• Title/Summary/Keyword: 화인 노이즈

Search Result 343, Processing Time 0.03 seconds

Evaluation for Optimization of CT Dose Reduction Methods in PET/CT (PET/CT 검사 시 CT 피폭선량 감소 방법들의 최적화 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Purpose Various methods for reducing radiation exposure have been continuously being developed. The aim of this study is to evaluate effectiveness of dose reduction, image quality and PET SUV changes by applying combination of automatic exposure dose(AEC), automated dose-optimized selection of X-ray tube voltage(CAREkV) and sinogram affirmed iterative reconstruction(SAFIRE) which can be controled by user. Materials and Methods Torso, AAPM CT performance and IEC body phantom images were acquired using biograph mCT64, (Siemens, Germany) PET/CT scanner. Standard CT condition was 120 kV, 40 mAs. Radiation exposure and noise were evaluated by applying AEC, CAREkV(120 kV, 40 mAs) and SAFIRE(120 kV, 25 mAs) with torso phantom compare to standard CT condition. And torso, AAPM and IEC phantom images were acquired with combination of 3 methods in condition of 120 kV, 25 mAs to evaluate radiation exposure, noise, spatial resolution and SUV changes. Results When applying AEC, CTDIvol and DLP were decreased by 50.52% and 50.62% compare to images which is not applying AEC. mAs was increased by 61.5% to compensate image quality according to decreasing 20 kV when applying CAREkV. However, CTDIvol and DLP were decreased by 6.2% and 5.5%. When reference mAs was the lower and strength was the higher, reduction of radiation exposure rate was the bigger. Mean SD and DLP were decreased by 2.2% and 38% when applying SAFIRE even though mAs was decreased by 37.5%(from 40 mAs to 25 mAs). Combination of 3 methods test, SD decreased by 5.17% and there was no significant differences in spatial resolution. And mean SD and DLP were decreased by 6.7% and 36.9% compare to 120 kV, 40 mAs with AEC. For SUV test, there was no statistical differences(P>0.05). Conclusion Combination of 3 methods shows dose reduction effect without degrading image quality and SUV changes. To reduce radiation exposure in PET/CT study, continuous effort is needed by optimizing various dose reduction methods.

  • PDF

Assessment of LCD Color Display Performance Based on AAPM TG 18 Protocol : Decision of Quality Control and Calibration Period (판독용 LCD 컬러 모니터 장치의 성능 평가 - 성능 평가 및 Calibration 주기 결정을 중심으로 -)

  • Lee, Won-Hong;Son, Soon-Yong;Noh, Sung-Soon;Lee, In-Hwa;Kang, Sung-Ho;Lee, Yong-Moon;Park, Jae-Soo;Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2008
  • Purpose: This study is to decide a quality control and calibration period of LCD display devices used for reading diagnostic images. Materias and Methods: The assessment test of 20 flat panel LCD color display devices used for reading diagnostic images were performed based on AAPM TG 18 protocol over the total six sessions at one month intervals from three months after primary calibration, in terms of geometric distortion, reflection test, luminance response evaluation, luminance uniformity, resolution, noise, veiling glare and chromaticity test. Results: The results of geometric distortion, reflection test, luminance uniformity, resolution, noise, veiling glare and chromaticity test were within the criteria recommended by AAPM TG 18, except for luminance response evaluation. In the measured luminance deviation of luminance response evaluation, 4(25%) of 20 display devices were passed a criterion from four months after calibration, and 11 (55%) were passed from eight months. Also in the contrast response of the luminance response evaluation, 1(5%) display device was passed a criterion from four months after calibration, and 3(15%) were passed from eight months. Conclusion: Considering the passing deviation after calibration, the time required and a manpower, the quality control and calibration period of LCD display devices used for reading diagnostic images should be a three months and six months after calibration.

  • PDF

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography (${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교)

  • Lee, Jae-Sung;Lee, Dong-Soo;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.288-300
    • /
    • 2003
  • Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.

