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SOME REMARKS ON SKEW POLYNOMIAL
RINGS OVER REDUCED RINGS

Hong KEE KM

ABSTRACT In this paper, a skew polynomial ring R[z, o of a ring R
with a monomorphism o are mvestigated as follows. For a reduced
ring R, assume that o(P) C P for any mmimal prime ideal P in R
Then (1) Riz,a] 1s a reduced ring, (i1) a nng R is Baer (resp. quasi-
Baer, p.q -Baer, a p p -ring) if and only 1if the skew polynomial ring
Riz, a] 1s Baer (resp. quasi-Baer, p.q -Baer, a p.p -ring)

0. Introduction

Let R be an associative ring with unity throughout this paper. The
following notations will be preserved: Let o be an endomorphism of
a ring R. An o — derivation of R is an additive map § : R — R
such that d(ab) = (a)d(b) + 8(a)b for all a,b € R. The Ore extension
Rlz, o, 8] is the ring of polynomials in z over R with the usual addition
and with new multiplication by ze = a{a)z + 6(a) for each @ € R. If
d = 0, we write Rz;a} for Rlz;e,d] and is called an Ore extension
of endomorphism type (also called a skew polynomual ring). While if
o =1, we write Rlz; 4] for Riz;1,d] and is called an Ore extension of

derwation type (also called a differential polynomual ring). Moreover,
R[[z; @] is called a skew power series ring.
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Also, we recalled that R is a reduced ring if it has no nonzero nilpotent
elements.

In this paper, if R is a reduced ring and satisfies a condition, then
we will prove the following:

(1) the skew polynomial ring R[z;a] of a ring R is a reduced ring.

(2) a ring R is Baer (resp. quasi-Baer, p.q.-Baer, p.p.-ring) if and
only if the skew polynomial ring R[z;a] is Baer (resp. quasi-Baer,
p.q.-Baer, p.p.-ring).

1. Properties of reduced rings

First, we have the following well- known fact:

THEOREM 1.1. Let R be an integral doman unth a monomorphism
a. Then the skew polynomual ring Rlx; ] is an wntegral domain.

PROOF See [5, pl6].

In this case, the skew polynomial ring R[z;«] is a reduced ring. Also,
we have the following well-known fact:

THEOREM 1.2 Let be an inner automorphism of a ring R induced
by an wmvertwble element ¢ (i.e. a(r) = ¢ 'rc for allr € R) and R[z; o
the Ore exiension of automorphism type. Then the polynomial ring R[z]
is 1somorphic to R[z;al.

In this case, if R is a reduced ring, then the skew polynomial ring
R[x; ] is a reduced ring,
There exists an example that the skew polynomial ring Rfz; o] is not

a reduced ring even though R is a reduced ring with an automorphism
a of R.

EXAMPLE 13 Let F be a field and R = F x F with an automor-
phism o gwen by ofa,b) = (b, a) for all (a,b) € R. Then R is a reduced
ring. In ths case, the skew polynomial mng Rlz; ] 1s not a reduced
ring becouse (1,0)x (#0) € R(z;a] but (1,0)z(1,0)z = 0.

8o, under what conditions of a reduced ring R and « an endomor-
phism of a ring R, is the skew polynomial ring R[z;a] a reduced ring?
We have the following Lemma:
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LEMMA 14 Let R be a reduced ring Then for all a, b, ¢, and d
€ R,

(1) ab =0 if and only +f ba = 0;

(2) If ab =0 and cb+ ad = 0, then cb = ad = 0;

ProoF (1) is clear.
(2) If @b = 0 and cb+ ad = 0, then 0 = {cb+ ad)a = c(ba) + (ad)a =
ade and so ad = 0. Hence ch = 0.

We recalled the well-known fact without proof:

PROPOSITION 15 If § 1s a multiphcative subset(r.e. a,b € S im-
phes ab € §) of a mng R whach 13 disjont from an 1deal K of R, then
there exists an ideal P whach 18 maxmal wn the set of all 1deals of R

disgomnt from S and contaaning K. Furthermore, any such an ideal P
18 @ prime wdeal.

