• Title/Summary/Keyword: 수학적 사고과정

Search Result 377, Processing Time 0.025 seconds

Exploring the Process of Change in 5-year-olds' Mathematical Thinking through Mathematical Process-focused Instruction (수학적 과정 중심 교수학습법을 통한 만 5세 유아의 수학적 사고 변화 탐구)

  • Kim, Eunyoung;Chung, Kayoun
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.4
    • /
    • pp.581-605
    • /
    • 2015
  • The purpose of this study is to build an instruction method focused on the mathematical process and apply it to 12, 5-year-olds from Kindergarten located in Seoul with a view to explore the changes in their mathematical thinking. In addition, surveys with parents and teachers, as well as those conducted in the field of early childhood education, were conducted to analyze the current situation. The effects focused on the five mathematical processes, namely problem solving, reasoning and proof, connecting, representing and communication was found to help the interactions between teacher-child and child-child stimulate the mathematical thinking of the children and induce changes. The mathematical process-focused instruction aimed to advance mathematical thinking internalized mathematical knowledge, presented an integrated problematic situation, and empathized the mathematical process, which enabled the children to solve the problem by working together with peers. As such, the mathematical thinking of the children was integrated and developed within the process of a positive change in the mathematical attitude in which mathematical knowledge is internalized through mathematical process.

Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami- (중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로)

  • Seo, Ji Hee;Yeun, Jong Kook;Lee, Kwang Ho
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.785-799
    • /
    • 2013
  • The researchers developed the teaching-learning materials for 9th grade mathematically gifted students in terms of the hypothesis that the students would have opportunity for problem solving and develop various mathematical thinking through the mathematical modeling lessons. The researchers analyzed what mathematical thinking abilities were shown on each stage of modeling process through the application of the materials. Organization of information ability appears in the real-world exploratory stage. Intuition insight ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the pre-mathematical model development stage. Mathematical abstraction ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the mathematical model development stage. Generalization and application ability and reflective thinking ability appears in the model application stage. The developed modeling assignments have provided the opportunities for mathematically-gifted students' mathematical thinking ability to develop and expand.

  • PDF

An Analysis on Thinking Processes of Mathematical Gifted Students Using Think-aloud Method (사고구술법(思考口述法)을 이용한 수학(數學) 영재(英才)의 사고(思考) 특성(特性) 연구(硏究))

  • Hong, Jin-Kon;Kang, Eun-Joo
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.4
    • /
    • pp.565-584
    • /
    • 2009
  • This study is aimed at providing the theoretical framework of characteristics of mathematical thinking processes and structuring the thinking process patterns of the mathematical gifted students through the analysis of their cognitive thinking processes. For this purpose, this study is trying to analyze characteristics of mathematical thinking processes of the mathematical gifted students in an objective and a systematic way, by using think-aloud method. For comparative study, the analysis framework with the use of the thinking characteristic code as a content-oriented method and the problem-solving processes code as a process-oriented method was developed, and the differences of thinking characteristics between the two groups chosen by the coding system which represented the subjects' thinking processes in the form of the language protocol through thinking-aloud method were compared and analyzed.

  • PDF

Development of a Model for the Process of Analogical Reasoning (유추 사고과정 모델의 개발)

  • Choi, Nam Kwang;Lew, Hee Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.2
    • /
    • pp.103-124
    • /
    • 2014
  • The process of analogical reasoning can be conventionally summarized in five steps : Representation, Access, Mapping, Adaptation, Learning. The purpose of this study is to develop more detailed model for reason of analogies considering the distinct characteristics of the mathematical education based on the process of analogical reasoning which is already established. Ultimately, This model is designed to facilitate students to use analogical reasoning more productively. The process of developing model is divided into three steps. The frist step is to draft a hypothetical model by looking into historical example of Leonhard Euler(1707-1783), who was the great mathematician of any age and discovered mathematical knowledge through analogical reasoning. The second step is to modify and complement the model to reflect the characteristics of students' thinking response that proves and links analogically between the law of cosines and the Pythagorean theorem. The third and final step is to draw pedagogical implications from the analysis of the result of an experiment.

  • PDF

Primary Students' Mathematical Thinking Analysis of Between Abstraction of Concrete Materials and Concretization of Abstract Concepts (구체물의 추상화와 추상적 개념의 구체화에 나타나는 초등학생의 수학적 사고 분석)

  • Yim, Youngbin;Hong, Jin-Kon
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.159-173
    • /
    • 2016
  • In real educational field, there are cases that concrete problematic situations are introduced after abstract concepts are taught on the contrary to process that abstract from concrete contexts. In other words, there are cases that abstract knowledge has to be concreted. Freudenthal expresses this situation to antidogmatical inversion and indicates negative opinion. However, it is open to doubt that every class situation can proceed to abstract that begins from concrete situations or concrete materials. This study has done a comparative analysis in difference of mathematical thinking between a process that builds abstract context after being abstracted from concrete materials and that concretes abstract concepts to concrete situations and attempts to examine educational implication. For this, this study analyzed the mathematical thinking in the abstract process of concrete materials by manipulating AiC analysis tools. Based on the AiC analysis tools, this study analyzed mathematical thinking in the concrete process of abstract concept by using the way this researcher came up with. This study results that these two processes have opposite learning flow each other and significant mathematical thinking can be induced from concrete process of abstract knowledge as well as abstraction of concrete materials.

