• Title/Summary/Keyword: 면외운동

Search Result 21, Processing Time 0.02 seconds

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

Dynamics of a Micro Three-axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 김창부;강태민
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • In this paper. we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The motions of the ring are electro-statically derived. sensed and balanced by electrodes. The equations of motion are formulated. The measuring method of angular velocities by force-to-rebalance is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

Dynamics of a Micro Three-Axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Choi, Sang-Hyun;Kim, Chang-Boo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

  • PDF

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Park, Jung-Woo;Kim, Sehee;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1186-1194
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped (유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Dynamics of a Micro Three-Axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 강태민;김창부
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.970-976
    • /
    • 2003
  • In this paper, we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the notation of the gyroscope main body. The motions of the ring are electro-statically derived, sensed and balanced by electrodes. The equations of motion are formulated. The scheme of angular velocities sensing by force-to-rebalance method is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

  • PDF

Dynamics of a Micro Three-axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Kim, Chang-Boo;Choi, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1001-1009
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

Out-of-plane Buckling Analysis of Doubly Symmetric Thin-walled Circular Arch (이축 대칭단면을 갖는 박벽 원형아치의 면외좌굴해석)

  • Kim, Moon Young;Min, Byoung Cheol;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.509-523
    • /
    • 1998
  • A consistent finite element formulation and analytic solutions are presented for stability of thin-walled circular arch. The total potential energy is derived by applying the principle of linearized virtual work and including second order terms of finite semitangential rotations. As a result, the energy functional corresponding to the semitangential moment is newly derived. Analytic solutions for the out-of-plane buckling of symmetric thin-walled curved beam subjected to pure bending or uniform compression with simply supported boundary conditions are obtained. For finite element analysis, the cubic Hermitian polynomials are utilized as shape functions and $16{\times}16$ stiffness matrix for curved beam elements and $14{\times}14$ stiffness matrix for straight beam elements are evaluated, respectively. In order to illustrate the accuracy of this study, analytical and numerical results for lateral buckling problems of circular arch are presented and compared with available analytical solutions.

  • PDF

Flapwise Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 면외방향 굽힘진동 해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.348-353
    • /
    • 1995
  • When cantilever beams rotate, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the flapwise bending vibration of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation.

Flapwise Bending Vibration Analysis of Rotating Cross-ply Composite Beams (전단 및 단면 관성효과를 고려한 Cross-ply 복합재 회전 외팔보의 면외방향 굽힘 진동해석)

  • 이승현;신상하;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.994-999
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating cross-ply composite beam based on Timoshenko beam theory is presented. To analyze the composite beam exactly, the effects of shear deformation and rotary inertia are included. Linear differential equations of motion are derived using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion. The effects of the dimensionless angular velocity and the slenderness ratio parameter on the variations of modal characteristics are investigated

  • PDF