Using Proposition 1.5, we will prove the following:

LEMMA 1 6 Let R be a reduced ming usth a monomorpism «. As-
sume that a{P) C P for any minimal prime 1deal P in R. Then, for
alla,b € R, ab=01f and only if ac®(8) =0 for k = 1,2,... .

PROOF. (=) Suppose that there exists a positive integer k such
that aa®(b) % 0. Then (ac®(b))™ # 0 for n = 1,2,... because R is a
reduced ring. Put § = {{aa*(b))*|n = 0,1,2,...} and consider the set
I'={IaR|SNI=¢} Then § is a multiplicative set with SN {0} = ¢
and define a partial order relation < ontheset Tby ) XL < I, C I,
for any I;,I, € I So there exists a prime ideal J of R such that
SN J = ¢ by the Proposition 1.5. Of course, J contains a minimal
prime ideal P in R. Since ab = 0 and R is reduced, aRb = {0} C P
and so either a € Porbe P

If a € P, then ao®{d) € P and so it 1s a contradiction to SN J = ¢.

1f b € P, then o*(b) € a(P) C P and hence aa®(b) € P. Thus it is
a contradiction to SN J = ¢. Therefore, ao®(b) =0 for k = 1,2, ... .

(¢=) If ab # 0, then o*(ab) # 0 because a is a monomorphism and
hence (*(a)a®(b))* # 0 for n = 1,2, ... because R is a reduced ring,
Put § = {{c*F(a)a*(b))"|n = 0,1,2,...} and consider the set T' = {I «
R|SNI=¢}. According to the previous method and Proposition 1.5,
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there exists a prime ideal J of R such that SN J = ¢. Of course, J
contains a minimal prime ideal P in R. Since aa®(b) = 0 and R is
reduced, aRa*(b) = {0} C P and so either a € P or of(b) € P.

If a € P, then o*(a) € a(P) C P and o(a)a*(h) € P. Soitis a
contradiction to SNJ = ¢.

If a*(b) € P, then af(a)a*{b) € P and also it is a contradiction to
SNJ =¢. Thus ab=0.

We will use the similar method of proof in [1].

PROPOSITION 1 7. Let R be a reduced ring with a monomorpism «
of R and let f and g € Rz;a] with f = Y v a2t g = wobiz®.
Assume that a(P) C P for any manimal prime ideal P in R. Then
fg=0if and only +of a,b, =0 for alli andj (0<i<n,0<j<m)

PROOF. Suppose that fg = 0 and m = n without loss of generality.
Then we get the equations;

aobo =0--. (Ao)
agh; + ar1a(bo) =0--- (A1)

aobn +ar10(bn_1) + <+ - +ana™(by) = 0- - - (An).

By Lemma 1.4-(1), apbo = 0 < bpap = 0. From by x (A1), boaoh; +
boa,a(by) = 0 implies boaya{bp) = 0. By Lemma 1.6, boa1 by = 0 and
so bpa; = a1bp = 0 . By continuing in this way, we have a;bg = 0 for
¢=0,1,...,m and also a,&*(by) = 0 for i = 0,1,...,n and k = 0,1,...,n
by Lemma 1.6. Thus the original equations {Ap), (A1), ..., {(Ax) reduce
to the equations;

aobl =0..- (Bl)
aoby +aja(by)=0---(B2)

aoby, + ala(bn—l) +oeee+ an—lanhl(bl) =0-.-. (Bn)‘
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Again using the fact that agb, = 0 implies b,a¢ = 0, we conclude from
the second equations {B,),...,(B,) that a,b; = 0 and then similarly
that a,by = 0 for 7 = 1,...,n. Continuing this process, a,b, = 0 for
i§=0,1,..n.

Conversely, if a;b, = 0 for all i and § (0 < i,j < m), then a,a*(b,) =
0 for all ¢, and k (0 < 4,7,k < m) by Lemma 1.6 and hence fg = 0.

