DOI QR코드

DOI QR Code

Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning

초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템

  • Roh, Hyeong-Rae (Dept. of Mechanical Engineering, Soonchunhyang Univ.) ;
  • Go, Jung-Kook (Dept. of Electrical and Robot Engineering, Soonchunhyang Univ.) ;
  • Kwon, Kye-Si (Dept. of Mechanical Engineering, Soonchunhyang Univ.)
  • 노형래 (순천향대학교 기계공학과) ;
  • 고정국 (순천향대학교 전기로봇공학과) ;
  • 권계시 (순천향대학교 기계공학과)
  • Received : 2013.04.24
  • Accepted : 2013.07.03
  • Published : 2013.09.01

Abstract

The application of inkjet technology has been broadening from home printers to manufacturing tools. Recently, there have been demands for high-resolution printing, especially in the field of printed electronics applications. To improve upon the conventional inkjet printing patterning method, electrohydrodynamic (EHD) inkjet technology has recently attracted attention because droplets smaller than the nozzle diameter can be ejected and materials with wider viscosity range can be used for jetting. In this study, an EHD jet printing system for fine patterning is presented. To print various patterns based on drop on demand printing, vector and raster printing algorithm are implanted in the printing software. Fine conductive patterns with line width of less than $7{\mu}m$ can be easily achieved via EHD jet using a nozzle with inner diameter of $8{\mu}m$.

잉크젯 기술은 가정용 프린터에서부터 제조 도구로 확대 되었다. 최근 인쇄전자 분야에서 고해상도 인쇄가 요구되고 있다. 기존의 잉크젯 인쇄 패터닝 방식을 향상 시키기 위해 전기수력학잉크젯 기술이 최근 주목을 받고 있는데 노즐 직경보다 작은 방울을 토출할 수 있고 넓은 점도 범위와 재료를 사용할 수 있기 때문이다. 본 논문에서는 미세 패터닝을 위한 EHD 프린팅 시스템이다. 요구 적출형 프린팅에 의해 다양한 패턴을 인쇄하고 벡터와 레스터 프린팅 알고리즘을 개발하였다. 내경이 $8{\mu}m$ 인 노즐을 이용하여 $7{\mu}m$ 이하의 미세 전도성 선폭을 EHD 방식을 통해 만들 수 있다.

Keywords

References

  1. Murata, K., 2003, "Super-Fine Ink-Jet Printing for Nanotechnology," Proceeding of the International Conference on MEMS, NANO and Smart Systems.
  2. Lee, K.J., Park, J.S. and Lee, S.Y. 2004, "An Experimental Study on Charge Injection to Non-Conducting Liquid for Electrohydrodynamic Atomization," Trans. Korean Soc. Mech. Eng. B, Vol.28, No.11, pp.1376-1383. https://doi.org/10.3795/KSME-B.2004.28.11.1376
  3. Kim, M.C. and Lee S.Y., 2002, "Effect of Nozzle Material on Drop Size Distribution in Electrohydodynamic Spraying," Trans. Korean Soc. Mech. Eng. B, Vol.28, No.11, pp.1451-1457.
  4. Lee, J. B. and Hwang J. H., 1999, "Electrohydrodynamic Characteristics of an Electro-Spray System," Trans. Korean Soc. Mech. Eng. B, Vol.23, No.8, pp.1031-1039.
  5. Li J and Zhang P 2009, "Formation and Droplet Size of EHD Dripping induced by Superimposing and Electric Pulse to Background Voltage," Journal of Electrostatics 67, pp.562-567. https://doi.org/10.1016/j.elstat.2008.11.007
  6. Mishra S, Barton K L, Alleyne A G, Ferreira P M and Rogers J A 2010, "High-Speed and Drop-on-demand Printing with a Pulsed Electrohydrodynamic Jet," Journal of Micromechanics and Microengineering 20095026.
  7. Kwon, K.S., and Go, J.K. and Kim, J.W. 2010, "Development of Inkjet Printing System for Printed Electronics," Trans. Korean Soc. Mech. Eng. A , Vol. 34, No. 10, pp. 1537-1542. https://doi.org/10.3795/KSME-A.2010.34.10.1537
  8. Kwon, K.S., and Lee, D.Y. 2012, "Visualization of Electro-hydrodynamic Ink Jetting Using CCD Camera," Journal of Korean Society for Precision Engineering, Vol. 29, No. 3, pp. 295-301. https://doi.org/10.7736/KSPE.2012.29.3.295
  9. Kwon, K.S. and Lee, D.Y. 2013 "Investigation of Pulse Voltage Shape Effects on Electrohydrodynamic Jets Using Vision Measurement Technique," Journal of Micromechanics and Microengineering, Vol. 23, 065018. https://doi.org/10.1088/0960-1317/23/6/065018
  10. Electrohydrodynamic (EHD) Inkjet Printing, Online: http://www.youtube.com/watch?v=M3cRCWwwImc.

Cited by

  1. High Speed and Continuous Electrospinning Printing Using Polymer Ink vol.39, pp.4, 2015, https://doi.org/10.3795/KSME-B.2015.39.4.379