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SIMPLE VALUATION IDEALS OF ORDER 3 IN
TWO-DIMENSIONAL REGULAR LOCAL RINGS

Sunsook Noh

Abstract. Let (R, m) be a 2-dimensional regular local ring with alge-
braically closed residue field R/m. Let K be the quotient field of R and

v be a prime divisor of R, i.e., a valuation of K which is birationally
dominating R and residually transcendental over R. Zariski showed that
there are finitely many simple v-ideals m = P0 ⊃ P1 ⊃ · · · ⊃ Pt = P and

all the other v-ideals are uniquely factored into a product of those simple
ones [17]. Lipman further showed that the predecessor of the smallest
simple v-ideal P is either simple or the product of two simple v-ideals.
The simple integrally closed ideal P is said to be free for the former and

satellite for the later.
In this paper we describe the sequence of simple v-ideals when P is

satellite of order 3 in terms of the invariant bv = |v(x) − v(y)|, where
v is the prime divisor associated to P and m = (x, y). Denote bv by b

and let b = 3k + 1 for k = 0, 1, 2. Let ni be the number of nonmaximal
simple v-ideals of order i for i = 1, 2, 3. We show that the numbers

nv = (n1, n2, n3) = (⌈ b+1
3

⌉, 1, 1) and that the rank of P is ⌈ b+7
3

⌉ = k+3.
We then describe all the v-ideals from m to P as products of those simple
v-ideals. In particular, we find the conductor ideal and the v-predecessor

of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k
for k ≥ 1. We also find the value semigroup v(R) of a satellite simple
valuation ideal P of order 3 in terms of bv.

1. Backgrounds

Let (R,m) be a 2-dimensional regular local ring with algebraically closed
residue field k = R/m and K be the quotient field of R. If v is a valuation
of K dominating R whose corresponding valuation ring (V, n) with residue
field k(v) = V/n, then the residual transcendence degree tr.degkk(v) ≤
1. Then v is called a 0-dimensional (1-dimensional, respectively) valuation
if tr.degkk(v) = 0 (1, respectively). We call v a prime divisor of R if
tr.degkk(v) = 1.
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Let v be a prime divisor of R and (V, n) be the associated valuation ring
of v. Such a prime divisor v is a discrete rank 1 valuation with the v-values
v(V ) = N, the set of nonnegative integers [1, Theorem 1], [15].

For an ideal J of R, v(J) = min{v(a) | a ∈ J} is a nonnegative integer and
J is called a v-ideal if JV ∩ R = J , i.e., if J = {r ∈ R | v(r) ≥ v(J)}. The
sequence of contractions of the powers of the maximal ideals of V forms an
infinite descending sequence of v-ideals in R

n ∩ R ⊃ n2 ∩ R ⊃ · · · ⊃ ni ∩ R ⊃ · · ·

(1) m = I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ Ij ⊃ Ij+1 ⊃ · · · .

For each j ≥ 0, Ij = {r ∈ R | v(r) ≥ v(Ij)} is the jth largest v-ideal in R. For
a consecutive pair Ij ⊃ Ij+1 of v-ideals, Ij is called the v-predecessor of Ij+1

and Ij+1 is called the v-successor of Ij .
The set of v-values of all the v-ideals in the sequence (1) is called the value

semigroup of v on R denoted by v(R) = {v(r) | r ∈ R} = {v(Ij) | ∀j ≥ 0}:
(2) 0 < r0 < r1 < r2 < · · · < rj < rj+1 < · · · .

We denote v(0) = ∞. This value semigroup v(R) is known to be symmetric
[9, Theorem 1], i.e., there exists some integer z such that a ∈ v(R) if and only
if z − a ̸∈ v(R) for all integer a ∈ Z. The conductor element of v(R) is the
smallest integer c = ri for some i ≥ 1 such that c − 1 ̸∈ v(R) but c + j ∈ v(R)
for all j ≥ 0. The corresponding ideal C with v(C) = c is called the conductor
(adjoint) ideal of v.