By Mathematical Induction, we have

COROLLARY 1 8. Let R be a reduced ring with a monomorpism o
and let f and g € Rl[z;of] with f =Y o, a:2%,g = Y oo biz®. Assume
that a(P) C P for any muramal prime 1deal P wmn R. Then fg =0 of
and only if a,b, =0 for alli and j (1,7 = 0,1,2,...).

COROLLARY 19 Let R be a reduced ring with a monomorpism «.
Assume that o(P) C P for any mummal prime 1deal P in R. Then R
18 a reduced ring if and only of R[x; 0] 15 a reduced ring.

PROOF Suppose that a ring R is reduced and f2 = 0 for any f =
ap + a1z + -+ + ap2™ € Rlz;a|. Then by Proposition 1.7, a;a, = 0
for all 4,5 (0 < 4,j < n). In particular, a? = 0 for all i. Since R is
reduced, a, = 0 for all i. Hence f =0 and so R[z; ] is a reduced ring.
The converse is clear.

By Corollary 1.8, we have

COROLLARY 1 10 Let R be a reduced ring with a monomorpism .
Assume that a(P) C P for any mumumal preme wdeal P in R. Then R

is a reduced ring 1if and only of the skew power seres ring Rl[z;a]] is a
reduced ring.

REMARK. In the Corollary 1.9, the assumption that o(P) C P for
any manamal prime tdeal P wn R 18 not superfluous by the Example 1.3.

2. Properties of Baer rings and generalizations

In this section, we will show the following: For a reduced ring R
with a monomorpism «, assume that a(P) C P for any minimal prime
ideal P in R. Then a ring R is Baer (resp. quasi-Baer, p.q.-Baer,
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p.p.-ring) if and only if the skew polynomial ring R{z; o] is Baer (resp.
quasi-Baer, p.q.-Baer, p.p.-ring). So we recalled some definitions.

A ring R is called (quass-) Baer if the right annihilator of every
((right) ideal) nonempty subset of R is generated by an idempotent.
In [3], a ring R is called a right (resp. left) principally quasi-Baer (or
simply right {resp. left) p.q.-Baer) if the right (resp. left) annihilator
of a principal right (resp. left) ideal is generated by an idempotent. A
ring K is called a p.q.-Baer ring if it is both right and left p.q.-Baer.
Another generalization of Baer ring is the p.p.-ring. A ring R is called
a right (resp. left) p.p.~ reng if the right (resp. left) annihilator of an
element of R is generated by an idempotent. Also, a ring R is called a
p.p.-ring if it is both right and left p.p.-ring.

In {3], the following fact was proved.

PROPOSITION 2.1 The following statements are equivalent:

(1) R is a right p.q.-Baer ring.

(2) The right annihilator of any finitely generated right 1deal is gen-
ervated {(as a might ideal) by an idempotent.

(3) The right ennhalator of every principal mght ideal 15 generated
(as a right wdeal) by an idempotent.

(4) The right annihilator of every finitely generated ideal is generated
(as a rught deal) by an 1dempotent.

Note that this statement is true if “right” is replaced by “left”
throughout.

PROOF See [3].

In [3], they also have shown the following results:

THEOREM A. R 1s a right (resp. leff) p.q.-Baer mng if and only if
the polynomaal ring Rlz| s a right (resp. left) p.q.- Baer ring.

THEOREM B. For a rnng R, the following statements are equivalent:

(1) R 28 a quasi-Baer ring;

(2) the polynomial ring Rlz] over R is a quasi-Baer ring;

() the formal power series ring R|[z]} over R is a quasi-Baer ring.

Now we try to apply those resuits for the skew polynomial rings.
Also, we recalled that R is an abelian ring if every idempotent of R
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is central. We can observe easily that every reduced ring is abelian
and in a reduced ring R left and right annihilaters coincide for any
subset U of R, where a left {right) annihilator of U is denoted by
Ir(U)={aeR|aU =0}(rg(U)={a€ R | Ua=0}).

