Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2010.06a
/
pp.231-237
/
2010
이상기후에 의한 집중호우나 태풍의 영향으로 예전에는 기록이 없었던 백두대간과 전국 국립공원의 자연사연에서 산사태가 많이 발생하고 있으며 특히 지형이 험준하고 고도가 높은 지리산의 경우, 다른 국립공원에 비해서 그 발생빈도가 높게 나타난다. 본 연구에서는 지리산 북쪽지역으로 경상남도 함양군 마천면과 전라북도 남원시 산내면에 걸쳐서 발생한 산사태를 중심으로 산사태를 발생시키는 영향인자를 GIS와 원격탐사를 이용하여 분석하였다. 먼저 산사태 발생 지역의 지형특성을 분석하였고 산사태 발생과 산사태 발생에 영향을 끼친 인자들의 상관관계를 알아보기 위해서 빈도비를 사용하였으며 가중치를 도출하기 위해서 다중 회귀분석을 실시하였다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.19
no.3
/
pp.273-281
/
2001
The landslide occurrence in Sam-Chuck area was analyzed through Geo-Spatial Information System and AHP(Analytic Hierarchy Process). Among many factors which causes landslide, terrain slope, terrain aspect, lithology, soil texture and vegetation arc taken as input data from existing maps and constructed as a database. These factors are determined by each environmental factor by environmental and geological characters in the study area, and the rating and weight about factor are input using AHP. Possible areas for landslide have been extracted by overlaying each layers. Finally, the estimated results are compared with real landslide sites to know which factor is the most effective for landslide. The results showed that lithology and soil factor have high susceptibility in Sam-Chuck area.
Gangwon-do has been suffering extensive landslide dam age, because its geography consists mainly of mountains. Analyzing the related factors is crucial for landslide prediction. We digitized the landslide and non-landslide spots on an aerial photo obtained right after a disaster in Inje, Gangwon-do. Three landslide factors-topographic, forest type, and soil factors-w ere statistically analyzed through GIS overlap analysis between topographic map, forest type map, and soil map. The analysis showed that landslides occurred mainly between the inclination of $20^{\circ}$ and $35^{\circ}$, and needleleaf tree area is more vulnerable to a landslide. About soil properties, an area with shallow effective soil depth and parent material of acidic rock has a greater chance of landslide.
Journal of Korean Society for Geospatial Information Science
/
v.14
no.1
s.35
/
pp.3-12
/
2006
Kangwondo area is mountainous and landslide happens easily during the rainy period in summer time. Especially, when there is torrential downpour caused by the unusual weather change, there will be greater possibility to see landslide. It is very difficult to analyze and study a natural phenomenon like the landslide because there are so many factors behind it. And the way to conduct the analysis is also very complicated. However, if GIS is used, we can classify and analyze data efficiently by modeling the real phenomenon with a computer. Based upon the analysis on the causes of landslide in the areas where it occurred in the past, therefore, this study shows several factors leading to landslide and contains the GIS database categorized by grade and stored in the computer. In order to analyze the influence of every factor causing landslide, we calculated the rates of weight by AHP and evaluated landslide vulnerability in the study area by using GIS. As a result of such analysis, we found that the forest factor has most potential influences among other factors in landslide.
In this study, a probabilistic prediction model for debris flow occurrence was developed using a logistic regression analysis. The model can be applicable to metamorphic rocks and granite area. order to develop the prediction model, detailed field survey and laboratory soil tests were conducted both in the northern and the southern Gyeonggi province and in Sangju, Gyeongbuk province, Korea. The seven landslide triggering factors were selected by a logistic regression analysis as well as several basic statistical analyses. The seven factors consist of two topographic factors and five geological and geotechnical factors. The model assigns a weight value to each selected factor. The verification results reveal that the model has 90.74% of prediction accuracy. Therefore, it is possible to predict landslide occurrence in a probabilistic and quantitative manner.
Landslides are natural disasters that causes significant property damage worldwide every year. In Korea, damage due to landslides is increasing owing to the effects of climate change, and it is important to identify the factors that increase the prevalence of landslides in order to reduce the damage they cause. Therefore, this study used a random forest model to analyze the importance of 14 factors in influencing landslide damage in a specific area of Chungju, Chungcheongbuk-do province, Korea. The random forest model performed accurately with an AUC of 0.87 and the most-important factors were ranked in the order of aspect, slope, distance to valley, and elevation, suggesting that topographic factors such as aspect and slope more greatly influence landslide damage than geological or soil factors such as rock type and soil thickness. The results of this study are expected to provide a basis for mapping and predicting landslide damage, and for research focused on reducing landslide damage.