Development of Measuring Technique for Milk Composition by Using Visible-Near Infrared Spectroscopy (가시광선-근적외선 분광법을 이용한 유성분 측정 기술 개발)

  • Choi, Chang-Hyun;Yun, Hyun-Woong;Kim, Yong-Joo
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2012
  • The objective of this study was to develop models for the predict of the milk properties (fat, protein, SNF, lactose, MUN) of unhomogenized milk using the visible and near-infrared (NIR) spectroscopic technique. A total of 180 milk samples were collected from dairy farms. To determine optimal measurement temperature, the temperatures of the milk samples were kept at three levels ($5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$). A spectrophotometer was used to measure the reflectance spectra of the milk samples. Multilinear-regression (MLR) models with stepwise method were developed for the selection of the optimal wavelength. The preprocessing methods were used to minimize the spectroscopic noise, and the partial-least-square (PLS) models were developed to prediction of the milk properties of the unhomogenized milk. The PLS results showed that there was a good correlation between the predicted and measured milk properties of the samples at $40^{\circ}C$ and at 400~2,500 nm. The optimal-wavelength range of fat and protein were 1,600~1,800 nm, and normalization improved the prediction performance. The SNF and lactose were optimized at 1,600~1,900 nm, and the MUN at 600~800 nm. The best preprocessing method for SNF, lactose, and MUN turned out to be smoothing, MSC, and second derivative. The Correlation coefficients between the predicted and measured fat, protein, SNF, lactose, and MUN were 0.98, 0.90, 0.82, 0.75, and 0.61, respectively. The study results indicate that the models can be used to assess milk quality.

Image Evaluation for Optimization of Radiological Protection in CBCT during Image-Guided Radiation Therapy (영상유도 방사선 치료 시 CBCT에서 방사선 방호최적화를 위한 영상평가)

  • Min-Ho Choi;Kyung-Wan Kim;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • With the development of medical technology and radiation treatment equipment, the frequency of high-precision radiation therapy such as intensity modulation radiation therapy has increased. Image-guided radiation therapy has become essential for radiation therapy in precise and complex treatment plans. In particular, with the introduction of imaging equipment for diagnosis in a linear accelerator, CBCT scanning became possible, which made it possible to calibrate and correct the patient's posture through 3D images. Although more precise reproduction of the patient's posture has become possible, the exposure dose delivered to the patient during the image acquisition process cannot be ignored. Radiation optimization is necessary in the field of radiation therapy, and efforts to reduce exposure are necessary. However, when acquiring 3D CBCT images by changing the imaging conditions to reduce exposure, there should be no image quality or artefacts that would make it impossible to align the patient's position. In this study, Rando phantom was used to scan and evaluate images for each shooting condition. The highest SNR was obtained at 100 kV 80 mA 25 ms F1 filter 180°. As the tube voltage and tube current increased, the noise decreased, and the bowtie filter showed the optimal effect at high tube current. Based on the actual scanned images, it was confirmed that patient alignment was possible under all imaging conditions, and that image-guided radiation therapy for patient alignment was possible under the condition of 70 kV 10 mA 20 ms F0 filter 180°, which showed the lowest SNR. In this study, image evaluation was conducted according to the imaging conditions, and low tube voltage, tube current, and small rotation angle scan are expected to be effective in reducing radiation exposure. Based on this, the patient's exposure dose should be kept as low as possible during CBCT imaging.

A UTMI-Compatible USB2.0 Transceiver Chip Design (UTMI 표준에 부합하는 USB2.0 송수신기 칩 설계)

  • Nam Jang-Jin;Kim Bong-Jin;Park Hong-June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.31-38
    • /
    • 2005
  • The architecture and the implementation details of a UTMI(USB2.0 Transceiver Macrocell Interface) compatible USB2.0 transceiver chip were presented. To confirm the validation of the incoming data in noisy channel environment, a squelch state detector and a current mode Schmitt-trigger circuit were proposed. A current mode output driver to transmit 480Mbps data on the USB cable was designed and an on-die termination(ODT) which is controlled by a replica bias circuit was presented. In the USB system using plesiochronous clocking, to compensate for the frequency difference between a transmitter and a receiver, a synchronizer using clock data recovery circuit and FIFO was designed. The USB cable was modeled as the lossy transmission line model(W model) for circuit simulation by using a network analyzer measurements. The USB2.0 PHY chip was implemented by using 0.25um CMOS process and test results were presented. The core area excluding the IO pads was $0.91{\times}1.82mm^2$. The power consumptions at the supply voltage of 2.5V were 245mW and 150mW for high-speed and full-speed operations, respectively.

