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SOME REMARKS ON SKEW POLYNOMIAL
RINGS OVER REDUCED RINGS

Hong Kee Kim

Abstract In this paper, a skew polynomial ring R[x, a] of a ring R 

with a monomorphism ct are investigated as follows. For a reduced 

ring R, assume that ai(P) 으 P for any minimal prime ideal P in R 

Then (i) R\x, ot\ is a reduced ring, (ii) a rmg R is Baer (resp. quasi­

Baer, p.q -Baer, a p p -ring) if and only if the skew polynomial ring 

-R[x, ol\ is Baer (resp. quasi-Baer, p.q -Baer, a p.p -ring)

0. Introduction

Let R be an associative ring with unity throughout this paper. The 
following notations will be preserved: Let a be an endomorphism of 
a ring R. An a 一 derivation of R is an additive map 8 : R T R 
such that d(ab) = a(a)d(b) + 6(a)b for all a^b E R. The Ore extension 
R\x^ % 6] is the ring of polynomials in x over R with the usual addition 
and with new multiplication by xa = a(a)x + 5(a) for each a E R. If 
5 — 0, we write R\x; a\ for R\x; 6] and is called an Ore extension 
of endomorphism type (also called a skew polynomial ring). While if 
。=1, we write R[x\ 5] for R\x] 1,5] and is called an Ore extension of 
derivation type (also called a differential polynomial ring). Moreover, 

a]] is called a skew power series ring.
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Also, we 호ecalled that jR is a reduced ring if it has no nonzero nilpotent 
elements.

In this paper, if i? is a reduced ring and satisfies a condition, then 
we will prove the following:

(1) the skew polynomial ring R[x] a\ of a ring B is a reduced ring.
(2) a ring R is Baer (resp. quasi-Baer, p.q.-Baer, p.p.-ring) if and 

only if the skew polynomial 호ing R\x; a\ is Baer (resp. quasi-Baer, 
p.q.-Baer, p.p.-ring).

1. Properties of reduced rings

First, we have the following well- known fact:

Theorem 1.1. Let R be an integral domain wzth a monomorphism 
a. Then the skew polynomial ring R\x; a\ is an integral domain.

Proof See [5, pl6].

In this case, the skew polynomial ring R\x; a] is a reduced ring. Also, 
we have the following well-known fact:

Theorem 1.2 Let a be an inner automorphism of a ring R induced 
by an mvertible element c (i.e. a(r) = cT^rc for all r E R) and R\x; oi\ 
the Ore extension of automorphism type. Then the polynomial ring J?[a?] 
is isomorphic to R[x; a\.

In this case, if J? is a reduced ring, then the skew polynomial ring 
R[x; a] is a reduced ring.

There exists an example that the skew polynomial ring R[x;司 is not 
a reduced ring even though R is a reduced ring with an automorphism 
a of R.

Example 1 3 Let F be a field and R = F x F with an automor­
phism a gwen by ai(a, b)=(奴 a) for all (a, b) E R. Then R is a reduced 
rmg. In this case, the skew polynomial nng R[x;a\ not a reduced 
ring because (L0)z 냐* 0) e but (l)0)z(L0)% = 0.

So, under what conditions of a reduced ring R and a an endomor­
phism of a ring R, is the skew polynomial ring R[x;a\ a reduced ring?

We have the following Lemma:
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Lemma 1 4 Let R be a reduced ring Then for all b, c, and d 
e R)

(1) ab = 0 if and only if ba = 0;
(2) If ab = 0 and cb + ad ~ 0, then cb = a，d = 0;

Proof (1) is clear.
(2) II ab ~ 0 and cb + ad ~ 0, then 0 = (사) + ad)a = c(6a) + (ad)a — 

ada and so ad = 0. Hence c6 — 0.

