Abstract
In real educational field, there are cases that concrete problematic situations are introduced after abstract concepts are taught on the contrary to process that abstract from concrete contexts. In other words, there are cases that abstract knowledge has to be concreted. Freudenthal expresses this situation to antidogmatical inversion and indicates negative opinion. However, it is open to doubt that every class situation can proceed to abstract that begins from concrete situations or concrete materials. This study has done a comparative analysis in difference of mathematical thinking between a process that builds abstract context after being abstracted from concrete materials and that concretes abstract concepts to concrete situations and attempts to examine educational implication. For this, this study analyzed the mathematical thinking in the abstract process of concrete materials by manipulating AiC analysis tools. Based on the AiC analysis tools, this study analyzed mathematical thinking in the concrete process of abstract concept by using the way this researcher came up with. This study results that these two processes have opposite learning flow each other and significant mathematical thinking can be induced from concrete process of abstract knowledge as well as abstraction of concrete materials.
실제 교육 현장에서는 구체적 맥락에서 추상화하는 과정과 반대로 추상화된 개념을 먼저 가르치고 구체적인 문제 상황을 도입하는 경우도 있다. 즉, 추상적 지식을 구체화 해야 하는 경우가 있는 것이다. Freudenthal은 이런 상황을 반교수학적인 전도라고 표현하며 부정적인 견해를 나타낸 바 있지만 모든 수업상황이 구체적 상황이나 구체물에서 출발하는 추상화로 진행될 수 있는지는 의문의 여지가 있다. 본 연구에서는 구체물을 추상화하여 추상적 개념을 형성하는 과정과 추상적 개념을 구체적인 상황으로 구체화하는 과정에서 나타나는 수학적 사고의 차이점을 비교 분석하여 그 교육적 시사점을 살펴보고자 한다. 이를위해 AiC의 분석틀을 활용하여 구체물의 추상화 과정에서의 수학적 사고를 분석하였고, AiC의 분석틀을 토대로 연구자가 구안한 방식으로 추상적 개념의 구체화 과정에서의 수학적 사고를 분석하였다. 두 과정을 비교 분석한 결과 구체물의 추상화 과정만큼이나 추상적 개념의 구체화 과정에서도 유의미한 수학적 사고를 유도할 수 있음을 확인할 수 있었다.