• 제목/요약/키워드: 실리사이드

검색결과 239건 처리시간 0.017초

니켈실리사이드의 색차분석 (Color Difference Characterization on Nickel Silicides)

  • 정영순;송오성;김득중;최용윤;김종준
    • 한국표면공학회지
    • /
    • 제38권1호
    • /
    • pp.44-48
    • /
    • 2005
  • We prepared nickel silicide layers from p-Si(l00)/SiO₂(2000 Å)/poly-Si(700 Å)/Ni(400 Å) structures, feasible for gates in MOSFETs, by annealing them from 500℃~900℃ for 30 minutes. We measured the color coordination in visible range, cross sectional micro-structure, and surface topology with annealing temperature by an UV-VIS-IR spectrometer, field effect scanning electron microscope(FE-SEM), and scanning probe micro-scope respectively. We conclude that we may identify the nickel silicide by color difference of 0.90 and predict the silicide process reliability by color coordination measurement. The nickel silicide layers showed similar thickness while the columnar grains size and surface roughness increased as annealing temperature increased.

나노급 두께 니켈실리사이드의 적외선 흡수 특성 (IR Absorption Property in Nano-thick Nickel Silicides)

  • 윤기정;한정조;송오성
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.323-330
    • /
    • 2007
  • We fabricated thermaly evaporated 10 nmNi/(poly)Si films to investigate the energy saving property of silicides formed by rapid thermal annealing (RTA) at the temperature of $300{\sim}1200^{\circ}C$ for 40 seconds. Moreover, we fabricated $10{\sim}50$ nm-thick ITO/Si films with a rf-sputter as reference films. A four-point tester was used to investigate the sheet resistance. A transmission electron microscope (TEM) and an X-ray diffractometer were used for the determination of cross sectional microstructure and phase changes. A UV-VISNIR and FT-IR (Fourier transform infrared rays spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM analysis, we confirmed $20{\sim}70nm-thick$ silicide layers formed on the single and polycrystalline silicon substrates. Nickel silicides and ITO films on the single silicon substrates showed almost similar absorbance in near-IR region, while nickel silicides on polycrystalline silicon substrate showed superior absorbance above 850 nm near-IR region to ITO films. Nickel silicide on polycrystalline substrate also showed better absorbance in middle IR region than ITO. Our result implies that nano-thick nickel silicides may have exellent absorbing capacity in near-IR and middle-IR region.

코발트/니켈 적층구조 박막으로부터 형성된 복합실리사이드 (Characterizatics of Composite Silicides from Co/Ni Structure)

  • 송오성;정성희;김득중;최용윤
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.769-774
    • /
    • 2004
  • 15 nm-Co/15 nm-Ni/P-Si(100)[Type I] and 15 nm-Ni/15 nm-Co/P-Si(100)(Type II) bilayer structures were annealed using a rapid thermal annealer for 40sec at $700/sim1100^{\circ}C$. The annealed bilayer structures developed into composite NiCo silicides and resulting changes in sheet resistance, composition and microstructure were investigated using Auger electron spectroscopy and transmission electron microscopy. Prepared NiCoSix films were further treated in a sequential annealing set up from $900\sim1100^{\circ}C$ with 30 minutes. The sheet resistances of NiCoSix from Type I maintained less than $7\;{\Omega}/sq$. even at the temperature of $1100{\circ}C$, while those of Type II showed about $5\;{\Omega}/sq$. with the thinner and more uniform thickness. With the additive post annealing, the sheet resistance for all the composite silicides remained small up to $900^{\circ}C$. The proposed NiCoSix films were superior over the conventional single-phased silicides and may be easily incorporated into the sub-0.1 ${\mu}m$ process.

폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화 (Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature)

  • 김상엽;송오성
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.564-570
    • /
    • 2006
  • Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.

이리듐 첨가에 의한 니켈모노실리사이드의 고온 안정화 (Thermal Stability Enhancement of Nickel Monosilicides by Addition of Iridium)

  • 윤기정;송오성
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.571-577
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-Ni/(poly)Si and 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the thermal stability of nickel monosilicide at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides for salicide process was formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester is used for sheet resistance. Scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An x-ray diffractometer and an auger depth profile scope were used for phase and composition analysis, respectively. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1200^{\circ}C$ and $800^{\circ}C$, respectively, while the conventional nickel monosilicide showed low resistance below $700^{\circ}C$. The grain boundary diffusion and agglomeration of silicides led to lower the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.

에피 코발트 실리사이드막으로 부터의 붕소 확산을 이용한 극저층 $p^{+}$n 접합 형성 (Ultra shallow $p^{+}$n junction formation using the boron diffusin form epi-co silicide)

  • 변성자;권상직;김기범;백홍구
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.134-142
    • /
    • 1996
  • The epi-CoSi$_{2}$ layer was formed by alloying a Co(120$\AA$)/Ti(50$\AA$) bilayer. In addition, the ultra shallow p$^{+}$n junction of which depth is about not more than 40nm at the background concentration, 10$^{18}$atoms/cm$^{3}$ could be formed by annealing (RTA-II) the ion implanted epi-silicide. When the temperature of RTA-I is as low as possible and that of RTA-II is moderate, the p$^{+}$n junction that has low leakage current and stable epi-silicide layer could be obtained. That is, when th econdition of TRA-I was 900$^{\circ}C$/20sec and that of RTA-II was 900$^{\circ}C$/10sec, the reverse leakage current was as high as 11.3$\mu$A/cm$^{2}$ at -5V. The surface of CoSi$_{2}$ appeared considerably rough. However, when the conditon of RTA-I was 800$^{\circ}C$/20sec or 700$^{\circ}C$/20sec, the leakage currents were as low as 8.3nA/cm$^{2}$ and 9.3nA/cm$^{2}$, respectively and also the surfaces appeared very uniform.

