• Title/Summary/Keyword: 부등식

Search Result 301, Processing Time 0.203 seconds

Observer-based decentralized fuzzy controller design of nonlinear interconnected system for PEMFC (고분자 전해질 연료전지 시스템을 위한 비선형 상호결합 시스템의 관측기 기반 분산 퍼지 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.423-429
    • /
    • 2011
  • This paper deals with the observer-based decentralized fuzzy controller design for nonlinear interconnected system for PEMFC. The nonlinear interconnected system is represented by a Takagi-Sugeno (T-S) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy observer and the decentralized fuzzy controller are designed. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain s are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Online VQ Codebook Generation using a Triangle Inequality (삼각 부등식을 이용한 온라인 VQ 코드북 생성 방법)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.373-379
    • /
    • 2015
  • In this paper, we propose an online VQ Codebook generation method for updating an existing VQ Codebook in real-time and adding to an existing cluster with newly created text data which are news paper, web pages, blogs, tweets and IoT data like sensor, machine. Without degrading the performance of the batch VQ Codebook to the existing data, it was able to take advantage of the newly added data by using a triangle inequality which modifying the VQ Codebook progressively show a high degree of accuracy and speed. The result of applying to test data showed that the performance is similar to the batch method.

Sampled-data Fuzzy Controller for Network-based Systems with Neutral Type Delays (뉴트럴 타입 시간 지연을 갖는 네트워크 기반 시스템의 샘플치 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • This paper presents the stability analysis and design for a sampled-data fuzzy control system with neutral type of time delay, which is formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampling activity and neutral type of time delay will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. Based on the fuzzy-model-based control approach, LMI(linear matrix inequality)-based stability conditions are derived to guarantee the nonlinear networked system stability. An application example will be given to show the merits and design a procedure of the proposed approach.

L-gained State Feedback Control for Continuous Fuzzy Systems with Time-Delay (시간 지연 연속 시간 퍼지 시스템에 대한 L-이득값 상태 궤환 제어)

  • Lee, Dong-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.762-767
    • /
    • 2008
  • This paper introduces a $L_{\infty}$-gain state feedback fuzzy controller design for the time delay nonlinear system represented by Takagi-Sugeno(T-S) fuzzy model. First, the T-S fuzzy model is employed to represent the time delay nonlinear system. Next based on the fuzzy model, a fuzzy state feedback controller is developed to achieve $L_{\infty}$-gain performance. Finally, sufficient conditions are derived for $L_{\infty}$-gain performance. The sufficient conditions are formulated in the format of linear matrix inequalities (LMIs). The effectiveness of the proposed controller design methonology is finally demonstrated through numerical simulations.

Fuzzy Controller for Intelligent Networked Control System with Neutral Type of Time-delay (뉴트럴 타입 시간 지연을 갖는 지능형 네트워크 제어 시스템의 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.174-179
    • /
    • 2009
  • We consider the stabilization problem for a class of networked control systems with neutral type of time delays. The neutral type of time-delays occur in controller-to-actuator and sensor-to-controller. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear system with neutral type of time-delays. The stabilization via state-feedback is first addressed, and delay-range-dependent stabilization conditions are proposed in terms of linear matrix inequalities (LMIs). Finally, an application example will be given to show the merits and design a procedure of the proposed approach.

Controller Design of Takagi-Sugeno Fuzzy Model-Based Multi-Agent Systems for State Consensus (타카기-수게노 퍼지모델 기반 다개체 시스템의 상태일치를 위한 제어기 설계)

  • Moon, Ji Hyun;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.133-138
    • /
    • 2013
  • This paper addresses a state consensus controller design technique of Takagi-Sugeno fuzzy model-based multi-agent systems in a continuous-time domain. We express the interconnection topology among the agents through graph theory. The design condition is represented in terms of linear matrix inequalities. Numerical example is provided to demonstrate the effectiveness of the proposed method.

Observer-Based Digital fuzzy Controller Design Using Digital Redesign (디지털 재설계를 이용한 관측기 기반 디지털 퍼지 제어기 설계)

  • Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • This paper concerns a design methodology of observer-based output-feedback digital controller for Takagi-Sugeno(TS) fuzzy systems using intelligent digital redesign (IDR). The term of IDR involves converting an analog fuzzy-mode-based controller into an equivalent digital one in the sense of state-matching. The considered IDR problem is viewed as convex minimization problems of the norm distances between linear operators to be matched. The stability condition is easily embedded and the separations principle is explicitly shown.

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Decentralized Fuzzy Output Feedback Controller for Nonlinear Interconnected System with Time Delay (시간 지연이 있는 비선형 상호 결합 시스템의 분산 퍼지 출력 궤환 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.335-340
    • /
    • 2008
  • In this paper, a decentralized fuzzy output feedback controller for nonlinear interconnected systems with time delay is proposed. The nonlinear interconnected system is represented to fuzzy system using Takagi-Sugeno (T-S) fuzzy model. The decentralized output feedback controller is designed(or stability of subsystems of the fuzzy interconnected system. The stable condition of the closed-loop subsystem is represented to the linear matrix inequality (LMI) form and control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.

Intelligent Decentralized Observer Design for Discrete-Time Nonlinear Interconnected Systems (이산시간 비선형 상호결합 시스템을 위한 지능형 분산 관측기 설계)

  • Koo, Geun Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In this paper, the decentralized fuzzy observer design technique is presented for discrete-time nonlinear interconnected systems, which are assumed to be with unknown interconnections. To design the decentralized fuzzy observer, the design problem is considered and the performance function is defined to solve the design problem. Based on the performance function, the sufficient condition is derived for the observer design, and its condition is formulated into linear matrix inequalities. Finally, by the simulation result, the validity of the proposed observer design technique is shown.