• Title/Summary/Keyword: *-prime ring and *-ideal

Search Result 157, Processing Time 0.023 seconds

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1381-1388
    • /
    • 2018
  • Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.

RELATIONSHIP BETWEEN THE STRUCTURE OF A QUOTIENT RING AND THE BEHAVIOR OF CERTAIN ADDITIVE MAPPINGS

  • Bouchannafa, Karim;Idrissi, Moulay Abdallah;Oukhtite, Lahcen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.359-370
    • /
    • 2022
  • The principal aim of this paper is to study the connection between the structure of a quotient ring R/P and the behavior of special additive mappings of R. More precisely, we characterize the commutativity of R/P using derivations (generalized derivations) of R satisfying algebraic identities involving the prime ideal P. Furthermore, we provide examples to show that the various restrictions imposed in the hypothesis of our theorems are not superfluous.

A NOTE ON LIE IDEALS OF PRIME RINGS

  • Shuliang, Huang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.327-333
    • /
    • 2010
  • Let R be a 2-torsion free prime ring, U a nonzero Lie ideal of R such that $u^2\;{\in}\;U$ for all $u\;{\in}\;U$. In the present paper, it is proved that if d is a nonzero derivation and [[d(u), u], u] = 0 for all $u\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Moreover, suppose that $d_1$, $d_2$, $d_3$ are nonzero derivations of R such that $d_3(y)d_1(x)\;=\;d_2(x)d_3(y)$ for all x, $y\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Finally, some examples are given to demonstrate that the restrictions imposed on the hypothesis of the above results are not superfluous.

POSNER'S THEOREM FOR GENERALIZED DERIVATIONS ASSOCIATED WITH A MULTIPLICATIVE DERIVATION

  • UZMA NAAZ;MALIK RASHID JAMAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.539-548
    • /
    • 2024
  • Let R be a ring and P be a prime ideal of R. A mapping d : R → R is called a multiplicative derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. In this paper, our main motive is to obtain the well-known theorem due to Posner in the ring R/P for generalized derivations associated with a multiplicative derivation defined by an additive mapping F : R → R such that F(xy) = F(x)y + xd(y), where d : R → R is a multiplicative derivation not necessarily additive. This article discusses the use of generalized derivations associated with a multiplicative derivation to investigate the commutativity of the quotient ring R/P.

SOME REMARKS ON SKEW POLYNOMIAL RINGS OVER REDUCED RINGS

  • Kim, Hong-Kee
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.275-286
    • /
    • 2001
  • In this paper, a skew polynomial ring $R[x;\alpha]$ of a ring R with a monomorphism $\alpha$ are investigated as follows: For a reduced ring R, assume that $\alpha(P){\subseteq}P$ for any minimal prime ideal P in R. Then (i) $R[x;\alpha]$ is a reduced ring, (ii) a ring R is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring) if and only if the skew polynomial ring $R[x;\alpha]$ is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring).

  • PDF

ON RIGHT REGULARITY OF COMMUTATORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.853-868
    • /
    • 2022
  • We study the structure of right regular commutators, and call a ring R strongly C-regular if ab - ba ∈ (ab - ba)2R for any a, b ∈ R. We first prove that a noncommutative strongly C-regular domain is a division algebra generated by all commutators; and that a ring (possibly without identity) is strongly C-regular if and only if it is Abelian C-regular (from which we infer that strong C-regularity is left-right symmetric). It is proved that for a strongly C-regular ring R, (i) if R/W(R) is commutative, then R is commutative; and (ii) every prime factor ring of R is either a commutative domain or a noncommutative division ring, where W(R) is the Wedderburn radical of R.

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

WEAKLY (m, n)-CLOSED IDEALS AND (m, n)-VON NEUMANN REGULAR RINGS

  • Anderson, David F.;Badawi, Ayman;Fahid, Brahim
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1031-1043
    • /
    • 2018
  • Let R be a commutative ring with $1{\neq}0$, I a proper ideal of R, and m and n positive integers. In this paper, we define I to be a weakly (m, n)-closed ideal if $0{\neq}x^m\;{\in}I$ for $x{\in}R$ implies $x^n{\in}I$, and R to be an (m, n)-von Neumann regular ring if for every $x{\in}R$, there is an $r{\in}R$ such that $x^mr=x^n$. A number of results concerning weakly(m, n)-closed ideals and (m, n)-von Neumann regular rings are given.