Cable Fault Detection Improvement of STDR Using Reference Signal Elimination (인가신호 제거를 이용한 STDR의 케이블 고장 검출 성능 향상)

  • Jeon, Jeong-Chay;Kim, Taek-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.450-456
    • /
    • 2016
  • STDR (sequence time domain reflectometry) to detect a cable fault using a pseudo noise sequence as a reference signal, and time correlation analysis between the reference signal and reflection signal is robust to noisy environments and can detect intermittent faults including open faults and short circuits. On the other hand, if the distance of the fault location is far away or the fault type is a soft fault, attenuation of the reflected signal becomes larger; hence the correlation coefficient in the STDR becomes smaller, which makes fault detection difficult and the measurement error larger. In addition, automation of the fault location by detection of phase and peak value becomes difficult. Therefore, to improve the cable fault detection of a conventional STDR, this paper proposes the algorithm in that the peak value of the correlation coefficient of the reference signal is detected, and a peak value of the correlation coefficient of the reflected signal is then detected after removing the reference signal. The performance of the proposed method was validated experimentally in low-voltage power cables. The performance evaluation showed that the proposed method can identify whether a fault occurred more accurately and can track the fault locations better than conventional STDR despite the signal attenuation. In addition, there was no error of an automatic fault type and its location by the detection of the phase and peak value through the elimination of the reference signal and normalization of the correlation coefficient.

Effects of Annealing Temperature on Electromagnetic Wave Absorption Characteristics in FeCuNbSiB Alloy Flakes/Polymer Composite Sheets (FeCuNbSiB 합금 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 어닐링 온도의 영향)

  • Noh, Tae-Hwan;Lee, Tae-Gyu
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.198-204
    • /
    • 2007
  • The effects of annealing temperature on electromagnetic wave absorption characteristics in $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ for 1 h exhibited highest power loss in the GHz frequency range as compared with the sheets composed of the alloy flakes annealed at higher temperature than $475^{\circ}C$ or in as-milled state. Moreover the imaginary part of complex permeability had largest value in the GHz frequency range for the sheets including the flakes annealed at $425{\sim}475^{\circ}C$. The large value of power loss of the sheets including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ was attributed to the high imaginary part of the complex permeability. However, because of its large transmission parameter $S_{21}$, the composite sheet having the magnetic flakes annealed at $525^{\circ}C$ showed low power loss.

An integrated framework of security tool selection using fuzzy regression and physical programming (퍼지회귀분석과 physical programming을 활용한 정보보호 도구 선정 통합 프레임워크)

  • Nguyen, Hoai-Vu;Kongsuwan, Pauline;Shin, Sang-Mun;Choi, Yong-Sun;Kim, Sang-Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.143-156
    • /
    • 2010
  • Faced with an increase of malicious threats from the Internet as well as local area networks, many companies are considering deploying a security system. To help a decision maker select a suitable security tool, this paper proposed a three-step integrated framework using linear fuzzy regression (LFR) and physical programming (PP). First, based on the experts' estimations on security criteria, analytic hierarchy process (AHP) and quality function deployment (QFD) are employed to specify an intermediate score for each criterion and the relationship among these criteria. Next, evaluation value of each criterion is computed by using LFR. Finally, a goal programming (GP) method is customized to obtain the most appropriate security tool for an organization, considering a tradeoff among the multi-objectives associated with quality, credibility and costs, utilizing the relative weights calculated by the physical programming weights (PPW) algorithm. A numerical example provided illustrates the advantages and contributions of this approach. Proposed approach is anticipated to help a decision maker select a suitable security tool by taking advantage of experts' experience, with noises eliminated, as well as the accuracy of mathematical optimization methods.

The Study of Forward Scattering Dose according to the Thickness of Filter in General Radiography (일반촬영 검사에서 필터 두께 증가에 따른 전방산란율에 관한 연구)

  • Choi, Il Hong;Kim, Kyo Tae;Heo, Ye Ji;Kang, Sang Sik;Noh, Si Cheol;Jung, Bong Jae;Nam, Sang Hee;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.445-448
    • /
    • 2015
  • Recently there has been increasing interest in the filter to reduce the proportion of low-energy photons in the polychromatic X-ray, affect the quality of the image quality by X-ray hardening effect is a situation that has been overlooked. In this study, by evaluating the change in FSR based on the filter and it was quantitatively discuss scatter dose affecting the medical image quality. The results of the experiment, as the thickness of the filter is increased, up to 13.9%p, that tends to FSR increases appearance were evaluated. Based on these results, in compliance with the thickness of the filter that has been recommended in KS standard, even while reducing the radiation dose of the patient, in addition to the noise to about 1%p within the FSR only medical image the contribution to it is conceivable. Therefore, even while reducing radiation dose of the patient, in order to improve the quality of the medical image, the use of appropriate filter is considered important.