• Title/Summary/Keyword: 분수개념

Search Result 112, Processing Time 0.022 seconds

A Study on the Diversity of Lesson Flow and Visual Representations of Common Denominator Fraction Addition and Subtraction in Elementary Mathematics Textbooks (초등 수학 교과서의 동분모 분수 덧셈과 뺄셈 단원의 차시 흐름 및 시각적 표현 다양성에 대한 연구)

  • Kang, Yunji
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.125-140
    • /
    • 2023
  • In elementary school mathematics, the addition and subtraction of fractions are difficult for students to understand but very important concepts. This study aims to examine the teaching methods and visual aids utilized in the context of common denominator fraction addition and subtraction. The analysis focuses on evaluating the lesson flow and the utilization of visual representations in one national textbook and ten certified textbooks aligned with the current 2015 revised curriculum. The results show that each textbook is composed of chapter sequences and topics that reflect the curriculum faithfully, with each textbook considering its own order and content. Additionally, each textbook uses a different variety and number of visual representations, presumably intended to aid in learning the operations of fractions through the consistency or diversity of the visual representations. Identifying the characteristics of each textbook can lead to more effective instruction in fraction operations.

A Study on a Fraction Instruction via Partitioning and Iterating Operations (분할과 반복 조작을 통한 분수지도 탐구)

  • Choi, Keun-Bae
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.411-424
    • /
    • 2010
  • The fractional concept consists of various meaning, so that it is difficult to understand in primary school mathematics. In this article, we intend to analyze the cognition of 54 pre-service elementary teachers about the operations of partitioning and iterating that are based on Steffe's fraction schemes. The following fraction problem is used in this analysis: If the bar $\Box$ represent 3/8, then create a bar that is equivalent to 4/3. In our analysis, the 43% of pre-service elementary teachers can be well to treat the operations of partitioning and iteration. The 33% are use the equivalent fractions. But the 19% is not good. From the our analysis, it is important that pre-service elementary teachers must be have experimental(operational) thinking as the science education. And in this study we apply the operations of partitioning and iterating to the fraction activity of textbooks.

  • PDF

The Impact of Children's Understanding of Fractions on Problem Solving (분수의 하위개념 이해가 문제해결에 미치는 영향)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.48 no.3
    • /
    • pp.235-263
    • /
    • 2009
  • The purpose of the study was to investigate the influence of children's understanding of fractions in mathematics problem solving. Kieren has claimed that the concept of fractions is not a single construct, but consists of several interrelated subconstructs(i.e., part-whole, ratio, operator, quotient and measure). Later on, in the early 1980s, Behr et al. built on Kieren's conceptualization and suggested a theoretical model linking the five subconstructs of fractions to the operations of fractions, fraction equivalence and problem solving. In the present study we utilized this theoretical model as a reference to investigate children's understanding of fractions. The case study has been conducted with 6 children consisted of 4th to 5th graders to detect how they understand factions, and how their understanding influence problem solving of subconstructs, operations of fractions and equivalence. Children's understanding of fractions was categorized into "part-whole", "ratio", "operator", "quotient", "measure" and "result of operations". Most children solved the problems based on their conceptual structure of fractions. However, we could not find the particular relationships between children's understanding of fractions and fraction operations or fraction equivalence, while children's understanding of fractions significantly influences their solutions to the problems of five subconstructs of fractions. We suggested that the focus of teaching should be on the concept of fractions and the meaning of each operations of fractions rather than computational algorithm of fractions.

  • PDF

Analysis on the Problem-Solving Methods of Students on Contextual and Noncontextual problems of Fractional Computation and Comparing Quantities (분수의 연산과 크기 비교에서 맥락 문제와 비맥락 문제에 대한 학생들의 문제해결 방법 분석)

  • Beom, A Young;Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.219-233
    • /
    • 2012
  • Practicality and value of mathematics can be verified when different problems that we face in life are resolved through mathematical knowledge. This study intends to identify whether the fraction teaching is being taught and learned at current elementary schools for students to recognize practicality and value of mathematical knowledge and to have the ability to apply the concept when solving problems in the real world. Accordingly, contextual problems and noncontextual problems are proposed around fractional arithmetic area, and compared and analyze the achievement level and problem solving processes of them. Analysis showed that there was significant difference in achievement level and solving process between contextual problems and noncontextual problems. To instruct more meaningful learning for student, contextual problems including historical context or practical situation should be presented for students to experience mathematics of creating mathematical knowledge on their own.

A Case Study about Influence of Primary Mathematic Concepts on the Composition of Mathematic Concepts in 3rd Grade Prodigies of Elementary Schools -Focusing on Addition of Decimals- (수학의 1차적 개념이 초등학교 3학년 영재아의 수학적 개념구성 과정에 미치는 영향에 대한 사례연구 -소수의 덧셈을 중심으로-)

  • Kim, Hwa-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.437-448
    • /
    • 2017
  • This study was conducted as a qualitative case study for examining what transformed primary concepts and transformed schemas were formed for the addition of decimals and how they were formed, and how the relational understanding of the addition of decimals was in three 3rd grade elementary school children who had studied the primary concepts of division, fraction and decimal. That is, this study investigated how the subjects approached problems of decimal addition using transformed primary concepts and transformed schemas formed by themselves, and how the subjects formed concepts and transformed schemas in problem solving. According to the results of this study, transformed primary concepts and transformed schemas formed through the learning of the primary concepts of division, fraction, and decimal functioned as important factors for the relational understanding of decimal addition.