We recalled the well-known fact without proof:

Proposition 1 5 If S is a multiphcative subset(i.e. a^b E S im­
plies ab E S) of a rmg R which is disjoint from an ideal K of then 
there exists an ideal P which is maximal in the set of all ideals of R 
disjoint from S and contatmng K. Furthermore, any such an ideal P 
is a prime ideaL

Using Proposition 1.5, we will prove the following:

Lemma 1 6 Let R be a reduced ring with a monomorpzsm a. As­
sume that cn(P) C P for any minimal prime ideal P in R, Then, for 
all E R, ab = Q if and only if aak(b) = 0 for k = 1,2,....

Proof. (=>) Suppose that there exists a positive integer k such 
that aak(b)寸二 0. Then (aafc(fe))n 尹 0 for n — 1,2,... because 1? is a 
reduced ring. Put S = {(aak(b))n\n = 0,1,2,...} and consider the set 
r = {I<R\Snl = ©} Then S is a multiplicative set with S A{0} = © 
and define a partial order relation 土 on the set「by 心 Y 사수 3 G I2 
for any Ii,l2 E r. So there exists a prime ideal J oi R such that 
SJ = © by the Proposition 1.5. Of course, J contains a minimal 
prime ideal P in R. Since 况) = 0 and R is reduced, aRb = {0} 으 P 
and so either a E P or b E P

If a € P, then aak(b) E P and so it is a contradiction to S C 丿=©.

If b G F, then o"b) G C P and hence aak(b) E P. Thus it is 
a contradiction to S C J = ©. Therefore, aak(b) = 0 for k = 1, 2, .

(<=) If ab 丰 0, then q* (响 二卜 0 because q is a monomorphism and 
hence (o：fe(a)Qfe(6))n 尹 0 for tz — 1,2,... because R is a reduced ring. 
Put S = {(afc(a)afe(b))n|n = 0,1,2,…} and consider the set T = {I < 
一히S Qi = ©}. According to the previous method and Proposition 1.5, 
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there exists a prime ideal J of R such that S C J =《> Of course, J 
contains a minimal prime ideal P in R. Since aak(b) = 0 and R is 
reduced, aRak(b) = {0} 으 P and so ei나ler a E P or afe(6) E P.
If a e P, then afc(a) e a(P) C P and ak(a)ak(b) G P. So it is a 
contradiction to S「1 丿=©.

If aife(6) E F, then afc(a)aife(6) E P and also it is a contradiction to 
S C J = 0 Thus ab = 0.

We will use the similar method of proof in [1].

Proposition 1 7. Let R be a reduced ring with a monomorptsm a 
of R and let f and g e R\x; a\ with f = £岩()"；七 9 = £；二o 骚;七 

Assume that cn(P) C P for any minimal prime ideal P in R. Then 
fg = 0 if cmd only if a1b3 = 0 for all i and j (0 < i < ny0 < j < m).

PROOF. Suppose that fg ~ 0 and m = n without loss of generality. 
Then we get the equations;

ao^o = ()••・ (Ao)
+ ae(bo) = 0 .…(Ai)

+ aiO!(&n-i) + • , , + anmn(&o) = 0 , • • (An).

By Lemma 1.4-(1), aQbo = 0 V》boaQ = 0. From 60 x (Ai), b()Q展i + 
boa，e(b°) = 0 implies 棚⑶。(如)=0. By Lemma 1.6,如中備 =0 and 
so = 0 . By continuing in this way, we have(以圮=0 for
i = 0,1,…,n and also atafe(&o) = 0 for z = 0,1,n and fc = 0,1,n 
by Lemma 1.6. Thus 나le original equations (Ao), (Ai),(An) reduce 
to the equations;

dQbi = 0 •…(」Bi)
四)方2 +血。佔1) = 0 .…(-02)

a，obn + aiaj(6n-i) + • • • + an-ian-1(6i) = 0 ・.. (Bn).
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Again using the fact that 血=0 implies b±aQ = 0, we conclude from 
the second equations (Bi),(Bn) that a±bi — 0 and then similarly 
that azbi = 0 for i = 1, Continuing this process, azb3 = 0 for

Conversely, if (妩外=0 for all i and j (0 < iyj < m), then atak(bj)= 
0 for all iyj and k (0 < z, J, k < m) by Lemma 1.6 and hence fg = 0.