Mathmatization As a Method of Teaching Mathematical Thinking (수학적 사고의 교수 방법으로서의 수학화)

  • Yoo Hyun Joo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.1 no.1
    • /
    • pp.123-140
    • /
    • 1997
  • Researchers have insisted that mathematics should be learned not as a product but as a process. Nevertheless school mathematics has chosen ‘top-down’ method and has usually instilled into the mind of students the mathematical concepts in the form of product. Consequently school mathematics has been teamed by students without the process of inquiring and mathematical thinking. According to Freudenthal, it is a major source of all problems of mathematics education. He suggested mathematising as the method for 'teaching to think mathematically' 'Teaching to think mathematically' through the process of mathematization, interpreting and analysing mathematics as an activity, is a means to embody the purpose of mathematics education.

  • PDF

An Analysis of Metacognition of Elementary Math Gifted Students in Mathematical Modeling Using the Task 'Floor Decorating' ('바닥 꾸미기' 과제를 이용한 수학적 모델링 과정에서 초등수학영재의 메타인지 분석)

  • Yun, Soomi;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.257-276
    • /
    • 2023
  • Mathematical modeling can be described as a series of processes in which real-world problem situations are understood, interpreted using mathematical methods, and solved based on mathematical models. The effectiveness of mathematics instruction using mathematical modeling has been demonstrated through prior research. This study aims to explore insights for mathematical modeling instruction by analyzing the metacognitive characteristics shown in the mathematical modeling cycle, according to the mathematical thinking styles of elementary math gifted students. To achieve this, a mathematical thinking style assessment was conducted with 39 elementary math gifted students from University-affiliated Science Gifted Education Center, and based on the assessment results, they were classified into visual, analytical, and mixed groups. The metacognition manifested during the process of mathematical modeling for each group was analyzed. The analysis results revealed that metacognitive elements varied depending on the phases of modeling cycle and their mathematical thinking styles. Based on these findings, didactical implications for mathematical modeling instruction were derived.

Mathematical Exploration of Counterweight Activities (분동을 활용한 문제의 수학적 탐구)

  • Kim, Sang-Lyong
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.123-134
    • /
    • 2010
  • Recently, mathematics education have been emphasized on developing students' mathematical thinking and problem solving abilities. Accordance with this emphasis, dramatical changes are needed in learning mathematics not merely let alone students solve real-made mathematics problems. The project learning to explore a counterweight activity will have an effects on positive mathematical attitude(to pose problem, to have curiosity) and mathematical thinking(power 10-digit representation, 2-digit number, two representation of 3-digit number, connect exponential number and log situation) which could develop understanding problems and critical thinking.

  • PDF

수학적 창의성에 대한 일 논의 - 창의적인 사람, 창의적인 산물, 창의적인 과정이란 관점으로부터 -

  • Kim, Jin-Ho
    • Communications of Mathematical Education
    • /
    • v.18 no.3 s.20
    • /
    • pp.45-56
    • /
    • 2004
  • 본고는 수학적 창의성과 관련한 논문으로 이를 창의적인 사람, 창의적인 산출물, 창의적인 과정이란 일반 창의성 연구자들이 연구하고 있는 분야로부터 유추적으로 논의를 시도하였다. 이런 접근으로부터, 얻을 수 있는 몇 가지 가정들은 다음과 같은 것이 있다. 첫 번째, 일반 보통아들을 대상으로 하는 공교육에서도 창의성 교육을 할 수 있으며, 이는 수학교과에도 적합한 진술이다. 두 번째, 현상학적 입장으로 부터 학교에서 교수${\cdot}$ 학습되고 있는 학교수학이 학생들 입장에서 보면 학습해야 할 필요가 있는 적절하고 새로운 지식이란 점을 공고히 해 주었다. 또한, 여기서 강조한 것은 새롭고 적절한 지식이 완성된 지식뿐만 아니라 발생상태 그대로의 지식 즉, 과정으로서의 지식도 포함하고 있음을 제안하였다. 세 번째, 수학자가 수학을 탐구하는 과정을 창의성 연구자들이 보듯이 인지과정으로 보는 대신에 한 수학적 아이디어를 이로부터 하나의 완성된 수학적 지식을 완성하기까지의 수학적 사고과정으로 보는 것이 수학교육적 의미에서 교수${\cdot}$ 학습에 의미가 있음을 살펴보았다.

  • PDF

A Study on the Cases of Mathematically Gifted Elementary Students' Metacognitive Thinking (초등수학영재들의 메타인지적 사고 과정 사례 분석)

  • Shin, Eun-Ju;Shin, Sun-Hwa;Song, Sang-Hun
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.201-220
    • /
    • 2007
  • This research is designed to analyze the metacognitive thinking that mathematically gifted elementary students use to solve problems, study the effects of the metacognitive function on the problem-solving process, and finally, present how to activate their metacognitive thinking. Research conclusions can be summarized as follows: First, the students went through three main pathways such as ARE, RE, and AERE, in the metacognitive thinking process. Second, different metacognitive pathways were applied, depending on the degree of problem difficulty. Third, even though students who solved the problems through the same pathway applied the same metacognitive thinking, they produced different results, depending on their capability in metacognition. Fourth, students who were well aware of metacognitive knowledge and competent in metacognitive regulation and evaluation, more effectively controlled problem-solving processes. And we gave 3 suggestions to activate their metacognitive thinking.

  • PDF