Primary Students' Mathematical Thinking Analysis of Between Abstraction of Concrete Materials and Concretization of Abstract Concepts

구체물의 추상화와 추상적 개념의 구체화에 나타나는 초등학생의 수학적 사고 분석

  • Received : 2016.02.10
  • Accepted : 2016.03.15
  • Published : 2016.03.31

Abstract

In real educational field, there are cases that concrete problematic situations are introduced after abstract concepts are taught on the contrary to process that abstract from concrete contexts. In other words, there are cases that abstract knowledge has to be concreted. Freudenthal expresses this situation to antidogmatical inversion and indicates negative opinion. However, it is open to doubt that every class situation can proceed to abstract that begins from concrete situations or concrete materials. This study has done a comparative analysis in difference of mathematical thinking between a process that builds abstract context after being abstracted from concrete materials and that concretes abstract concepts to concrete situations and attempts to examine educational implication. For this, this study analyzed the mathematical thinking in the abstract process of concrete materials by manipulating AiC analysis tools. Based on the AiC analysis tools, this study analyzed mathematical thinking in the concrete process of abstract concept by using the way this researcher came up with. This study results that these two processes have opposite learning flow each other and significant mathematical thinking can be induced from concrete process of abstract knowledge as well as abstraction of concrete materials.

실제 교육 현장에서는 구체적 맥락에서 추상화하는 과정과 반대로 추상화된 개념을 먼저 가르치고 구체적인 문제 상황을 도입하는 경우도 있다. 즉, 추상적 지식을 구체화 해야 하는 경우가 있는 것이다. Freudenthal은 이런 상황을 반교수학적인 전도라고 표현하며 부정적인 견해를 나타낸 바 있지만 모든 수업상황이 구체적 상황이나 구체물에서 출발하는 추상화로 진행될 수 있는지는 의문의 여지가 있다. 본 연구에서는 구체물을 추상화하여 추상적 개념을 형성하는 과정과 추상적 개념을 구체적인 상황으로 구체화하는 과정에서 나타나는 수학적 사고의 차이점을 비교 분석하여 그 교육적 시사점을 살펴보고자 한다. 이를위해 AiC의 분석틀을 활용하여 구체물의 추상화 과정에서의 수학적 사고를 분석하였고, AiC의 분석틀을 토대로 연구자가 구안한 방식으로 추상적 개념의 구체화 과정에서의 수학적 사고를 분석하였다. 두 과정을 비교 분석한 결과 구체물의 추상화 과정만큼이나 추상적 개념의 구체화 과정에서도 유의미한 수학적 사고를 유도할 수 있음을 확인할 수 있었다.

Keywords

References

  1. 강문봉 외 12인(2005). 초등수학교육의 이해. 서울: 경문사
  2. 김남희(2008). 학교수학과 교구. 서울: 경문사
  3. 송정화 (2010). 상황적 추상화 과정의 고찰: 함수의 변화율을 중심으로 한 사례연구. 이화여자대학교 박사학위논문.
  4. 우정호 (1998). 학교수학의 교육적 기초. 서울: 서울대학교출판문화원.
  5. 이환철, 허난, 장미숙 (2009). 수학적 사고력 신장 측정 방안 마련을 위한 기초 연구. 수학교육학논총 제36집, 89-102.
  6. 임영빈, 류희수 (2011). 선분의 등분할 작도에 나타나는 6학년 영재.일반 학급 학생들의 수학적 사고. 한국초등수학교육학회지 15권 2호, 247-282.
  7. 정동권(2001). 수학교실에서 기하판의 활용 의의와 활용 사례 분석. 대한수학교육학회지 <학교수학> 제3권 제2호, 447-473
  8. 황혜정(2015). 수학교육학신론. 서울: 문음사.
  9. 片桐重男(1989). 수학적인 생각.태도와 그 지도. 서울: 경문사 (이용률.성현경.정동권.박영배 공역, 1992)
  10. 片桐重男(2004). 수학적인 생각의 구체화와 지도-수학의 진정한 학력 향상을 지향하여-. 서울: 경문사 (이용률.정동권 공역, 2013)
  11. Dreyfus, T. (2012) Constructing Abstract Mathematical Knowledge in Context. 12th International Congress on Mathematical Education, 8 July - 15 July, 2012, COEX, Seoul, Korea
  12. Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht: Kluwer. 우정호.정은실.박교식.유현주.정영옥.이경화 역(2008). 프로이덴탈의 수학교육론. 서울: 경문사
  13. Hoffmann(2006). What is A "Semiotic Perspective", And What Could it Be? Some Comments on The Contribution to This Special Issue. Educational Studies in Mathematics (2006) 61: 279-291 https://doi.org/10.1007/s10649-006-1456-5
  14. Kaminski(2008). the Advantage of Abstract Example in Learning Math. [SCIENCE] Vol 320
  15. Kidron, I., & Monaghan, J. (2009). Commentary on the chapters on the construction of knowledge. In B. B. Schwarz [Dreyfus, T. (2012)에서 재인용]
  16. Schunk(2004). Learning Theories: An Educational Perspective. 4/E. 노석준.소효정.오정은.유병민.이동훈.장정아 역(2006). 교육적 관점에서 본 학습이론. 서울: 아카데미프레스