By Mathematical Induction, we have

Corollary 1 8. Let R be a reduced ring mth a monomorptsm a 
and let f and g € 一히with f = 工岩广徂产四 = £津展口气 Assume 
that a(P) C P for any mimmal prime ideal P m R. Then fg = Oif 
and only if atb3 = 0 for all i and j (z, J = 0,1,2,...).

Corollary 1 9 Let R be a reduced ring with a monomorpism ot. 
Assume that ai(P) 으 P for any mznimal prime ideal P m R. Then R 
zs a reduced ring if and only zf R\x; a\ ts a reduced ring.

Proof Suppose that a ring R is reduced and 产=0 for any / = 
Qo + aix + …+ anxn E R\x; a\. Then by Proposition 1.7,两勺 =0 
for all ijj (0 < i, J < n). In particular, a? = 0 for all i. Since R is 
reduced,㈤=0 for all i. Hence f = Q and so R\x; a] is a reduced ring. 
The converse is clear.

By Corollary 1.8, we have

Corollary 1 10 Let R be a reduced ring with a monomorpism a. 
Assume that a(P) 으 P for any minimal prime ideal P in R. Then R 
is a reduced ring tf and only if the skew power series ring R\\x] at]] is a 
reduced ring.

Remark. In the Corollary 1,9, the assumption that a(F) C P for 
any minimal prime ideal P zn R zs not superfluous by the Example 1.3.

2. Properties of Baer rin응s and generalizations

In this section, we will show the following: For a reduced ring R 
with a monomorpism a, assume that a(P) C P for any minimal prime 
ideal P in R. Then a ring R is Baer (resp. quasi-Baer, p.q.-Baer, 
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p.p.-ring) if and only if the skew polynomial ring R\x; a] is fi(aer (resp. 
quasi-Baer, p.q.-Baer, p.p.-ring). So we recalled some definitions.

A ring R is called (quasi) Baer if the right annihilator of every 
((right) ideal) nonempty subset of R is generated by an idempotent. 
In [3], a ring R is called a right (resp. left) principally quasi-Baer (or 
simply right (resp. left) p,q.-Baer) if the right (resp. left) annihilator 
of a principal right (resp. left) ideal is generated by an idempotent. A 
ring R is called a p.q. -Baer ring if it is both right and left p.q.-Baer. 
Another generalization of Baer ring is the p.p.-ring. A ring R is called 
a right (resp. left) nng if the right (resp. left) annihilator of an 
element of R is generated by an idempotent. Also, a ring R is called a 
p.p.-ring if it is both right and left p.p.-ring.

In [3], the following fact was proved.
Proposition 2.1 The following statements are equivalent:
(1) R is a right p.q.-Baer ring.
(2) The right anmhzlator of any fimtely generated right ideal is gen­

erated {as a right ideal] by an idempotent.
(3) The right annihilator of every principal right ideal is generated 

{as a right ideal) by an idempotent.
(4) The right annihilator of every finitely generated ideal is generated 

(as a nght ideal) by an idempotent.

Note that this statement is true if “right” is replaced by "left” 
throughout.

Proof See [이.

In [3], they also have shown the following results:
Theorem A. R zs a right (resp. left) p.q.-Baer nng if and only if 

the polynomial nng R\x\ is a right {resp. left) p.q.- Baer ring.

Theorem B. For a nng R, the following statements are equivalent:
(1) R is a quasi-Baer nng;
(2) the polynomial ring B\x\ over R is a quasi-Baer ring;
(3) the formal power series ring 히 over R is a quasi-Baer nng.

Now we try to apply those results for the skew polynomial rings. 
Also, we recalled that R is an abelian ring if every idempotent of R 
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is central. We can observe easily that every reduced ring is abelian 
and in a reduced ring R left and right annihilaters coincide for any 
subset U of Ry where a left (right) annihilator of U is denoted by 
Ir(U) =^{aeR\aU O}(S(U) ^{aeR\Ua = 0}).

