• Title/Summary/Keyword: 초정밀

Search Result 1,188, Processing Time 0.025 seconds

Improved 3D Shape Measurement Scheme for White Light Phase Shifting Interferometry (백색광 위상천이 간섭계를 위한 개선된 삼차원 형상 측정 방법)

  • Kim, Kyoung-Il;Lee, Dong-Yeol;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • This paper proposes a new scheme to obtain enhanced 3D shape information rapidly for WLPSI(White Light Phase Shifting Interferometry). WLPSI is a convenient method to measure the height of the micro products. First we propose an effective method of limiting search interval for detecting the peak of the visibility function in order to obtain 3D shpae information rapidly. Second we propose an automatic base level decision method basad on image processing and a correction algorithm using the least square approximation method to overcome the global tilt problem of the conventional WLPSI algorithms. Third we propose an adaptive filtering method to remove the distortion known as bat-wing effect which appears near the step discontinuity. Experimental results show that the proposed overall technique is fast and provides more enhanced 3D shape information compared with the conventional WLPSI algorithms.

Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning (초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템)

  • Roh, Hyeong-Rae;Go, Jung-Kook;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.873-877
    • /
    • 2013
  • The application of inkjet technology has been broadening from home printers to manufacturing tools. Recently, there have been demands for high-resolution printing, especially in the field of printed electronics applications. To improve upon the conventional inkjet printing patterning method, electrohydrodynamic (EHD) inkjet technology has recently attracted attention because droplets smaller than the nozzle diameter can be ejected and materials with wider viscosity range can be used for jetting. In this study, an EHD jet printing system for fine patterning is presented. To print various patterns based on drop on demand printing, vector and raster printing algorithm are implanted in the printing software. Fine conductive patterns with line width of less than $7{\mu}m$ can be easily achieved via EHD jet using a nozzle with inner diameter of $8{\mu}m$.

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

The effect of phase modulation on the central peak intensity in an optical system (광학계의 위상 변조 조건에 따른 중심 강도 변화)

  • 이영철;정창섭;박성종;이윤우
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2000
  • A lot of varIOUS studies are taking advantage of annular masks or various pupil filters to design optical systems such as a digital versatile disc (DVD) pick up head and precise scanning microscopy that have the superresolution beyond the diffraction limit. We considered both annular mask and pupil filter for the superresolution system. Since image quality is a function of annular width, position and modulation amount, we computel'lzed the optimized condition for the phase modulation and mvestigated the variation of lhe center peak: intensity for the phase modulated system From tills result, we were able to detenrune the best conditions for the annular apodizer, wluch give the maximum value of the center peak intensity_ We made especially sure that the phase modulated system have an excellent compensation for spherical aberration as it lllcreases. eases.

  • PDF

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.

A Study on the Design Technique of Linear Actuator by using CAE System (전산응용설계 시스템을 이용한 리니어 액츄에이터의 설계기법 고찰)

  • 이권헌;조제황;조경재;오금곤;김영동
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.106-113
    • /
    • 1997
  • In this paper, we introduce the design method using CAE(Computer Aided Engineering) which is profitable in the compatibility and standardization of the developed product and in the reduction of construction time and price to develop and design a machine equipment. Particularly, we select the standard model to design ot develop from the large machinery to the super precision one, extract the peculiar characters of the model by the close analysis of the physical and technical part, can predict the previous result of experimental characteristics on objective dimensions through the analogical mathematical analysis, and can induce the design model demanded by user investigating optimal data in advance. We present the analogical algorithms and process method of design factors and restriction factors in the systematization design with computer. Then we analyze step functions for each systematization equipment and induce the process of technical data with actuator model.

