• Title/Summary/Keyword: 포아슨방정식

Search Result 12, Processing Time 0.021 seconds

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-546
    • /
    • 2008
  • In this paper, conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gate oxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according doping concentration.

Analysis of Channel Doping Concentration Dependent Subthreshold Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑농도에 따른 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1840-1844
    • /
    • 2008
  • In this paper, the influence of channel doping concentration, which the most important factor is as double gate MOSFET is fabricated, on transport characteristics has been analyzed in the subthreshold region. The analytical model is used to derive transport model based on Poisson equation. The thermionic omission and tunneling current to have an influence on subthreshold current conduction are analyzed, and the relationship of doping concentration and subthreshold swings of this paper are compared with those of Medici two dimensional simulation, to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and the transport characteristics have been considered according to the dimensional parameters of double gate MOSFET.

Analysis of Tunneling Transition by Characteristics of Gate Oxide for Nano Structure FinFET (나노구조 FinFET에서 게이트산화막의 특성에 따른 터널링의 변화분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1599-1604
    • /
    • 2008
  • In this paper, it has been analyzed how transport characteristics is influenced on gate oxide properties in the subthreshold region as nano structure FinFET is fabricated. The analytical model is used to derive transport model, and Possion equation is used to obtain analytical model. The thermionic emission and tunneling current to have an influence on subthreshold current conduction are analyzed for nano-structure FinFET, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and this study shows that the transport characteristics have been changed by gate oxide properties. As gate length becomes smaller, funneling characteristics, one of the most important transport mechanism, have been analyzed.

Analysis of Channel Doping Concentration Dependent Subthreshold Swing for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑농도에 따른 서브문턱스윙 분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.709-712
    • /
    • 2008
  • 본 연구에서는 이중게이트 MOSFET 제작시 가장 중요한 요소인 채널도핑농도가 전송특성에 미치는 영향을 분석하고자 한다. 이를 위하여 분석학적 전송모델을 사용하였으며 분석학적 모델을 유도하기 위하여 포아슨방정식을 이용하였다. 나노구조 이중게이트 MOSFET에서 문턱전압이하의 전류전도에 영향을 미치는 열 방사전류와 터널링전류에 대하여 분석하였으며 본 연구의 모델이 타당하다는 것을 입증하기 위하여 서브문턱스윙값과 채널도핑농도의 관계를 이차원 시뮬레이션 값과 비교하였다. 결과적으로 본 연구에서 제시한 전송특성모델이 이차원 시뮬레이션모델과 매우 잘 일치하였으며 이중게이트 MOSFET의 구조적 파라미터에 따라 전송특성을 분석하였다.

  • PDF

Analysis of Tunneling Transition by Characteristics of Gate Oxide for Nano Structure FinFET (나노구조 FinFET에서 게이트산화막의 특성에 따른 터널링의 변화 분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.751-754
    • /
    • 2008
  • 본 연구에서는 나노구조 FinFET 제작시 게이트산화막 특성이 서브문턱영역에서 전송특성에 미치는 영향을 분석하고자 한다. 이를 위하여 분석학적 전송모델을 사용하였으며 분석학적 모델을 유도하기 위하여 포아슨방정식을 이용하였다. 나노구조 FinFET에서 문턱전압이하의 전류전도에 영향을 미치는 열방사전류와 터널링전류에 대하여 분석하였으며 본 연구의 모델이 타당하다는 것을 입증하기 위하여 서브문턱스윙값을 이차원 시뮬레이션값과 비교하였다. 결과적으로 본 연구에서 제시한 전송특성모델이 이차원 시뮬레이션모델과 매우 잘 일치하였으며 FinFET의 전송특성이 게이트산화막의 특성에 따라 매우 큰 변화를 보이는 것을 알 수 있었다. 특히 게이트길이가 작아지면서 전송특성에 커다란 영향을 미치는 터널링특성에 대하여 집중적으로 분석하였다.

  • PDF

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jeong Hak-Gi;Lee Jae-Hyeong;Lee Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.861-864
    • /
    • 2006
  • In this paper conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to obtain the analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper is compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gateoxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according to channel doping concentration.

  • PDF

Analysis of Dimension Dependent Subthreshold Swing for Double Gate FinFET Under 20nm (20nm이하 이중게이트 FinFET의 크기변화에 따른 서브문턱스윙분석)

  • Jeong Hak-Gi;Lee Jong-In;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, the subthreshold swing has been analyzed for double gate FinFET under channel length of 20nm. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel-Framers-Brillouin) approximation to tunneling current. The cutoff current is obtained by simple adding two currents since two current is independent. The subthreshold swings by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the characteristics of subthreshold swing is degraded. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed. The subthreshold swings as a function of channel doping concentrations are obtained.

  • PDF

Analysis of Dimension Dependent Threshold Voltage Roll-off for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 분석)

  • Jeong Hak-Gi;Lee Jae-Hyung;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.869-872
    • /
    • 2006
  • In this paper, the threshold voltage roll-off been analyzed for nano structure double gate FinFET. The analytical current model has been developed , including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel- framers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off Is very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed.

  • PDF

Analysis of Dimension-Dependent Threshold Voltage Roll-off and DIBL for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 및 DIBL 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.760-765
    • /
    • 2007
  • In this paper, the threshold voltage roll-off and drain induced barrier lowering(DIBL) have been analyzed for nano structure double gate FinFET. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics were used to calculate thermionic omission current, and WKB(Wentzel- Kramers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off and DIBL are very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects, and this process has to be developed.

Electron Mobility Model in Strained Si Inversion Layer (응력변형을 겪는 Si 반전층에서 전자 이동도 모델)

  • Park Il-Soo;Won Taeyoung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.9-16
    • /
    • 2005
  • The mobility in strained Si inversion layer on $Si_{1-x}Ge_x$ is calculated considering a quantum effect(subband energy and wavefunction) in inversion layer and relaxation time approximation. The quantum effect in inversion layer is obtained by using self-consistent calculation of $Schr\ddot{o}dinger$ and Poisson equations. For the relaxation time, intravalley and intervalley scatterings are considered. The result shows that the reason for the enhancement in mobility as Ge mole fraction increases is that the electron mobility in 2-폴드 valleys is about 3 times higher than that of 4-폴드 valleys and most electrons are located in 2-폴드 valleys as Ge mole fraction increases. Meanwhile, for the phonon-limited mobility the fitting to experimental data, Coulomb and surface roughness mobilities are included in total mobility, Deformation potentials are selected for the calculated effective field, temperature, and Ge mole fraction dependent mobilities to be fitted to experimental data, and then upgraded data can be obtained by considering nonparabolicity in Si band structure.