Of course, for a reduced ring R, the following statements are equiv-
alent clearly:

(1) R is a right p.p.-ting.

(2) R is aleft p.p.-ring.

(3) R is a right p.q.-Baer ring.

(4) R is a left p.q.-Baer ring.

According to Theorem 1 1 in Section 1, if R is an integral domain
with a monomorphism «, then the skew polynomial ring Rz, o} is an
integral domain and so a Baer ring. Also, according to Theorem 1.2
in Section 1, if R is a domain with « an mner automorphism of a ring
R induced by an invertible element ¢ (i.e. ar) = ¢ 're for all 7 € R),
then the skew polynomial ring R[z; o] is a Baer ring by Corollary 2.7{3].

Now, for a quasi-Baer {or p.q.-Baer) ring, we have the following
questions.

QUESTION 2 2

(1) If R is a quasi-Baer (or right (left) p.q.-Baer) ring, then is the
Ore extension R[z;a, 8] quasi-Baer (or right (left) p.q.-Baer)? Here a
Is an endomorphism of R and § is a-derivation of E.

(2) Is the converse of (1) true?

EXAMPLE 2 3 (1) [2, Example 11] The ring R = Z»(z]/(z?) is not
quasi-Baer, where Z is the field of two elements and {z?) is the ideal of
the ring Z»[z?] generated by 2. In fact, [ R(z+(z?)) is not generated
by an idempotent of R.

But since Rly; 8] ~ Matz{Z2{y?]), where a derivation é is defined by
6(z+(z?)) = 1+(z2), Rly;d] is quasi-Baer because Z{y?] is quasi-Baer
and so Mata(Z2[y?]) is also quasi-Baer.

(2) [5, p 18] Let F be a field and R = Flt] a polynomial ring over
F with the endomorphism « given by e(f(t)) = f(0) for all f(t) € R.
Then R is a principal ideal domain but the skew polynomial ring Rfz; o]
is not an integral domain because zt = a(t)z = 0. We will show that
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the skew polynomial ring R[z; o] is neither a right p.q.-Baer nor a right
p.p.-Ting.
Consider a right ideal zR{z; a]. Then

c{fol) + i)z + - + fu(t)z"} = fo(0)z + fi(0)z* +-- -+ fu(0)z™ T

for all fo(t) + fil)z +--- + fa(t)x™ € Rlz;c] and hence zRfz;0] =
{a1z+ axz? +- - +apz™|n € NU{0}, a, € F(i =0,1,...,n)}.

Note that R|z;a] has only idempotents 0 and 1 by simple compu-
tation.

Since (a1 + aga? + - + 6,2")] = (01T + a2 + -+ + a,T?) # 0
for some nonzero element a;z + a2x2 + -+« + anx™ € TR(z; a}, we get
1 ¢ 7h(es0) (@Rl 0]) a1 50 T o (¢ Rlw; ) # Rla; ol

Also, since (a1z + ayx? + - +a,2™)t = 0 for all a;z + asx® 4+ -+
a,7"” € xR[x; 0, t € rp)y o) (2 R]z;a]) and hence rg(z.a) (zR[z; ) # 0.
Thus 7gje;a) (xR{z;a]) is not generated by an idempotent. Therefore
R[z; ] is not right p.q.-Baer and so neither quasi-Baer nor Baer.

Similarly, we can verify that R[z; ] is not a right p.p.-ring.

By Example 2.3, Question 2.2 above is not true and so we can ask
“ under what conditions, is Question 2.2 true ?”. In {1}, Armendariz
proved that if R is a reduced ring, then R is a p.p. (resp. Baer)-ring
if and only if the polynomial ring R|z] is a p.p. (resp. Baer)-ring. We
will generalize this result by showing that if R is a reduced ring with a
monomorpism « of R and a(P) C P for any minimal prime ideal P in
R, then R is a p.p. (resp. Baer)-ring if and only if the skew polynomial
ring Rlz;a] is a p.p. (resp. Baer)-ring. Based on these facts, we have
the following:.

