References
- 교육부(2007). 교육부 고시 제 2015-74호(별책 8) 수학과 교육과정.
- 김부윤, 정영우 (2008). 중학교에서의 무리수 지도에 관하여. 한국수학사학회지, 21(1), 139-156.
- 김영국 (2008). 수학적 표현의 교수학적 의의. 한국수학교육학회지 시리즈 A <수학교육>, 47(2), 155-168.
- 박달원 (2007). 무한소수에 대한 학생들의 이해. 한국학교수학회논문집, 10(2), 237-246.
- 변희현(2005). 소수 개념의 교수학적 분석. 서울대학교 대학원 박사학위 논문.
- 이선비 (2013). 예비 중등 교사들의 무리수에 대한 이해, 한국학교수학회논문집, 16(3), 499-518.
- 이영란, 이경화(2006). Freudenthal의 수학화 학습 지도론에 따른 무리수 개념 지도 방법의 적용 사례. 수학교육학연구, 16(4), 297-312.
- 이지현 (2015). 유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가?. 수학교육학연구, 25(3), 263-279.
- 장혜원 (1997). 수학학습에서의 표현 및 표상에 관한 연구: 표상 모델 개발을 중심으로. 서울대학교 대학원 박사학위 논문.
- Arcavi, A., Bruckheimer, M., & Ben-Zvi, R. (1987). History of mathematics for teachers: The case of irrational numbers. For the Learning of Mathematics, 7(2), 18-23.
- Cuoco, A. (Ed.). (2001). The roles of representation in school mathematics. Reston, VA: National Council of Teachers of Mathematics.
- Fischbein, E., Jehiam, R., & Cohen, C. (1995). The concept of irrational number in high school students and prospective teachers. Educational Studies in Mathematics, 29, 29-4. https://doi.org/10.1007/BF01273899
- Janvier, C. (1987). Representation and understanding: The notion of function as an example. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 67-72). Hillsdale, NJ: Erlbaum.
- Lamon, S. J. (2001). Presenting and representing: From fractions to rational numbers. In A. Cuoco (Ed.), The roles of representation in school mathematics (pp. 146-165). Reston, VA: National Council of Teachers of Mathematics.
- Lesh, R., Behr, M., & Post, M. (1987). Rational number relations and proportions. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 41-58). Hillsdale, NJ: Erlbaum.
- National Council of Teachers of Mathematics (2007). Principles and standards for school mathematics. Reston, VA: The Author. 류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 공역 (2007). 학교수학을 위한 원리와 규준. 서울: 경문사.
- Peled, I., & Hershkovitz, S. (1999). Difficulties in knowledge integration: Revisiting Zeno's paradox with irrational numbers. International Journal of Mathematical Education in Science and Technology, 30(1), 39-46. https://doi.org/10.1080/002073999288094
- Sirotic, N., & Zazkis, R. (2007a). Irrational numbers on the number line -where are they? International Journal of Mathematical Education in Science and Technology, 38(4), 477-88. https://doi.org/10.1080/00207390601151828
- Sirotic, N., & Zazkis, R. (2007b). Irrational numbers: The gap between formal and intuitive knowledge. Educational Studies in Mathematics, 65, 49-6. https://doi.org/10.1007/s10649-006-9041-5
- Zazkis, R., & Sirotic, N. (2010). Representing and Defining Irrational Numbers: Exposing the Missing Link. CBMS Issues in Mathematics Education, 16. American mathematical Society.
- Zazkis, R., & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. Cuoco (Ed.), The roles of representation in school mathematics (pp. 44-52). Reston, VA: National Council of Teachers of Mathematics.