${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography

  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 이동수 (서울대학교 의과대학 핵의학교실) ;
  • 박광석 (서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의과대학 핵의학교실) ;
  • 이명철 (서울대학교 의과대학 핵의학교실)
  • Lee, Jae-Sung (Department of Nuclear Medicinel, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Department of Nuclear Medicinel, Seoul National University College of Medicine) ;
  • Park, Kwang-Suk (Department of Nuclear Medicinel, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicinel, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicinel, Seoul National University College of Medicine)
  • 발행 : 2003.10.30

초록

목적: ${H_2}^{15}O$ PET의 정량화를 위하여 1-조직 구획모델이 쓰이며, 뇌혈류와 조직/혈액 분배계수를 구하기 위하여 nonlinear least squares (NLS) 방법이 사용되나 계산 시간이 긴 등의 문제로 파라미터를 각화소마다 구해야 하는 파라메트릭 영상 구성에는 적합하지 않다. 이 연구에서는 이와 같은 NLS 문제점을 극복하여 파라메트릭 영상을 빠르게 구성하기 위하여 제안된 파라미터 추정 알고리즘들을 구현하고, 이 방법들의 통계적 신뢰도와 계산의 효율성을 비교하였다. 대상 및 방법: 이 연구에서 이용한 방법들은 linear least squares (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted integration (WI), 그리고 model-based clustering method (CAKS)이다. 노이즈 정도에 따른 각 파라메트릭 영상법의 정확성 및 통계적 신뢰성을 알아보기 위하여 Zubal 뇌모형(brain phantom)으로부터 동적 PET 영상을 모사하고 포아송노이즈를 더한 후 각 파라메트릭 영상 구성 방법을 적용하였다. 또한 정상인 16명에 대하여 얻은 실제 자료에 대하여 이 방법들을 적용하고 결과를 비교하였다. 결과: 뇌혈류와 분배계수에 대한 평균 오차는 방법에 따라 크게 다르지 않았으며 모든 방법이 뇌혈류 및 분배계수 추정에 있어 무시할 만한 바이어스를 보였다. 파라메트릭 영상의 정성적 특성 또한 유사하였으나 CAKS 방법의 계산 속도가 월등하여 NLS 방법의 약 1/500, LLS 방법의 약 1/25의 계산시간을 보였다. 결론: 뇌혈류 파라메트릭 영상 구성을 위한 빠른 파라미터 추정 알고리즘들 중에 보다 개선되어 제안된 LWS, GLS, GLWS, CAKS 방법들이 단순하고 빠른 LLS, WI 방법들에 비하여 통계적 신뢰성을 크게 향상시키지는 못하나 CAKS 방법은 계산 시간을 유의하게 단축시키므로 가장 적합한 파라메트릭 영상 구성방법이라 할 수 있을 것이다.

Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.

키워드

참고문헌

  1. Kety SS. The theory and application of the exchange inert gas at the lung and tissues. Pharmacol Rev. 1951;3: 1-41
  2. Kety SS. Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Med Res. 1960;8: 228-236
  3. Phelps ME, Mazziotta J, Schelbert H. Positron emission tomography and autoradiography: principle and application for the brain and heart. NY: Raven Press;1986
  4. Feng D, Huang S-C. Wang Z, Ho D. An unbiased parametric imaging algorithm for nonuniformly sampled biomedical system parameter estimation. IEEE Trans Med Imaging. 1996;15: 512-518
  5. Feng D,Wang Z, Huang S-C. A study on statistically reliable and computationally efficient algorithms forgenerating local cerebral blood flow parametric images with positron emission tomography. IEEE Trans Med Imaging. 1993;12:182-188 https://doi.org/10.1109/42.232247
  6. Alpert NM, Eriksson L, Chang JY, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. 1984;4: 28-34 https://doi.org/10.1038/jcbfm.1984.4
  7. Carson RE, Huang SC, Green MV. Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab. 1986;6: 245-258 https://doi.org/10.1038/jcbfm.1986.38
  8. Yokoi T, Kanno I, Iida H, Miura S, Uemura K. A new approach of weighted integration technique based on accumulated images using dynamic PET and H$_2$$^15$O. J Cereb Blood Flow Metab. 1991;11:492-501 https://doi.org/10.1038/jcbfm.1991.93
  9. Iida H, Bloomfield PM, Miura S, et al. Effect of real-time weighted integration system for rapid calculation of functional images in clinical positron emission tomography. IEEE Trans Med Imaging. 1995;14: 116-121 https://doi.org/10.1109/42.370407
  10. Kimura Y, Hsu H, Toyama H, et al. Improved signal-to-noise ratio in parametric images by cluster analysis. Neuroimage. 1999;9: 554-561 https://doi.org/10.1006/nimg.1999.0430
  11. Bard Y. Nonlinear parameter estimation. NY: Academic Press;1974
  12. Marquardt DW. An algorithm for least squares estimations of nonlinear parameters. J Soc Indust Appl Math. 1963;11: 431-441 https://doi.org/10.1137/0111030
  13. Huang SC, Carson RE, Phelps ME. Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metab. 1982;2: 99-108 https://doi.org/10.1038/jcbfm.1982.11
  14. Huang SC, Carson RE, Hoffman EJ, et al. Quantitative measurements of local cerebral blood flow in humans by positron emission tomography and O-15 water. J Cereb Blood Flow Metab. 1983;3: 141-153 https://doi.org/10.1038/jcbfm.1983.21
  15. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Computerized 3-dimensional segmented human anatomy. Med Phys. 1994;21:299-302 https://doi.org/10.1118/1.597290
  16. Feng D, Ho D, Chen K. An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data. IEEE Trans Med Imaging. 1995;14: 697-710 https://doi.org/10.1109/42.476111
  17. Iida H, Miura S, Shoji Y, et al. Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med. 1998;39: 1789-1798
  18. Iida H, Rhodes CG, de Silva R, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med.1992;33: 1669-1677
  19. Feng D, Ho D, Lau KK, Siu WC. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm. Comput Methods Programs Biomed. 1999;59: 31-43 https://doi.org/10.1016/S0169-2607(98)00099-6
  20. Kimura Y, Senda M, Alpert NM. Fast formation of statistically reliable FDG parametric images based on clustering and principal components. Phys Med Biol. 2002;47: 455-468 https://doi.org/10.1088/0031-9155/47/3/307
  21. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab. 1991;11: 735-744 https://doi.org/10.1038/jcbfm.1991.130
  22. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab. 1991;11: 735-744 https://doi.org/10.1038/jcbfm.1991.130
  23. Thompson CJ, Moreno-Cantu J, Picard Y. PETSIM: Monte Carlo Simulation of all Sensitivity and Resolution Parameters of Positron Imaging Systems. Phys Med Biol. 1992;37: 731-749 https://doi.org/10.1088/0031-9155/37/3/017