In [17, Theorem (E), (F), pp. 391–392], Zariski showed that given such a
valuation v of K, there is a corresponding simple integrally closed ideal P and
a unique quadratic sequence of 2-dimensional regular local rings in the quotient
field K:

(3) R = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rt

in which the transform of the simple complete ideal P in Rt is the maximal
ideal of Rt and v is the mt-adic order valuation of K. It was also shown that
there exist simple complete ideal Pi whose transforms in Ri is the maximal
ideal mi of Ri for each i ≥ 0. These are the simple v-ideals

(4) P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pt = P,

where m = P0 and P is the smallest one. Any other v-ideal I can be uniquely
factored into a product I =

∏t
i=0 P ai

i . The number t of nonmaximal simple
v-ideal is said to be the rank of v, or the rank of the smallest simple v-ideal P .

The sequence of v-ideals between m ⊃ P then can be divided into two parts:

m
1
⊃ P1

1
⊃ I2

1
⊃ · · ·

1
⊃ C

1
⊃ · · ·

1
⊃ P ′ 1

⊃ P,

and it is also known that this sequence is saturated, i.e., any two consecutive v-
ideals are adjacent [10, Lipman, Theorem A.2], and hence P is the sth largest v-
ideal Is, where s = λ(R/P )−1 since k is algebraically closed. The v-predecessor
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of P is denoted by P ′ in the sequence. The length between any two consecutive
v-ideals I ⊃ J smaller than P can be measured [10, Theorem 3.1] in terms of
the largest integer ν ∈ N such that P ν |I.

For a v-ideal P ⊃ J , if J is also a w-ideal for a prime divisor w of R, then the
sequence of w-ideals containing J coincides with that of v-ideals [10, Lipman,
Theorem A.2].

For two regular local rings S ⊃ T in K, S is said to be proximate to T
(denoted by S ≻ T ) if VT ⊃ S, where VT is the m(T )-adic order valuation ring
[8, (1.3)]. If vT and vS are the prime divisors associated to T and S, and hence
to the simple integrally closed ideals PT ⊃ PS , we also say that PS ≻ PT , i.e.,
PS is proximate to PT .

In the sequence of v-ideals, the v-predecessor of P is the unique integrally
closed ideal adjacent to P from above [8, Theorem 4.11], [11, Theorem 3.1],
and it was shown that it is either simple Pt−1 or the product of simple v-
ideals Pt−1Pi for some 0 ≤ i ≤ t − 2 since k is algebraically closed. These
are the simple v-ideals such that Rt ≻ Rt−1, Ri by [8, Theorem 4.11]. P is
said to be free for the former and satellite for the latter. Note that Lipman
showed this result in a general setting, i.e., without the assumption of k = R/m
being algebraically closed [8]. We refer [3] for the proximity relations between
valuation ideals for 0-dimensional valuation case. Note that the m-adic order
of an ideal I is the integer r such that such that L ⊆ mr\mr+1. We denote it
by o(L).

Let us assume that P is a simple complete ideal associated to the prime
divisor v. Let us assume that o(P ) = r ≥ 1, rank(P ) = t ≥ 0 with the simple
v-ideals P0, P1, . . . , Pt = P . Let ni be the number of nonmaximal simple v-
ideals of order i for 1 ≤ i ≤ r. We then may assume that the rank of P
is:

t = n1 + n2 + · · · + nr−1 + nr,

and therefore the sequence of simple v-ideals are:

(5) P0 ⊃ P1 ⊃ · · · ⊃ Pn1 ⊃ · · · ⊃ Pn1+n2 ⊃ · · · ⊃ Pn1+···nr = Pt.

Let us denote the set of numbers n′
is of v as

nv = (n1, n2, . . . , nr−1, nr).

In this paper, we describe the sequence of v-ideals from m to P , find the
numbers ni, the number of simple v-ideals of order i for 1 ≤ i ≤ r in the
case when P is a satellite simple complete ideal of order 3. Let m = (x, y),
v(y) = r < v(x) = r + bv for bv = v(x) − v(y) > 0. We denote bv by b when
there is no confusion about v.

Let o(P ) = 1. If t = 0, i.e., P = P0 is the maximal ideal and hence v is the
m-adic order valuation, m ⊃ m2 ⊃ m3 ⊃ m4 ⊃ · · · is the sequence of all the
v-ideals of R such that λ(mr/mr+1) = r + 1 for all r ≥ 1. If t > 0, then

t = n1
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and the sequence of the v-ideals was then described in detail in [13].