  • PDF

A Study on the Industrial Applications of Quantum Information Processing and Communication (퀀텀정보통신기술의 산업적 응용가능성에 관한 연구)

  • Kwon, Moon-Ju;Kim, Richard C.S.;Park, Seong-Taek;Kim, Tae Ung
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.173-184
    • /
    • 2013
  • Quantum Information Processing and Communication, based on the physical laws of Quantum mechanics, exploits fundamentally new modes of computation and communication and holds the promise of immense computing power beyond the capabilities of any classical computer. In Quantum Information Processing, replacing bits with qubits, one makes two-state quantum systems that do not possess in general the definite values of 0 or 1 of classical bits, but rather are in a so-called. "coherent superposition", of the two. Full exploitation of this additional freedom implies that new processing devices need to be designed and implemented, and that a large scale quantum computer can in principle be built. New discoveries will enable a range of exciting new possibilities including: greatly improved sensors with potential impact for mineral exploration and improved medical imaging and a revolutionary new computational paradigm that will likely lead to the creation of computing devices capable of efficiently solving problems that cannot be solved on a classical computer. In short, Quantum computing is an economy game changer, with a potential of disrupting entire industries and creating new ones.

Developing an Instrument Ensuring Reliable Contact Conditions for Contact-Type Area-varying Capacitive Displacement Sensors (접촉식 면적변화형 정전용량 변위센서의 접촉 안정성을 위한 기구의 개발)

  • Kim, Sung-Joo;Lee, Won-Goo;Moon, Won-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1147-1156
    • /
    • 2011
  • A contact-type area-varying capacitive displacement sensor, or CLECDiS, can measure displacements over millimeter ranges with nanometer resolution. However, a small changes in the contact condition due to the surface profile or friction, which are inherent characteristics of contact-type sensors, lead to significant distortion of the output signal. Therefore, ensuring reliable contact conditions during CLECDiS measurements is the most important area to be improved in their actual use. Herein, in order to design an instrument for ensuring reliable contact conditions, the contact condition is analyzed by characterizing the signal distortion, observing the pressure distribution between the contacting surfaces, and measuring the motional errors of the sensor using a laser Doppler vibrometer (LDV). The manufactured instrument enables a CLECDiS to be used in an ultraprecise positioning system with improved reliability.

Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment (고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어)

  • Kim, Wan-Soo;Lee, Dong-Jin;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1613-1622
    • /
    • 2010
  • In this paper, the ultraprecision positioning control of an ultrasonic linear motor in a high-vacuum environment is presented. The bolt-clamped Langivin type transducer (BLT) with the 3rd longitudinal; and 6th lateral vibration modes was developed, which was excited by using the Eigen resonance frequency for two vibration modes in order to generate stable and high power. In practical applications, however, even if a geometrical design has an Eigen frequency, discordance between both mode frequencies can be generated by the contact mechanism and because of manufacturing errors as well as environmental factors. Both mode frequencies were precisely matched by adjusting the impedence. By using this method, the BLT can be driven under any environmental conditions. The nominal characteristic trajectory following(NCTF) control method was adopted to control the positioning of the system in vacuum. The developed linear motor stage show high positioning accuracy with 5 nm.

Molding and Optical Evaluation of Aspheric Glass Lenses for Camera Phone Module (카메라폰 모듈용 비구면 Glass렌즈의 성형 및 광학특성 평가)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Kim, Jeong-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.124-131
    • /
    • 2007
  • Aspheric glass lenses was fabricated by glass molding press(GMP), which is a plano-aspheric convox shape and intended for use as an optical design of 3 megapixel and 2.5 magnifications zoom in a camera phone module. Transcription ratio of form accuracy (PV) as well as resolution properties was measured for evaluation the molded lens. Form accuracy (PV) of the mold surface was $0.127\;{\mu}m$ in an aspheric and $0.168\;{\mu}m$ in a plano, in case of the molded lens it shows $0.205\;{\mu}m$ and $0.223\;{\mu}m$, respectively. Resolution of the molded lens was measured as a MTF[Contrast]. The molded lens shows contrast of 32.9% at 80 1p/mm and the value is similar with contrast of 33% obtained simulation.

  • PDF