 0) for some n,m ∈ N∗ and so anzm = 0. Thus, we have two
cases to discuss:
Case 1. If an = 0, then bn ̸= 0. So, consider y ∈ Z(R1)

∗ which is adjacent to
z. Then, (y, 0) is adjacent to both (a, b) and (z, 0), a contradiction.
Case 2. If an ̸= 0, then a is adjacent to z and so there exists x ∈ Z(R1)

∗ such
that x is adjacent to both z and a. Thus, (x, 0) is adjacent to both (a, b) and
(z, 0), a contradiction.
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Hence, (z, 0) has not an orthogonal in Γ(R1 ×R2), a contradiction.
(⇐) We have Z(R1×R2) = (R1 \Z(R1)×Z(R2))∪ (Z(R1)×R2 \Z(R2))∪

(Z(R1)×Z(R2)). Let (a, b) ∈ Z(R1×R2). If (a, b) ∈ R1 \Z(R1)×Z(R2), then
(a, b) ⊥ (0, 1). If (a, b) ∈ Z(R1)×R2 \ Z(R2), then (a, b) ⊥ (c, 0) with c ∈ a⊥.
If (a, b) ∈ Z(R1)× Z(R2), then (a, b) ⊥ (c, 1) with c ∈ a⊥. □

For the case where R2 is a non reduced ring such that |Z(R2)| ≥ 3, we give
the following theorem.

Theorem 5.3. Let R1 be a ring and R2 be a non reduced ring such that
|Z(R2)| ≥ 3. Then, Γ(R1 × R2) is complemented if and only if Γ(R2) and
Γ(R1) are both complemented and R1 is reduced.

Proof. (⇒) If R1 is not reduced, then |Nil(R1×R2)| ≥ 3 since R2 is not reduced.
Then, Γ(R1×R2) is not complemented, by Theorem 2.4, since |Z(R1×R2)| ≥ 4,
a contradiction.

Now, assume that Γ(R2) is not complemented. Then, there exists z ∈
Z(R2)

∗ which has not an orthogonal. Let (a, b) ∈ Z(R1 × R2)
∗ such that

(a, b) is adjacent to (0, z). Then, (a, b)n(0, z)m = (0, 0) for some n,m ∈ N∗

with (a, b)n ̸= (0, 0) and (0, z)m ̸= (0, 0). Thus, bnzm = 0. Then, we have two
cases to discuss:
Case 1. If bn ̸= 0, then b is adjacent to z. So, there exists a vertex x adjacent
to both z and b. Thus, (0, x) is adjacent to both (0, z) and (a, b).
Case 2. If bn = 0, then an ̸= 0. So, consider y ∈ Z(R2)

∗ which is adja-
cent to z. Then, (0, y) is adjacent to both (a, b) and (0, z), a contradiction
(since Γ(R1 × R2) is complemented). Similarly, we can prove that Γ(R1) is
complemented (because, if Γ(R1) is not complemented, then |Z(R1)| ≥ 3).

(⇐) We have Z(R1×R2) = (Z(R1)×Z(R2))∪(R1\Z(R1)×Z(R2))∪(Z(R1)×
R2 \Z(R2)). Let (a, b) ∈ Z(R1×R2)

∗. If (a, b) ∈ R1 \Z(R1)×Z(R2)\Nil(R2),
then (a, b) ⊥ (0, c) with c ∈ b⊥. If (a, b) ∈ Z(R1)

∗ × R2 \ Z(R2), then (a, b) ⊥
(c, 0) with c ∈ a⊥. If (a, b) ∈ Z(R1)

∗ × Z(R2) \ Nil(R2), then (a, b) ⊥ (c1, c2)
with c1 ∈ a⊥ and c2 ∈ b⊥. If (a, b) ∈ R1 \Z(R1)×Nil(R1)

∗, then (a, b) ⊥ (0, c)
with c ∈ R2 \ Z(R2). If (a, b) ∈ Z(R1)

∗ × Nil(R2)
∗, then (a, b) ⊥ (c1, c2) with

c1 ∈ a⊥ and c2 ∈ R2 \ Z(R2). If (a, b) ∈ {0} × Nil(R2)
∗, then (a, b) ⊥ (c1, c2)

with c1 ∈ R1 \ Z(R1) and c2 ∈ b⊥. □

Recall that the idealization of an R-module M , denoted by R(+)M , is the
commutative ringR×M with the following addition and multiplication: (a, n)+
(b,m) = (a+b, n+m) and (a, n)(b,m) = (ab, am+bn) for every (a, n), (b,m) ∈
R(+)M , [11]. In the following result we study when Γ(R(+)M) is comple-
mented. Notice that, if |M | ≥ 4, then |Z(R(+)M)| ≥ 4 and |Nil(R(+)M)| ≥ 3
and so Γ(R(+)M) is not complemented, by Theorem 2.4. If M ∼= Z3, then
|Nil(R(+)Z3)| ≥ 3 and so Γ(R(+)Z3) is complemented if and only if R is an
integral domain and Z3 is a torsion free R-module (in particular, Γ(R(+)Z3)
is an edge). Then, only the case where M ∼= Z2 is of interest.
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Proposition 5.4. Let R be a non-integral domain such that, for every x ∈
Z(R)∩Z(Z2), x

⊥ \Z(Z2) ̸= ∅. Then, Γ(R(+)Z2) is complemented if and only
if R is reduced and Γ(R) is complemented.

Proof. (⇐) We have Z(R(+)Z2) = Z(R) ∪ Z(Z2)(+)Z2 = {(a, 0̄), (a, 1̄) | a ∈
Z(R)∪Z(Z2)}. Let a ∈ Z(R)∪Z(Z2). Then we have the following three cases:
Case 1. Suppose that a ∈ Z(Z2) \ Z(R). Then, (a, 0̄) ⊥ (0, 1̄) and (a, 1̄) ⊥
(0, 1̄).
Case 2. Suppose that a ∈ Z(R) \ Z(Z2). Then, since Γ(R) is complemented,
(a, 0̄) ⊥ (x, 0̄) with x ∈ a⊥, and either (a, 1̄) ⊥ (y, 0̄) with y ∈ a⊥ ∩ Z(Z2), or
(a, 1̄) ⊥ (y, 1̄) with y ∈ a⊥ \ Z(Z2).
Case 3. Suppose that a ∈ Z(R) ∩ Z(Z2). Then, there exists x ∈ a⊥ \ Z(Z2)
such that (a, 0̄) ⊥ (x, 0̄) and (a, 1̄) ⊥ (x, 0̄).

(⇒) Assume that Γ(R(+)Z2) is complemented. Then, |Nil(R(+)Z2)| = 2
(by Theorem 2.4). In particular R is reduced. Now, let us prove that Γ(R) is
complemented. Let a ∈ Z(R)∗. If a ∈ Z(R)∩Z(Z2), then a has an orthogonal,
by the hypotheses. If a ∈ Z(R)\Z(Z2), then (a, 0̄) ∈ Z(R(+)Z2)

∗ and so (a, 0̄)
has an orthogonal in Γ(R(+)Z2). Since the vertices adjacent to (a, 0̄) are of
the form (b, 1̄) or (b, 0̄) with b ∈ Z(R)∗, (a, 0̄) ⊥ (c, 0̄) or (a, 0̄) ⊥ (c, 1̄) for some
c ∈ a⊥. Hence, a has c as an orthogonal. □
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