Let o(P ) = 2 and rank(P ) = t. In [2], we showed that

t = n1 + n2 = ⌈b + 1
2

⌉ + (t − ⌈b + 1
2

⌉),

where bv = 2k + i for i = 0 or 1. It was shown that n1 = ⌈ b+1
2 ⌉ and o(Pi) = 2

for ⌈ b+3
2 ⌉ ≤ i ≤ t. We showed that the satellite simple v-ideal of order 2 is

P⌈ b+3
2 ⌉ whose predecessor is P⌈ b+1

2 ⌉P⌈ b−1
2 ⌉ and the conductor ideal C = P⌈ b−1

2 ⌉
is also simple in [2].

Throughout the paper, we assume m = (x, y), o(P ) = 3, rank(P ) = t ≥ 3,
v(y) = 3, v(x) = 3 + bv for bv ≥ 1. Let ni denote the number of nonmaximal
simple v-ideals of order i for i = 1, 2, 3. Then the rank of P is t = n1 +n2 +n3,
and n3 = 1 if P is proximate simple complete ideal.

In this paper, we describe n1 and n2 in terms of bv (or in terms of k), where
bv = 0, 1, 2 or bv = 3k + i for k ≥ 1 and i = 0, 1, 2. We then describe the
sequence of v-ideals from m to P using n1 and n2.

In Section 2, we show n1 = ⌈ b+1
3 ⌉ and n2 = 1, i.e., there exists a unique

simple v-ideal of order 2. We also showed that the unique simple complete ideal
of order 2 is P⌈ b+4

3 ⌉ and P = P⌈ b+7
3 ⌉. In particular, the rank of the satellite

simple complete ideal P is

t = ⌈b + 1
3

⌉ + 1 + 1 = k + 3.

In Section 3, we find the factorizations of v-ideals from m to P as products
of simple v-ideals P ′

is for 0 ≤ i ≤ k + 3. We also find factorizations of the
v-predecessor of P and the conductor ideal C of v. We also find the value
semigroup v(R) of a satellite simple valuation ideal P of order 3 in terms of bv.

2. The sequence of v-ideals of a satellite simple valuation ideal P
of order 3

Throughout this paper we assume that the residue field k is algebraically
closed and by an ideal we mean an m-primary ideal of R. Let v be a prime
divisor of R and P be the simple complete ideal associated to v. We also
assume that o(P ) = 3 and that P is also satellite, i.e., v-predecessor P ′ of P is
a product of two simple v-ideals.

Let rank(P ) = t ≥ 3, m = (x, y), and v(x) ≥ v(y) = v(m) = 3. Let us denote
v(x) − v(y) by bv or often by b. Note that v(m) = o(P ) = 3 by reciprocity by
[8, Corollary (4.8)]. The rank of P is then

t = n1 + n2 + n3.

In the sequence (3) of quadratic sequence along v, consider the first qua-
dratic transformation R1. Since R1 has the maximal ideal m1 = (x

y , y) and
V dominates R1 and hence m(V ) ∩ R1 = m1. Therefore v(x) > v(y) and
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v(x) = 3 + bv for some bv > 0. Let us denote bv by b and b = 3k + i for
0 ≤ i ≤ 2. Note that then ⌈ b+1

3 ⌉ = k + 1, ⌈ b+4
3 ⌉ = k + 2, and ⌈ b+7

3 ⌉ = k + 3.

Theorem 2.1. Let (R,m, k) be a 2-dimensional regular local ring with alge-
braically closed residue field k. Let P be a satellite simple integrally closed ideal
of R which is associated to the prime divisor v. Let o(P ) = 3 and rank(P ) = t.
Let ni be the number of nonmaximal simple v-ideals of order i for 1 ≤ i ≤ 3.
Then, nv = (⌈ b+1

3 ⌉, 1, 1) and rank(P ) = ⌈ b+7
3 ⌉.

Proof. Denote bv = b. The theorem is true for b = 1 case by Proposition 2.2,
b = 2 case by Proposition 2.3, b = 3k + 1 for k ≥ 1 case by Proposition 2.4,
b = 3k + 2 for k ≥ 1 case by Proposition 2.5, and finally b = 3k for k ≥ 1 case
by Proposition 2.6.

