• Title/Summary/Keyword: 저전력 모드

Search Result 236, Processing Time 0.023 seconds

Optimal Resource Allocation Scheme according to Access Mode in LTE Femtocell Systems (LTE 기반의 펨토셀 시스템에서 접근 모드에 따른 최적의 자원 할당 방식)

  • Lee, In-Sun;Park, Min-Ho;Kim, Dong-Ki;Hwang, Jae-Ho;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • In Femtocell that provides high quality of indoor communications with low transmitted power, there are two typical Access modes; Closed Access mode and Open Access mode. In this paper, we propose resource allocation scheme, which mitigates difference of performance between Access modes and improves overall cell performance, according to Access mode. We give more wireless resources to Open Access mode Femtocell, which improves performance of other users, than Closed Access mode Femtocell. If Open Access mode Femtocell uses more resource, there is trade-off between improvement of user using Open Access mode Femtocell and increase of interference that other users receive. So, we solve the optimal value for resource allocation and analyze performance of conventional scheme and proposed scheme applying the optimal value. Eventually, proposed scheme can improve overall cell performance relative to conventional scheme.

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

Low power 3rd order single loop 16bit 96kHz Sigma-delta ADC for mobile audio applications. (모바일 오디오용 저 전압 3 차 단일루프 16bit 96kHz 시그마 델타 ADC)

  • Kim, Hyung-Rae;Park, Sang-Hune;Jang, Young-Chan;Jung, Sun-Y;Kim, Ted;Park, Hong-June
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.777-780
    • /
    • 2005
  • 모바일 오디오 적용을 위한 저전력 ${\Sigma}{\Delta}$ Modulator 에 대한 설계와 layout 을 보였다. 전체 구조는 3 차 단일 피드백 루프이며, 해상도는 16bit 을 갖는다. 샘플링 주파수에 따른 Over-sampling Ratio 는 128(46kHz) 또는 64(96kHz) 가 되도록 하였다. 차동 구조를 사용한 3 차 ${\Sigma}{\Delta}$ modulator 내의 적분기에 사용된 Op-Amp 는 DC-Gain 을 높이기 위해서 Gain-boosting 기법이 적용되었다. ${\Sigma}{\Delta}$ modulator 의 기준 전압은 전류 모드 Band-Gap Reference 회로에서 공급이 되며, PVT(Process, Voltage, Temperature) 변화에 따른 기준 전압의 편차를 보정하기 위하여, binary 3bit 으로 선택하도록 하였다. DAC 에서 사용되는 단위 커패시터의 mismatch 에 의한 성능 감소를 막기 위해, DAC 신호의 경로를 임의적으로 바꿔주는 scrambler 회로를 이용하였다. 4bit Quantizer 내부의 비교기 회로는 고해상도를 갖도록 설계하였고, 16bit thermometer code 에서 4bit binary code 변환시 발생하는 에러를 줄이기 위해 thermometer-to-gray, gray-to-binary 인코딩 방법을 적용하였다. 0.18um CMOS standard logic 공정 내 thick oxide transistor(3.3V supply) 공정을 이용하였다. 입력 전압 범위는 2.2Vp-p,diff. 이며, Typical process, 3.3V supply, 50' C 시뮬레이션 조건에서 2Vpp,diff. 20kHz sine wave 를 입력으로 할 때 SNR 110dB, THD 는 -95dB 이상의 성능을 보였고, 전류 소모는 6.67mA 이다. 또한 전체 layout 크기는 가로 1100um, 세로 840um 이다.

  • PDF

A Reconfigurable Analog Front-end Integrated Circuit for Medical Ultrasound Imaging Systems (초음파 의료 영상 시스템을 위한 재구성 가능한 아날로그 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.66-71
    • /
    • 2014
  • This paper presents an analog front-end integrated circuit (IC) for medical ultrasound imaging systems using standard $0.18-{\mu}m$ CMOS process. The proposed front-end circuit includes the transmit part which consists of 15-V high-voltage pulser operating at 2.6 MHz, and the receive part which consists of switch and a low-power low-noise preamplifier. Depending on the operation mode, the output driver in the transmit pulser can be reconfigured as the switch in the receive path and thus the area of the overall front-end IC is reduced by over 70% in comparison to previous work. The designed single-channel front-end prototype consumes less than $0.045mm^2$ of core area and can be utilized as a key building block in highly-integrated multi-array ultrasound medical imaging systems.

An Efficient Hardware Implementation of Lightweight Block Cipher LEA-128/192/256 for IoT Security Applications (IoT 보안 응용을 위한 경량 블록암호 LEA-128/192/256의 효율적인 하드웨어 구현)

  • Sung, Mi-Ji;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1608-1616
    • /
    • 2015
  • This paper describes an efficient hardware implementation of lightweight encryption algorithm LEA-128/192/256 which supports for three master key lengths of 128/192/256-bit. To achieve area-efficient and low-power implementation of LEA crypto- processor, the key scheduler block is optimized to share hardware resources for encryption/decryption key scheduling of three master key lengths. In addition, a parallel register structure and novel operating scheme for key scheduler is devised to reduce clock cycles required for key scheduling, which results in an increase of encryption/decryption speed by 20~30%. The designed LEA crypto-processor has been verified by FPGA implementation. The estimated performances according to master key lengths of 128/192/256-bit are 181/162/109 Mbps, respectively, at 113 MHz clock frequency.