The Construction of Children's Partitioning Strategy on the Equal Sharing Situation (균등분배 상황에서 아이들의 분할전략의 구성)

  • Kim, Ah-Young
    • School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.29-43
    • /
    • 2012
  • This paper investigated the conceptual schemes in which four children constructed a strategy representing the situation as a figure and partitioning it related to the work which they quantify the result of partitioning to various types of fractions when an equal sharing situation was given to them in contextual or an abstract symbolic form of division. Also, the paper researched how the relationship of factors and multiples between the numerator and denominator, or between the divisor and dividend affected the construction. The children's partitioning strategies were developed such as: repeated halving stage ${\rightarrow}$ consuming all quantity stage ${\rightarrow}$ whole number objects leftover stage ${\rightarrow}$ singleton object analysis/multiple objects analysis ${\rightarrow}$ direct mapping stage. When children connected the singleton object analysis with multiple object analysis, they finally became able to conceptualize division as fractions and fractions as division.

  • PDF

Semiotic mediation through technology: The case of fraction reasoning (초등학생들의 측정으로서 분수에 대한 이해 : 공학도구를 활용한 기호적 중재)

  • Yeo, Sheunghyun
    • The Mathematical Education
    • /
    • v.60 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study investigates students' conceptions of fractions from a measurement approach while providing a technological environment designed to support students' understanding of the relationships between quantities and adjustable units. 13 third-graders participated in this study and they were involved in a series of measurement tasks through task-based interviews. The tasks were devised to investigate the relationship between units and quantity through manipulations. Screencasting videos were collected including verbal explanations and manipulations. Drawing upon the theory of semiotic mediation, students' constructed concepts during interviews were coded as mathematical words and visual mediators to identify conceptual profiles using a fine-grained analysis. Two students changed their strategies to solve the tasks were selected as a representative case of the two profiles: from guessing to recursive partitioning; from using random units to making a relation to the given unit. Dragging mathematical objects plays a critical role to mediate and formulate fraction understandings such as unitizing and partitioning. In addition, static and dynamic representations influence the development of unit concepts in measurement situations. The findings will contribute to the field's understanding of how students come to understand the concept of fraction as measure and the role of technology, which result in a theory-driven, empirically-tested set of tasks that can be used to introduce fractions as an alternative way.

An Analytical Study on Drawbacks Related to Contents Handled in Elementary Mathematics Textbooks in Korea (우리나라 초등학교 수학 교과서에서 취급하는 내용과 관련한 문제점 분석)

  • Park, Kyo Sik
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In this paper, in order to lay the foundation for clearly determining the scope of contents handled in elementary math textbooks in Korea, what may be issues are discussed with respect to the contents handled in the current math textbooks. First of all, handling of percent point, concave polygons, and possibilities of event that will happen are discussed, the handling of them can be a issue in the sense of inconsistencies to the curriculum. Next, handling of fractions attaching units of discrete quantities and fractions attaching 'times' are discussed, the handling of them can be a issue in the sense of gap between everyday life and definition in math textbooks. Finally, handling of representing natural numbers into fractions and the positional relationship of geometrical figures are discussed, the handling of them can be a issue in the sense of a logical jump. The following three implications obtained from these discussions are presented as conclusions. First, it is necessary to establish clearly the relationship of textbooks and curriculum. Second, it is necessary to give attention to using the way to define or deal with concepts in math textbooks mixed with the way to use them in everyday life. Third, it is necessary to identify and eliminate the logical jumps in math textbooks.

An Analysis on the Elementary Students' Problem Solving about Equal Sharing Problem and Fraction Order (균등 분배 문제와 분수의 크기 비교에 대한 초등학생들의 문제해결 분석)

  • Lee, Daehyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.21 no.4
    • /
    • pp.303-326
    • /
    • 2018
  • Fraction has difficulties in learning because of the diversity of meanings, the ways of presenting contents and teaching methods in elementary school mathematics. Therefore, the various strategies of teaching of fraction concept is proposed as an alternative. The problem of equal sharing problem is that children can experience the concept of fractions naturally in the context of everyday distribution. Even before learning formal fractions, children can solve them in various ways based on their own experiences. The purpose of this study is to investigate the degree of problem solving and problem solving strategies for children in 2nd, 4th, and 6th grades in elementary school. As a result of the research, the percentage of correct answers increased as the grade increased, but the grade levels showed a difference depending on the numbers given to the problems. Also, there were differences in the problem solving strategies according to the grade levels. Also, according to the numbers presented in the problem, the percentage of correct answers was high in items that were easy to divide, and the percentage of correct answers was low in items that were difficult to divide. When children solved the problems, they were affected by the strategies they could use immediately according to the number presented in the problem, and their learning experiences were also affected.

Pre-Service Teachers' Understanding of the Concept and Representations of Irrational Numbers (예비교사의 무리수의 개념과 표현에 대한 이해)

  • Choi, Eunah;Kang, Hyangim
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.647-666
    • /
    • 2016
  • This study investigates pre-service teacher's understanding of the concept and representations of irrational numbers. We classified the representations of irrational numbers into six categories; non-fraction, decimal, symbolic, geometric, point on a number line, approximation representation. The results of this study are as follows. First, pre-service teachers couldn't relate non-fractional definition and incommensurability of irrational numbers. Secondly, we observed the centralization tendency on symbolic representation and the little attention to other representations. Thirdly, pre-service teachers had more difficulty moving between symbolic representation and point on a number line representation of ${\pi}$ than that of $\sqrt{5}$ We suggested the concept of irrational numbers should be learned in relation to various representations of irrational numbers.