COROLLARY 24 Let R be a reduced ring with a monomorpism a.
Assume that a(P) C P for any minimal prime 1deal P in R. If f €
Riz;a] is an idempotent, then f € R, that 18, every wdempotent of
R[z;a] is an idempotent of R.

PROOF. Let f=ag+ a1z +---+a,z" € R[z; o be an idempotent.
Then 0= f — f2 = f(1 — f). By Proposition 1.7 in Section 1, ag(1 —
ao) =0 and a? = 0 for each i {1 < i < n), and we get ag = a3 and so
a, =0 for each ¢ (1 <i<n). Hence f =ap € R.
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By the same method, we have

COROLLARY 2.5 Let R be a reduced ring with o monomorpism o,
Assume that a(P) C P for any munamal prime ideal P wn R. If f €

Rllz;al] 15 an idempotent, then f € R, that is, every wdcmpotent of
R{lz; o] 15 an 1dempotent of R.

COROLLARY 2 6. Let R be @ reduced mng unth a monomorpism a.
Assume that a(P) C P for any minamal prime wdeal P in R. If T C
R[X; 0] and Sy = {ap,a1,...,a,}, where f = apta1z+---Fa2™ €T,
then Triz,ai (1) = rr(ST)[2; 0, where Sp = UgerSy.

PROOF If g = by + b1z 4+« 4 bp&™ € TR o)(T), then Tg = 0,
ie, fg=0forall f € T By Proposition 1.7 in Section 1, a,b, = 0 for
all i and 7 (0 <7 < m, 0 < j < n), which implies that b, € rr(Sr),
and so g € rg(St)[z; . Hence rgp, o(T) C 7r(S7T)[2;0]. The other
inclusion is obvious.

Similarly, we have

COROLLARY 2 7 Let R be a reduced ring with a monomorpism
a. Assume that a(P) C P for any minymal prime wdeal P in R. If
T C R[[X;al} and Sf = {ap,a1,...}, where f =Y.~ a,2* €T, then
rRe,a)) (T) = rr(St)llz; o], where St = UserS;.

THEOREM 2 8 Let R be a reduced ming with a monomorpism c.
Assume that a(P) C P for any munamal prune wdeal P in R. Then
Rlz;al 25 @ p.p.-ring +f and only +f R 15 a p.p.-ming.

Proor (=) If R[r;c] is a p.p.-ring and ¢ € R, then rp(e) =
RN rRiea{e) = RNeRlz;a] for some idempotent e € R[z;a]. By
Corollary 2.4, e € R, and so rgr(a) = eR. Hence R is a p.p.-ring.

(=) Assume that R is a p.p. ring. Note that for any finite subset
T of R, rg(T) = eR for some idempotent e € R. If f € Riz;al,
then by Corollary 2.6, rgig.a)(f) = rr{Sf)[z;0] = eR[z;a] for some
idempotent e € R because Sy is a finite subset of R and e is central.
Hence R[z;4] 15 a p.p.-ring,.

Since a p.p.-ring is equivalent to a p q.-Baer ring for a reduced ring,
we have the following:
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COROLLARY 2 9. Let R be o reduced ring with a monomorpism o.
Assume that o P) C P for any maunwmal prime wdeal P in R. Then
R[z;al is a p.q.-Baer ring of and only if R 1s a p.q.-Baer ring.

Similarly, we can also have

'THEOREM 2.10 Let R be a reduced Ting with a monomorpism o.
Assume that o{P) C P for any manimal prime ideal P in R. Then
R[z; @] i3 a Baer ring if and only if R 18 a Baer ring.

PROOF. (=>)If R[z;a]is Baer, then for any subset T' of R, 7 gz;0) (1)
= fR|z;a| for some idempotent f € Rfzr;a]. By Corollary 2.4, f € R,
and then 7p(T") = RN 7Ry (T) = RN fRix;0] = fR. Hence Ris a
Baer ring.