Of course, for a reduced ring R〉the following statements are equiv­
alent clearly:

(1) is a right p.p.-ring.
(2) K is a left p.p.-ring.
(3) B is a right p.q.-Baer ring.
(4) R is a left p.q.-Baer ring.
According to Theorem 1 1 in Section 1, if R is an integral domain 

with a monomorphism q, then the skew polynomial ring R\x, oj] is an 
integral domain and so a Baer ring. Also, according to Theorem 1.2 
in Section 1, if R is a domain with a an inner automorphism of a ring 
R induced by an invertible element c (i.e. a(r) = c~1rc for all r E R\ 
then the skew polynomial ring R[x] a\ is a Baer ring by Corollary 2.7[이.

Now, for a quasi-Baer (or p.q.-Baer) ring, we have the following 
questions.

Question 2 2
(1) If _R is a quasi-Baer (or right (left) p.q.-Baer) ring, then is the 

Ore extension R\x;a^6] quasi-Baer (or right (left) p.q.-Baer)? Here a 
is an endomorphism of R and 3 is a-denvation of R.

(2) Is the converse of (1) true?

Example 2 3 (1) [2, Example 11] The ring R = Z^\x\/(a:2) is not 
quasi-Baer, where is the field of two elements and (x2) is the ideal of 
the ring \x2] generated by x1. In fact, Ir(R(x + (x2)) is not generated 
by an idempotent of R.

But since Rg; §]湼 Mq如(Z?恆2]), where a derivation 6 is defined by 
机2서-(%2)) = 1 + (缶2), R切; 句 is quasi-Baer because \y2] is quasi-Baer 
and so M凉2 02 铲])is also quasi-Baer.

(2) [5, p 18] Let F be a field and R = a polynomial ring over 
F with the endomorphism a given by a(/(t)) = /(0) for all f(t) e R. 
Then 一R is a principal ideal domain but the skew polynomial ring R[x; a\ 
is not an integral domain because xt = a(t)x = 0. We will show that 
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the skew polynomial ring R[x\ a\ is neither a right p.q.-Baer nor a right 
p.p.-ring.

Consider a right ideal xR\x; a\. Then

H------ F Jn(^n} = fo(O)T + /l(O>2 H---- + fn(O)Xn+1

for all fo(t) + fi(t)x H-------卜 fn(t)xn e R[x\a\ and hence xR\x; a]=
{aix + a2X2 H-------F anxn\n e N U {0}, € F(i = 0, l,...,n)).

Note that R\x\ a] has only idempotents 0 and 1 by simple compu­
tation.

Since + a^x2 T-----+ anxn)l = (ayx + a^x2 +------F anxn) # 0
for some nonzero element afx + «2^2 + •…+ 如，此 € xR\x; a], we get 
1 丰 力中同(©히£；叫) and so rR[x^(xR\x]a\) + Kg;a].

Also, since (aix + «2^2 T------ F anxn)t = 0 for all a±x + a2X2 T------ F
anxn € xR\x; a], t e (xR[x;a\) and hence 尸代匡国(公히少;。]) 尹 °・ 

Thus 伫히也问 3Rg;a]) is not generated by an idempotent. Therefore 
R[x; a\ is not right p.q.-Baer and so neither quasi-Baer nor Baer.

Similarly, we can verify that a\ is not a right p.p.-ring.

By Example 2.3, Question 2.2 above is not true and so we can ask 
“ under what conditions, is Question 2.2 true ?,J. In [1], Armendariz 
proved that if K is a reduced ring, then R is a p.p. (resp. Baer)-ring 
if and only if the polynomial ring R[x] is a p.p. (resp. Baer)-ring. We 
will generalize this result by showing that if K is a reduced ring with a 
monomorpism a of B and a(P) C P for any minimal prime ideal P in 
.R, then 2? is a p.p. (resp. Baer)-ring if and o이y if the skew polynomial 
ring R\x](x\ is a p.p. (resp. Baer)-ring. Based on these facts, we have 
the following：.