It is clear that n3 = 1 since P is satellite. If P is satellite, its v-predecessor
P ′ = Pt−1Pi for some 0 ≤ i < t − 1. Therefore, o(Pt−1) = 2 and o(Pi) = 1 for
0 ≤ i ≤ t − 2 since o(P ′) = 3. Therefore, n2 = n3 = 1. ¤

In [5], Huneke-Sally gave equivalent conditions of an ideal I = (mn, f) to
be integrally closed for an element f ̸∈ mn. In particular they proved that
I is integrally closed if o(f) = n − 1 and in this case we may assume that
I = (mn, yn−1) for m = (x, y). It was also shown that such an ideal I is also
simple [12]. We then described all the simple v-ideals [12, Lemma 3.6] when v
is the prime divisor associated to I. We now describe the sequence of all the
v-ideals from m to P in the case of bv = 1.

Proposition 2.2. Let R, m, P , v, bv, nv be as in Theorem 2.1. Let o(P ) = r
for r ≥ 3. If bv = 1, then P = (mr+1, xi) and there are r simple v-ideals.
Furthermore, nv = (⌈ b+1

3 ⌉, 1, . . . , 1) and rank(P ) = r.

Proof. Note that v(y) = r, v(x) = r+1, P = (xr, xr−1y2, . . . , xyr, yr+1). Then,
mi is a v-ideal for all 0 ≤ i ≤ r ([10, Theorem 1.2]) since ⌈ r

b ⌉ = r such that
v(mi) = ri for all i. By [12, Lemma 3.6], all the other nonmaximal simple
v-ideals are Pi = (mi+1, xi) for each 1 ≤ i ≤ r.

P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pr−1 ⊃ Pr

|| ∪ ∪
... ∪ ||

m ⊃ m2 ⊃ m3 ⊃ · · · ⊃ mr ⊃ P

These two chains of v-ideals can be relisted as follows:

m ⊃ P1

1
⊃ m2 ⊃ P2

1
⊃ m3 ⊃ · · · ⊃ Pr−1

1
⊃ mr−1 ⊃ Pr = P.

We now can fill up this sequence so that we obtain the complete sequence
of v-ideals from m to P . In general,

Pi = (mi+1, xi) = (xi, xi−1y2, . . . , xyi, yi+1) ⊃ mi+1

is the i-th simple v-ideal which is adjacent to mi+1 from above. Since v(x) =
r + 1 and v(y) = 1, we see that

v(xi−jyj+1) = (r + 1)i + (r − j)
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for 1 ≤ j ≤ i ≤ r and therefore v(Pi) = (r + 1)i = v(xi) since

v(xi−1y2) = (r + 1)i + (r − 1) >
v(xi−2y3) = (r + 1)i + (r − 2) >

...
v(xyi) = (r + 1)i + (r − i − 1) >
v(yi+1) = (r + 1)i + (r − i) ≥
v(xi) = (r + 1)i = v(Pi).

For 1 ≤ i < r, v(yi+1) = ri + r = v(mi+1) > v(xi) = ir + i = v(Pi) since
mi is a v-ideal for all 1 ≤ i ≤ r. Note that v(Pi) = ri + i = v(mi+1) for each
1 ≤ i ≤ r. We can inductively construct all the v-ideals from mi to Pi for each
1 ≤ i ≤ r.

mi ⊃ mi−1P1 ⊃ mi−2P2 ⊃ · · · ⊃ m2Pi−2 ⊃ mPi−1 ⊃ Pi ⊃ mi+1,

where the v-values of the ideals are

ir < ir + 1 < ir + 2 < · · · < ir + (i − 1) < ir + i < ri + r

since v(mi−jPj) = r(i − j) + jr + j = ri + j for 0 ≤ j ≤ i, 1 ≤ i ≤ r.
They are i + 2 distinct saturated ideals since λ(mi/mi+1) = i + 1. Since mi

is a v-ideal and λ(mi/mi−1P1) = 1 such that v(mi) ̸= v(mi−1P1), therefore
we see that mi−1P1 is a v-successor of mi. Similarly, mi−jPj ’s are successive
v-ideals between mi ⊃ mi+1 for all j = 1, 2, . . . , i and 1 ≤ i < r. Therefore, the
followings are the complete sequence of all the v-ideals from m to P :

m ⊃ P1 ⊃
m2 ⊃ mP1 ⊃ P2 ⊃
m3 ⊃ m2P1 ⊃ mP2 ⊃ P3 ⊃ · · ·
mi ⊃ mi−1P1 ⊃ mi−2P2 ⊃ mi−3P3 ⊃ · · · ⊃ Pi ⊃ · · ·
mr ⊃ mr−1P1 ⊃ mr−2P2 ⊃ · · · ⊃ mPr−1 ⊃ Pr = P.