(¢=) Suppose that R is Baer and T is an arbitrary subset of R[z; d].
Let ST = UserSs. Since R is Baer, rr{St) = eR for some idempotent
e € R. By Corollary 2.6, gz (1) = rr{St)[z;a] = eR[z;a]. Thus
R[z; ] is Baer.

THEOREM 2.11 Let R be a reduced ring with a monomormsm .
Assume thot a{P) C P for any nunimal prime 1deal P in R. Then
R{[z; a]] s a Baer ring +f and only if R is a Baer ring.

PROOF. It can be proved by the similar method in the proof of
Theorem 2.10 and using Corollary 2.7.

Theorems 2.8 and 2.10 extend Armendariz’s results[l, Theorem A
and B] if « is the identity. Also, for a reduced ring R, the following
are equivalent clearly:

(1) R is a Baer ring.

(2) R is a quasi-Baer ring.

Hence we have

COROLLARY 2 12 Let R be a reduced ring urth a monomorpism o.
Assume that a(P) C P for any minwmal prime ideal P i R. Then
Rlz; ] is a quasi-Baer ring if and only 1f R is ¢ quasi-Baer ring.

PRrooF. It follows from the above fact and Corollary 1.9.
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COROLLARY 2.13 Let R be a reduced ring with a monomorpism o.
Assume that a(P) C P for any mwnamal prime deal P in R. Then
R][z; ] 15 a quasi-Baer ring 1f and only of R s a quasi-Baer ring.

ProoF. It follows from the above fact and Corollary 1.10.

All results in this paper does not hold if the endomorphism « of a
reduced ring R is not a monomorphism even though a(P) C P for any
minimal prime ideal P in R. .

For an example, let F be a field and R = F([[t]] the formal power
series ring over F with the endomorphism « given by a{f(t)) = f(0)
for all f(t) € R. In this case, R =FJ[[t]] is a domain and so R is a Baer
ring and also (0) is a unique minimal prime ideal. Since a(0) = {0),
the assumption that o(P) C P for any minimal prime ideal P in R is
satisfied. But we will show that the skew polynomial ring Rlz;«] is
not a p.p.- ring

Consider a right ideal zR[z;a]. Then

z{fo(t) + i)z 4+ + fult)z"} = fo(0)z + fL(0)z? +- -+ + fn(0)z" T

for all fo(t)+ filt)z+ -+ fu(t)z” € R[z;a] and hence zR[x;a] =
{a12 + a2z’ + - +a,2" | n € NU{0}, a, € F(i = 0,1,..,n)}.

Note that R[z; o] bas only idempotents 0 and 1 by simple compu-
tation.

Since (@12 + asz® + -+ + @, 2?)] = (@12 + agz® + -+ + anz™) # 0
for some nonzero element a;x + a32® + -+ + a,z" € T R[z; a), we get
1 ¢ iin) @R[z 0]) and 50 (e 0 (Rlzsal) # Riz;al.

Also, since (@12 +@2x? + - -+ + @z}t = 0 for all a1z +a2z® + -+ +
anz" € zR[z; 0, weget t € gz o) (zR([2; @]) and hence Ty o) (xR[z; o)
# 0. Thus rpp,q)(zR[z; a]) is not generated by an idempotent. There-
fore Riz; o] is not right p.q.-Baer and so neither quasi-Baer nor Baer.

Similarly, we can verify that R[z;a] is not a right p.p.-ring.

We finish this paper with raising the following question.

QUESTION 2 15 (1) Let R be areduced ring with an automorphism
a. Then R[z;a] is a p.q.(resp. quasi)-Baer ring if and only if R is a
p.q.(resp. quasi)-Baer ring.
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(2) For an abelian ring R with the monomorphism ¢ satisfying that
a(P) C P for any minimal prime ideal P in R, are the results in this
paper true?
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