A High-Efficiency, Robust Temperature/voltage Variation, Triple-mode DC-DC Converter (고효율, Temperature/voltage 변화에 둔감한 Triple-mode CMOS DC-DC Converter)

  • Lim, Ji-Hoon;Ha, Jong-Chan;Kim, Sang-Kook;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • This paper suggests the triple-mode CMOS DC-DC converter that has temperature/voltage variation compensation techniques. The proposed triple-mode CMOS DC-DC converter is used to generate constant or variable voltages of 0.6-2.2V within battery source range of 3.3-5.5V. Also, it supports triple modes, which include Pulse Width Modulator (PWM) mode, Pulse Frequency Modulator (PFM) mode and Low Drop-Out (LDO) mode. Moreover, it uses 1MHz low-power CMOS ring oscillator that will compensate malfunction of chip in temperature/voltage variation condition. The proposed triple-mode CMOS DC-DC converter, which generates output voltages of 0.6-2.2V with an input voltage sources of 3.3-5.5V, exhibits the maximum output ripple voltage of below 10mV at PWM mode, 15mV at PFM mode and 4mV at LDO mode. And the proposed converter has maximum efficiency of 93% at PWM mode. Even at $-25{\sim}80^{\circ}C$ temperature variations, it has kept the output voltage level within 0.8% at PWM/PFM/LDO modes. For the verification of proposed triple-mode CMOS DC-DC converter, the simulations are carried out with $0.35{\mu}m$ CMOS technology and chip test is carried out.

A 2.3-2.7 GHz Dual-Mode RF Receiver for WLAN and Mobile WiMAX Applications in $0.13{\mu}m$ CMOS (WLAN 및 Mobile WiMAX를 위한 2.3-2.7 GHz 대역 이중모드 CMOS RF 수신기)

  • Lee, Seong-Ku;Kim, Jong-Sik;Kim, Young-Cho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • A dual-mode direct conversion receiver is developed in $0.13\;{\mu}m$ RF CMOS process for IEEE 802.11n based wireless LAN and IEEE 802.16e based mobile WiMAX application. The RF receiver covers the frequency band between 2.3 and 2.7 GHz. Three-step gain control is realized in LNA by using current steering technique. Current bleeding technique is applied to the down-conversion mixer in order to lower the flicker noise. A frequency divide-by-2 circuit is included in the receiver for LO I/Q differential signal generation. The receiver consumes 56 mA at 1.4 V supply voltage including all LO buffers. Measured results show a power gain of 32 dB, a noise figure of 4.8 dB, a output $P_{1dB}$ of +6 dBm over the entire band.

Adaptive Design Techniques for High-speed Toggle 2.0 NAND Flash Interface Considering Dynamic Internal Voltage Fluctuations (고속 Toggle 2.0 낸드 플래시 인터페이스에서 동적 전압 변동성을 고려한 설계 방법)

  • Yi, Hyun Ju;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.251-258
    • /
    • 2012
  • Recently, NAND Flash memory structure is evolving from SDR (Single Data Rate) to high speed DDR(Double Data Rate) to fulfill the high performance requirement of SSD and SSS. Accordingly, the proper ways of transferring data that latches valid data stably and minimizing data skew between pins by using PHY(Physical layer) circuit techniques have became new issues. Also, rapid growth of speed in NAND flash increases the operating frequency and power consumption of NAND flash controller. Internal voltage variation margin of NAND flash controller will be narrowed through the smaller geometry and lower internal operating voltage below 1.5V. Therefore, the increase of power budge deviation limits the normal operation range of internal circuit. Affection of OCV(On Chip Variation) deteriorates the voltage variation problem and thus causes internal logic errors. In this case, it is too hard to debug, because it is not functional faults. In this paper, we propose new architecture that maintains the valid timing window in cost effective way under sudden power fluctuation cases. Simulation results show that the proposed technique minimizes the data skew by 379% with reduced area by 20% compared to using PHY circuits.

Development of Digital Type Battery Charger based on Milti-Mode Control (디지털방식 다중제어 충전기 개발)

  • 변영복;구태근;김은수;조기연;김동희;변동환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.55-60
    • /
    • 2001
  • Most of the battery charger for electric powered forklift truck are controlled by the method of 3-phased constant current and constant voltage controls. However, these chargers have several disadvantages like a large charger capacity, and a short battery life time. To eliminate the weak points, a digital type battery charger based on multi-mode control adding a constant power control and several assistant controls in the conventional control is presented. The whole control system is performed by a low cost 8 bit one-chip micro-controller and completely digitize. So, we can get a high precision control and a good reliability.

  • PDF

The design of low-power MR damper using permanent magnet (영구자석을 이용한 저전력형 MR 감쇠기의 설계)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF