• Title/Summary/Keyword: 문턱전압이하

Search Result 127, Processing Time 0.025 seconds

Analysis of Subthreshold Swings Based on Scaling Theory for Double Gate MOSFET (이중게이트 MOSFET의 스켈링 이론에 대한 문턱전압이하 스윙분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2267-2272
    • /
    • 2012
  • This study has presented the analysis of subthreshold swings based on scaling theory for double gate MOSFET. To solve the analytical potential distribution of Poisson's equation, we use Gaussian function to charge distribution. The scaling theory has been used to analyze short channel effect such as subthreshold swing degradation. These scaling factors for gate length, oxide thickness and channel thickness has been modified with the general scaling theory to include effects of double gates. We know subthreshold swing degradation is rapidly reduced when scaling factor of gate length is half of general scaling factor, and parameters such as projected range and standard projected deviation have greatly influenced on subthreshold swings.

Analysis of Subthreshold Current Deviation for Channel Doping of Double Gate MOSFET (이중게이트 MOSFET의 채널도핑에 다른 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1409-1413
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for channel doping concentration of double gate(DG) MOSFET. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The potential distribution was obtained as the analytical function of channel dimension, using the boundary condition. The subthreshold current had been analyzed for channel doping concentration, and projected range and standard projected deviation of Gaussian function. Since this analytical potential model was verified in the previous papers, we used this model to analyze the subthreshold current. As a result, we know the subthreshold current was influenced on parameters of Gaussian function and channel doping concentration for DGMOSFET.

Analysis for Gate Oxide Dependent Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 문턱전압이하 스윙에 대한 게이트 산화막 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.885-890
    • /
    • 2014
  • This paper has presented the change of subthreshold swings for gate oxide thickness of asymmetric double gate(DG) MOSFET, and solved Poisson equation to obtain the analytical solution of potential distribution. The Gaussian function as doping distribution is used to approch experimental results. The symmetric DGMOSFET is three terminal device. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine the bias voltage and oxide thickness for top and bottom gates. As a result to observe the subthreshold swings for the change of top and bottom gate oxide thickness, we know the subthreshold swings are greatly changed for gate oxide thickness. Especially we know the subthreshold swings are increasing with the increase of top and bottom gate oxide thickness, and top gate oxide thickness greatly influences subthreshold swings.

Analysis for Relation of Oxide Thickness and Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 산화막 두께와 문턱전압이하 스윙의 관계 분석)

  • Jung, Hakkee;Cheong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.698-701
    • /
    • 2013
  • This paper has presented the change of subthreshold swings for gate oxide thickness of asymmetric double gate(DG) MOSFET, and solved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET is three terminal device. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine the bias voltage and oxide thickness for top and bottom gates. As a result to observe the subthreshold swings for the change of top and bottom gate oxide thickness, we know the subthreshold swings are greatly changed for gate oxide thickness. Especially we know the subthreshold swings are increasing with the increase of top and bottom gate oxide thickness, and top gate oxide thickness greatly influences subthreshold swings.

  • PDF

Relation of Conduction Path and Subthreshold Swing for Doping Profile of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 도핑분포함수에 따른 전도중심과 문턱전압이하 스윙의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1925-1930
    • /
    • 2014
  • This paper has analyzed the relation of conduction path and subthreshold swing for doping profile in channel of asymmetric double gate(DG) MOSFET. Since the channel size of asymmetric DGMOSFET is greatly small and number of impurity is few, the high doping channel is analyzed. The analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. The conduction path and subthreshold swing are derived from this analytical potential distribution, and those are investigated for variables of doping profile, projected range and standard projected deviation, according to the change of channel length and thickness. As a result, subthreshold swing is reduced when conduction path is approaching to top gate, and that is increased with a decrease of channel length and a increase of channel thickness due to short channel effects.