The v-values of the v-ideals from m to Pr−1 are in the lower (with the
diagonals) triangular matrix of the following r× r matrix (vij)0≤i,j≤r−1. Then
the v-values of the first column are mi for 0 ≤ i ≤ r − 1, the main diagonals
are v-values of the simple v-ideals, i.e., vii = v(Pi) for 0 ≤ i ≤ r − 1. The last
row is the set of v-values of r consecutive valuation ideals with the conductor
ideal C = mr−1 in the first column.

0 1 2 · · · · · · r − 1
r r + 1 r + 2 · · · · · · r + (r − 1)
2r 2r + 1 2r + 2 · · · · · · 2r + (r − 1)
...

...
...

...
ir ir + 1 ir + 2 · · · · · · ir + (r − 1)
...

...
...

...
(r − 2)r (r − 2)r + 1 (r − 2)r + 2 · · · · · · (r − 2)r + (r − 1)
(r − 1)r (r − 1)r + 1 (r − 1)r + 2 · · · · · · (r − 1)r + (r − 1)


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The r + 1st row of the matrix would start with v(mr), i.e.,

mr ⊃ mr−1P1 ⊃ mr−2P2 ⊃ · · · · · · ⊃ mPr−1 ⊃ Pr

is the saturated sequence of v-values from mr to Pr. Note that Pr ⊃ mr+1

are adjacent, and Pr = P is the smallest simple v-ideal, i.e., P such that
rank(P ) = r.

Each simple v-ideal Pi transforms to the maximal ideal mi in the ith qua-
dratic transform Ri along v for 1 ≤ i ≤ r:

R ⊂ R1 ⊂ R2 ⊂ · · · · · · ⊂ Rr−1 ⊂ Rr = Rv.

Note that the v-predecessor of P is mPr−1 and

nv = (1, 1, 1, . . . , 1, 1) = (⌈b + 1
3

⌉, 1, 1, . . . , 1, 1),

where b = 1 since Pi is the only nonmaximal simple v-ideal of order i for
1 ≤ i ≤ r.

The largest v-ideal of order r is mr, hence the conductor ideal C = mr : m =
mr−1, i.e., this is the largest v-ideal of order r − 1 and v(C) = r2 − r. The
v-predecessor of mr−1 is Pr−2, where v(Pr−2) = v(xr−2) = r2 − r − 2, hence
r2 − r− 1 ̸∈ v(R) is the largest number that is not in the value semigroup v(R)
of v.

Among vij ’s we see that the elements in the upper triangular matrix, i.e.,
vij ̸∈ v(R) for j > i. They are exactly the half of the conductor value, i.e.,
r2−r

2 . Hence
v(R) = N \ {ir + j} 0≤i≤r−1, i+1≤j≤r−1 .

This proves the proposition. ¤

If r = 3, then v(R) = N\{1, 2, 5} and rank(P ) = 3 = ⌈ b+7
3 ⌉ since b = 1 in

the above proposition. From now we assume that o(P ) = 3 and t = n1+n2+n3.
Therefore, there are t nonmaximal simple v-ideals:

m ⊃ P1 ⊃ · · · ⊃ Pn1 ⊃ Pn1+1 ⊃ · · · ⊃ Pn1+n2 ⊃ · · · ⊃ Pn1+n2+n3 .

We further assume that P is satellite, i.e., n3 = 1, t = n1 + n2 + 1. If b = 1,
then n1 = n2 = n3 = 1 by Proposition 2.2 and therefore nv = (⌈ b+1

3 ⌉, 1, 1).