COROLLARY 2 4 Let R be a reduced rmg with a monomorpism a. 
Assume that a(P) C P for any minimal prime ideal P in R. If f E 
R\x;o] is an idempotent, then f E R, that %s, every idempotent of 
R\x;a\ is an idempotent of R.

PROOF. Let f = aQ + a±x + • • ■ + anxn e R\x; a\ be an idempotent. 
Then 0 = / — /2 = /(I — /). By Proposition 1.7 in Section 1, ao(l 一 
ao) = 0 and 诚=0 for each i (1 < i < n), and we get ao =诡 and so 
也=0 for each i (1 < z < n). Hence f = ao e R.
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By the same method, we have
Corollary 2.5 Let R be a reduced ring with a monomorptsm a. 

Assume that a(P) 으 P for any minimal prime ideal P in R. If f G 
K[[x; a]] %s an idempotent, then f E that is, every idempotent of 
R\[x; a\\ is an idempotent of R.

Corollary 2 6. Let R be a reduced rtng with a monomorptsm a. 
Assume that ck(P) C P for any minimal prime ideal P in R. If T Q 
R[X] a] and Sf = {ao,ai,..., an); where f = %)+如缶+* - *+anxn E T, 
then 尸&⑷国(7) = rR(ST)\x]oi\, where ST = U/er^/-

Proof If g = bo + bix + …+ G 尸引"](丁)then Tg = 0, 
i.e., fg~Q for all / G T By Proposition 1.7 in Section. 1, aj* = 0 for 
all i and j (0 < ? < m, 0 < j < n), which implies that b3 € 
and so g e 0(S『)[%a]. Hence rR[x^ (T) C s(SS)恤；。水 The other 
inclusion is obvious.

Similarly, we have

Corollary 2 7 Let R be a reduced ring wth a monomorptsm 
cn. Assume that a：(P) C P for any mimmal prime ideal P in R. If 
T C R\[X; a]] and Sf = {明“妇” ...where f = 齢必 6 T, then 
源仪同](?) = 7切(S『)[EEL where ST = U/er^/.

Theorem 2 8 Let R be a reduced ring with a monomorptsm a. 
Assume that a(P) 으 P for any mmimal prime ideal P in R. Then 
R\x]ct\ is a p.p.-rmg and only zf R is a p.p.-rmg.

Proof (=>) If R[x; a\ is a p.p.-ring and a 6 -R, then r^(a)= 
R A 質rs国 (a) = R C eR\x; a\ for some idempotent e E 一이少; a]. By 
Corollary 2.4, e E and so 厂r(q) = eR, Hence J? is a p.p.-ring.

(v=) Assume that B is a p.p. rmg. Note that for any finite subset 
T of R\ rj?(T) = eR for some idempotent e E R. If / G -R[rr;a], 
then by Corollary 2.6,门位问(了)= r^(S,/)[x;a] = eR[x]a\ for some 
idempotent e E R because Sf is a finite subset of R and e is central. 
Hence R[x;S] is a p.p.-ring.

Since a p.p.-ring is equivalent to a p q.-Baer ring for a reduced ring, 
we have the following:
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Corollary 2 9. Let R be a reduced ring with a monomorptsm a. 
Assume that a(P) 으 P for any rmnimal prime id应 P in R. Then 
R]x;(x\ is a p.q.-Baer ring and only if R is a p.q.-Baer ring. 、

Similarly, we can also have

Theorem 2.10 Let R be a reduced ring with a monomorpzsm at. 
Assume that a(P) 으 P for any mznEm시 prime 记e시 P in R. Then 
R\x; a\ is a Baer nng if and only if R zs a Baer nng.

Proof. (=>) If a] is Baer, then for any subset T of R)質风工问(？)
=fR\x;a\ for some idempotent f € R\x]ol\. By Corollary 2.4, / € -R, 
and then tr(T) = R(^r^x;c^(T) = Bn fR\x] o] = fR. Hence B is a 
Baer ring.