Analysis of Subthreshold Swing Mechanism by Device Parameter of Asymmetric Double Gate MOSFET (소자 파라미터에 따른 비대칭 DGMOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.156-162
    • /
    • 2015
  • This paper has analyzed how conduction path and electron concentration for the device parameters such as oxide thickness, channel doping, and top and bottom gate voltage influence on subthreshold swing of asymmetric double gate MOSFET. Compared with symmetric and asymmetric double gate MOSFET, asymmetric double gate MOSFET has the advantage that the factors to be able to control the short channel effects increase since top and bottom gate oxide thickness and voltages can be set differently. Therefore the conduction path and electron concentration for top and bottom gate oxide thickness and voltages are investigated, and it is found the optimum conditions that the degradation of subthreshold swing, severe short channel effects, can reduce. To obtain the analytical subthreshold swing, the analytical potential distribution is derived from Possion's equation. As a result, conduction path and electron concentration are greatly changed for device parameters, and subthreshold swing is influenced by conduction path and electron concentration of top and bottom.

Doping Profile Dependent Subthreshold Swing for Double Gate MOSFET (DGMOSFET에서 문턱전압이하 스윙의 도핑분포 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1764-1770
    • /
    • 2011
  • In this paper, the subthreshold swings for doping distribution in the channel have been analyzed in double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studying since it can lessen the short channel effects(SCEs) as next -generation nano device. The degradation of subthreshold swing(SS) known as SCEs has greatly influenced on application of digital devices, and has been analyzed for structural parameter and variation of channel doping profile in DGMOSFET. The analytical model of Poisson equation has been derived from nonuniform doping distribution for DGMOSFET. To verify potential and subthreshold swing model based on this analytical Poisson's equation, the results have been compared with those of the numerical Poisson's equation, and subthreshold swing for DGMOSFET has been analyzed using these models.

Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1143-1148
    • /
    • 2014
  • This paper has analyzed the change of subthreshold swing for doping distribution function of asymmetric double gate(DG) MOSFET. The basic factors to determine the characteristics of DGMOSFET are dimensions of channel, i.e. channel length and channel thickness, and doping distribution function. The doping distributions are determined by ion implantation used for channel doping, and follow Gaussian distribution function. Gaussian function has been used as carrier distribution in solving the Poisson's equation. Since the Gaussian function is exactly not symmetric for top and bottome gates, the subthreshold swings are greatly changed for channel length and thickness, and the voltages of top and bottom gates for asymmetric double gate MOSFET. The deviation of subthreshold swings has been investigated for parameters of Gaussian distribution function such as projected range and standard projected deviation in this paper. As a result, we know the subthreshold swing is greatly changed for doping profiles and bias voltage.

Subthreshold Characteristics of Double Gate MOSFET for Gaussian Function Distribution (가우스함수의 형태에 따른 DGMOSFET의 문턱전압이하특성)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.716-718
    • /
    • 2012
  • This paper have presented the change for subthreshold characteristics for double gate(DG) MOSFET based on scaling theory and the shape of Gaussian function. To obtain the analytical solution of Poisson's equation, Gaussian function been used as carrier distribution and consequently potential distributions have been analyzed closely for experimental results, and the subthreshold characteristics have been analyzed for the shape parameters of Gaussian function such as projected range and standard projected deviation. Since this potential model has been verified in the previous papers, we have used this model to analyze the subthreshold chatacteristics. The scaling theory is to sustain constant outputs for the change of device parameters. As a result to apply the scaling theory for DGMOSFET, we know the subthreshold characteristics have been greatly changed, and the change of threshold voltage is bigger relatively.

  • PDF

Subthreshold Characteristics of Double Gate MOSFET for Gaussian Function Distribution (도핑분포함수의 형태에 따른 DGMOSFET의 문턱전압이하특성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1260-1265
    • /
    • 2012
  • This paper have presented the change for subthreshold characteristics for double gate(DG) MOSFET based on scaling theory and the shape of Gaussian function. To obtain the analytical solution of Poisson's equation, Gaussian function been used as carrier distribution and consequently potential distributions have been analyzed closely for experimental results, and the subthreshold characteristics have been analyzed for the shape parameters of Gaussian function such as projected range and standard projected deviation. Since this potential model has been verified in the previous papers, we have used this model to analyze the subthreshold chatacteristics. The scaling theory is to sustain constant outputs for the change of device parameters. As a result to apply the scaling theory for DGMOSFET, we know the subthreshold characteristics have been greatly changed, and the change of threshold voltage is bigger relatively.