Browse > Article
http://dx.doi.org/10.4283/JKMS.2007.17.5.198

Effects of Annealing Temperature on Electromagnetic Wave Absorption Characteristics in FeCuNbSiB Alloy Flakes/Polymer Composite Sheets  

Noh, Tae-Hwan (School of Materials Science & Engineering, Andong National University)
Lee, Tae-Gyu (School of Materials Science & Engineering, Andong National University)
Abstract
The effects of annealing temperature on electromagnetic wave absorption characteristics in $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ for 1 h exhibited highest power loss in the GHz frequency range as compared with the sheets composed of the alloy flakes annealed at higher temperature than $475^{\circ}C$ or in as-milled state. Moreover the imaginary part of complex permeability had largest value in the GHz frequency range for the sheets including the flakes annealed at $425{\sim}475^{\circ}C$. The large value of power loss of the sheets including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ was attributed to the high imaginary part of the complex permeability. However, because of its large transmission parameter $S_{21}$, the composite sheet having the magnetic flakes annealed at $525^{\circ}C$ showed low power loss.
Keywords
electromagnetic wave absorption; FeCuNbSiB alloy flakes; composite sheets; annealing temperature; power loss;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Yoshida, J. Mag. Soc. Jpn., 22, 1353 (1998)
2 S. Yoshida, S. Mitsuharu, E. Sunagawa, and Y. Shimada, J. Appl. Phys., 85, 4636 (1999)   DOI   ScienceOn
3 K. Ohta, Fundamentals of Magnetic Engineering II, Kyoritsu, Tokyo (1973) p. 305
4 S. Chikazumi, Physics of Ferromagnetism, 2nd ed., Oxford University Press, Oxford (1997) p. 561
5 T. H. Noh, M. B. Lee, H. J. Kim, and I. K. Kang, J. Appl. Phys., 67, 5568 (1990)   DOI
6 T. H. Noh, W. K. Pi, H. J. Kim, and I. K. Kang, J. Appl. Phys., 69, 5921 (1991)   DOI
7 Y. Yoshizawa and K. Yamauchi, Mat. Res. Soc. Symp. Proc. (Vol. 232), Materials Research Society, Pittsburgh (1991) p. 183
8 G. Herzer, Scripta Met. Mater., 33, 1741 (1995)   DOI   ScienceOn
9 S. Yoshida, H. Ono, S. Ando, S. Ohnuma, M. Yamaguchi, and Y. Shimada, Materia Japan, 42, 193 (2003)   DOI
10 S. Yoshida, M. Sato, and Y. Shimada, J. Mag. Soc. Jpn., 22, 1377 (1998)
11 M. Sato, S. Yoshida, E. Sugawara, and Y. Shimada, J. Mag. Soc. Jpn., 20, 421 (1996)   DOI
12 A. Saito, M. Ogawa, K. Tutui, H. Endo, and S. Yahagi, Materia Japan, 38, 46 (1999)   DOI
13 S. Sugimoto, J. Mag. Soc. Jpn., 27, 862 (2003)
14 Y. Aikawa and K. Yanagimoto, Sanyo Technical Report, 9, 59 (2002)
15 Y. Hashimoto and H. Kurihara, Engineering Materials, 46(10), 36 (1998)
16 Y. Bizen, J. Sunakawa, S. Arakawa, and S. Takaoka, Hitachi Metals Technical Report, 16, 39 (2000)