Probabilistic prediction methods of landslides which have been developed in recent can be reliable with premise of detailed survey and analysis based on deep and special knowledge. However, landslide susceptibility should also be analyzed with some reliable and simple methods by various people such as government officials and engineering geologists who do not have deep statistical knowledge at the moment of hazards. Therefore, this study suggests an evaluation chart of landslide susceptibility with high reliability drawn by accurate statistical approaches, which the chart can be understood easily and utilized for both specialists and non-specialists. The evaluation chart was developed by a quantification method based on canonical correlation analysis using the data of geology, topography, and soil property of landslides in Korea. This study analyzed field data and laboratory test results and determined influential factors and rating values of each factor. The quantification analysis result shows that slope angle has the highest significance among the factors and elevation, permeability coefficient, porosity, lithology, and dry density are important in descending order. Based on the score assigned to each evaluation factor, an evaluation chart of landslide susceptibility was developed with rating values in each class of a factor. It is possible for an analyst to identify susceptibility degree of a landslide by checking each property of an evaluation factor and calculating sum of the rating values. This result can also be used to draw landslide susceptibility maps based on GIS techniques.
This study was carried out to analyze the landslide characteristics and forest environment factors on the landslide area of 7 national parks in korea. The results obtained from this study were summarized as follows; The total number of landslide occurrence was 44 areas. The average length of the landslides scar was 152 m, average width was 17 m. And the average area was $2,818m^2$. The factors influencing landslides were highly occurred in Metamorphic rock, mixed forest type. And also, $30{\sim}35^{\circ}$ in slope gradient, NE in slope aspect, slope higher than 1,000 m, concave (凹) type in vertical and cross slope, 0 ordered stream. The main factors affecting landslide area in stepwise regression analysis were sheet type in landslided shape, NE in slope aspect, 2 ordered stream, SE in slope aspect, slope gradient and complex slope in cross slope type in order of regression coefficient.
Park, Seong-Yong;Moon, Seong-Woo;Choi, Jaewan;Seo, Yong-Seok
The Journal of Engineering Geology
/
v.31
no.4
/
pp.701-718
/
2021
Geological field surveys and a series of laboratory tests were conducted to obtain data related to landslides in Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea where many landslides occurred in the summer of 2020. The magnitudes of various factors' influence on landslide occurrence were evaluated using logistic regression analysis and an artificial neural network. Undisturbed specimens were sampled according to landslide occurrence, and dynamic cone penetration testing measured the depth of the soil layer during geological field surveys. Laboratory tests were performed following the standards of ASTM International. To solve the problem of multicollinearity, the variation inflation factor was calculated for all factors related to landslides, and then nine factors (shear strength, lithology, saturated water content, specific gravity, hydraulic conductivity, USCS, slope angle, and elevation) were determined as influential factors for consideration by machine learning techniques. Minimum-maximum normalization compared factors directly with each other. Logistic regression analysis identified soil depth, slope angle, saturated water content, and shear strength as having the greatest influence (in that order) on the occurrence of landslides. Artificial neural network analysis ranked factors by greatest influence in the order of slope angle, soil depth, saturated water content, and shear strength. Arithmetically averaging the effectiveness of both analyses found slope angle, soil depth, saturated water content, and shear strength as the top four factors. The sum of their effectiveness was ~70%.
This study developed a prediction model of debris flow to predict a landslide probability on natural terrain composed of the Tertiary sedimentary and volcanic rocks using a logistic regression analysis. The landslides data were collected around Pohang, Gyeongbuk province where more than 100 landslides were occurred in 1998. Considered with basic characteristics of the logistic regression analysis, field survey and laboratory soil tests were performed for both slided points and not-slided points. The final iufluential factors on landslides were selected as six factors by the logistic regression analysis. The six factors are composed of two topographic factors and four geologic factors. The developed landslide prediction model has more than $90\%$ of prediction accuracy. Therefore, it is possible to make probabilistic and quantitative prediction of landslide occurrence using the developed model in this study area as well as the previously developed model for metamorphic and granitic rocks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.