  • PDF

$\textrm{SiO}_2$기판 위에 증착된 Co/Hf 이중층의 계면반응 (Interfacial Raction of Co/Hf Bilayer Deposited on $\textrm{SiO}_2$)

  • 권영재;이종무;배대록;강호규
    • 한국재료학회지
    • /
    • 제8권9호
    • /
    • pp.791-796
    • /
    • 1998
  • self-aligned silicide(salicide)제조시 CoSi2의 에피텍셜 성장을 돕기 위하여 Co와 Si 사이에 내열금속층을 넣은 Co/내열금속/Si의 실리사이드화가 관심을 끌고 있다. Hf 역시 Ti와 마찬가지로 이러한 용도로 사용될 수 있다. 한편, Co/Hf 이중층 salicide 트랜지스터가 성공적으로 만들어지기 위해서는 spacer oxide 위에 증착된 Co/Hf 이중층이 열적으로 안정해야 한다. 이러한 배경에서 본 연구에서는 SiO2기판 위에 증착한 Co 단일층과 Co/Hf 이중층을 급속열처리할 때 Co와 SiO2간의 계면과 Co/Hf와 SiO2간의 계면에서의 상호반응에 대하여 조사하였다. Co 단일층과 Co/Hf 이중층은 각각 $500^{\circ}C$$550^{\circ}C$에서 열처리한 후 면저항이 급격하게 증가하기 시작하였는데, 이것은 Co층이 SiO2와의 계면에너지를 줄이기 위하여 응집되기 때문이다. 이 때 Co/Hf의 경우 열처리후 Hf에 의하여 SiO2 기판이 일부 분해됨으로써 Hf 산화물이 형성되었으나, 전도성이 있는 HfSix 등의 화합물은 발견되지 않았다.

  • PDF

코발트/니켈 합금박막으로부터 형성된 복합실리사이드 (Characterization of Composite Silicide Obtained from NiCo-Alloy Films)

  • 송오성;정성희;김득중
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.846-850
    • /
    • 2004
  • NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.

BPSG 상에 화학증착된 구리박막의 후열처리에 의한 특성변화 (Effect of Post-annealing on the Properties of the Copper Films Grown on BPSG by Chemical Vapor Deposition)

  • 전치훈;김윤태;백종태;유형준;김대룡
    • 한국재료학회지
    • /
    • 제6권12호
    • /
    • pp.1233-1241
    • /
    • 1996
  • 본 연구에서는 BPSG(borophosphosilicate glass)/SiO2/Si 기판상에 5000$\AA$의 구리박막을 화학증착한 후 Ar 분위기하 250-55$0^{\circ}C$, 5-90초 급속열처리하여 열처리 전후의 결정구조, 면저항, 미세구조의 박막특성 변화를 분석하였다. 후열처리된 구리박막에서는 결정성 및 (111) 배향의개선과 함께 결정립 성장이 확인되었으나, 구리의 표면산화반응과 BPSG 내로의 급속한 확산에 의해 전기적 특성의 개선은 미미하였다. 그리고 열처리 박막내에는 구리 실리사이드상의 형성이 발견되지 않았으며, 25$0^{\circ}C$/90초의 저온 장시간 또는 55$0^{\circ}C$/20초의 고온 단시간 조건에서 전형적으로 나타나는 Cu2O 상이 시편의 전기비저항 증가와 표면열화에 직접적으로 영향을 미쳤다. 또한, 이들 결과로부터 급속열처리법에 의한 Cu/BPSG 열처리의 공정범위를 규명할 수 있었다.

  • PDF

나노급 Au층 삽입 니켈실리사이드의 미세구조 변화 (Microstructure Evaluation of Nano-thick Au-inserted Nickel Silicides)

  • 윤기정;송오성
    • 한국재료학회지
    • /
    • 제18권1호
    • /
    • pp.5-11
    • /
    • 2008
  • Thermally evaporated 10 nm-Ni/1 nm-Au/(30 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Au-inserted nickel silicide. The silicide samples underwent rapid thermal annealing at $300{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance was measured using a four-point probe. A scanning electron microscope and a transmission electron microscope were used to determine the cross-sectional structure and surface image. High-resolution X-ray diffraction and a scanning probe microscope were employed for the phase and surface roughness. According to sheet resistance and XRD analyses, nickel silicide with Au had no effect on widening the NiSi stabilization temperature region. Au-inserted nickel silicide on a single crystal silicon substrate showed nano-dots due to the preferred growth and a self-arranged agglomerate nano phase due to agglomeration. It was possible to tune the characteristic size of the agglomerate phase with silicidation temperatures. The nano-thick Au-insertion was shown to lead to self-arranged microstructures of nickel silicide.