(스=) Suppose that R is Baer and T is an arbitrary subset of R\x; 句. 

Let St = Ufer^f • Since R is Baer, = eR for some idempotent 
e £ R. By Corollary 2.6,質即国(7)=笋r(St)[q;q] = eR\x;a\. Thus 

a\ is Baer.

Theorem 2.11 Let R be a reduced ring with a monomorpzsm a. 
Assume that a(P) 으 P for any rmnimal pnme ideal P m R. Then 
•히a]] 2s a Baer ring 矿 and only if R is a Baev ring.

Proof. It can be proved by the similar method in the proof of 
Theorem 2.10 and using Corollary 2^7.

Theorems 2.8 and 2.10 extend Armendariz's results[1, Theorem A 
and B] if a is the identity. Also, for a reduced ring B, the following 
are equivalent clearly:

(1) 12 is a Baer ring.
(2) H is a quasi-Baer ring.
Hence we have

COROLLARY 2 12 Let R be a reduced ring with a monomorpism at. 
Assume that a(P) 으 P for any minimal prime ideal P m R. Then 
R\xj(y\ is a quast-Baer ring if and only zf R is a quasi-Baer ring.

Proof. It follows from the above fact and Corollary 1.9.



SKEW POLYNOMIAL RINGS OVER REDUCED RINGS 285

Corollary 2.13 Let R be a reduced ring with a monomorpism a. 
Assume that q(P) 으 P for any rmmmal prime ideal P in R. Then 

a]] %s a quasi-Baer ring tf and only if R is a quasi-Baer ring.

Proof. It follows from the above fact and Corollary 1.10.

All results in this paper does not hold if the endomorphism a of a 
reduced ring R is not a monomorphism even though a(P) C P for any 
minimal prime ideal P in R. .

For an example, let F be a field and R = F[|히] the formal power 
series ring over F with the endomorphism a given by a(/(t)) = /(0) 
for all /(t) G R. In this case, R = F[[t]] is a domain and so 2? is a Baer 
ring and also (0) is a unique minimal prime ideal. Since a(0) = (0), 
the assumption, that a(P) C P for any minimal prime ideal P in i? is 
satisfied. But we will show that the skew polynomial ring R\x; a] is 
not a p.p.- ring

Consider a right ideal ©히Then

®{/o(i) + /i(t> H- …+ /n(t>n} = fo(O)£ + /1(O>2 H-----+ fn(Q)xn+1

for all /o(t) + f\(t)x H-----+ fn(t)xn E R\x;a\ and hence xR\x; a]=
{aix + O2X2 H-------卜 anxn | n e TV U {0}, G F(i = 0,1,n)}.

Note that R\x; q] has only idempotents 0 and 1 by simple compu­
tation.

Since (a^x + a2x2 T-----+ anxn)l = (arx + a2x2 + …• + anxn)尹 0
for some nonzero element + a^x2, + ・・• + anxn E xR\x; a], we get 
1 0 rR[x^(xR[x;a\) and so 尸砰泌](成讪&이) + R\x；a\-

Also, since (aix + a2X2 T------ 卜 anxn)t = 0 for all aix + a^x2 七• •・ +

e xR\x] m], we get t £ rR^x aj (xR\x; q]) and hence 尸引％囘(xR[x; a]) 
寸二 0. Thus is not generated by an idempotent. There­
fore R\x] a] is not right p.q.-Baer and so neither quasi-Baer nor Baer.

Similarly, we can verify that R\x;a\ is not a right p.p.-ring.

We finish this paper with raising the following question.

QUESTION 2 15 (1) Let R be a reduced ring with an automorphism 
a. Then R\x] a] is a p.q.(resp. quasi)-Baer ring if and only if R is a 
p.q.(resp. quasi)-Baer ring.
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(2) For an abelian ring R with the monomorphism a satisfying that 
a(P) 으 P for any minimal prime ideal P in R)are the results in this 
paper true?
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