We often compute the length between two integrally closed ideals by using
reciprocity of Lipman [10, Remark 2.2]. When the length between two inte-
grally closed ideals M ⊃ N are known and another integrally closed ideal L is
given, we can compute the length between ML ⊃ NL as λ(M/L) + (N · L) −
(M · L), where (I · J) denotes the intersection multiplicity of integrally closed
ideals I and J . We also note that if L ⊃ M complete ideals with M simple,
then u(L) = u(M) if and only if M is not a u-ideal for a prime divisor u of R.
If J is a simple complete ideal associated to u, then it is equivalent to say that
(L · J) = (M · J) [11, Lemma 3.3].
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Proposition 2.3. Let (R,m, k) be a 2-dimensional regular local ring with alge-
braically closed residue field k. Let P be a satellite simple integrally closed ideal
of R which is associated to the prime divisor v. Let o(P ) = 3, rank(P ) = t,
bv = 2. Let ni be the number of nonmaximal simple v-ideals of order i for
1 ≤ i ≤ 3. Then, nv = (⌈ b+1

3 ⌉, 1, 1) and rank(P ) = ⌈ b+7
3 ⌉.

Proof. Assume b = 2, i.e., v(y) = 3, v(x) = 5. In this case, m and m2 are v-
ideals, but m3 is not since ⌈ r

b ⌉ = 2 by [10, Theorem 1.2]. Therefore, P1 = (x, y2)
and

m ⊃ P1 ⊃ m2

are consecutive v-ideals of v-values 3, 5, 6. This implies that m2 ⊃ P2, i.e.,
o(P2) ≥ 2 and hence P1 is the only nonmaximal simple v-ideal of order 1 and
n1 = 1. Consider the following sequence of ideals:

m ⊃ P1 ⊃ m2 ⊃ mP1 ⊃ I ⊃ m3,

where I is the v-ideal of value v(m3) = 9. It is easy to see that this sequence
is saturated. Since m2 is a v-ideal and v(mP1) = 8 > v(m2), mP1 should be
the v-successor of m2. Since mP1 ⊃ I ⊃ m3 are also saturated, v(I) = 9 and
o(I) = 2.

If I is not simple, then I is P 2
1 since o(I) = 2. However, v(P 2

1 ) = 10 > v(I),
and hence I ̸= P 2

1 . Therefore, I = P2 must simple of value v(m3) = 9 of order
2. Consider the following sequence of ideals:

m ⊃ P1 ⊃ m2 ⊃ mP1 ⊃ P2 ⊃ J ⊇ P 2
1 ,

where J is the v-ideal of value v(P 2
1 ) = 10. But, λ(mP1/P 2

1 ) = 1 + (P1 · P1) −
(m · P1) = 2 by reciprocity. Hence J = P 2

1 is the v-ideal adjacent to P2 from
below.

Since we have 7 ̸∈ v(R) and 8, 9, 10 ∈ v(R), 8 = v(mP1) is the conductor
element of v since 3 ∈ v(R). Let us denote three consecutive v-ideals by

C = mP1 ⊃ D = P2 ⊃ E = P 2
1

of v-values 8, 9, 10. Since o(C) = 2, mC = m2P1 is the largest v-ideal of order 3
with v-value 11. From calculating the lengths, we have the following sequence
of ideals of v-values 11, 12, 13, 14, 15 :

mC ⊃ mD ⊃ mE = P1C ⊃ P1D ⊃ P1E.

Note that mE = P1C = mP 2
1 , v(P1D) = v(P1P2) = 14 and hence P1D is a

v-ideal which is successive to mE since

λ(mD/P1D) = λ(m/P1) + (P1 · D) − (m · D) = 1 + 3 − 2 = 2.

Note also that v(P1E) = v(P 3
1 ) = 15. However,

λ(mE/P1E) = λ(mP1/P 2
1 ) + 2(P1 · P1) − 2(m · P1) = 2 + 4 − 2 = 4
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implies that P 3
1 is not a v-ideal, i.e., P1E = P 3

1 is not a v-ideal and hence there
exists a v-ideal Q ⊃ P 3

1 such that v(Q) = 15:

mP 2
1 = mE ⊃ P1D = P1P2 ⊃ Q ⊃ P1E = P 3

1 .

Since o(Q) = 3, we can factorize Q = maP b
1P c

2 for some a, b, c ≥ 0. Then,
15 = 3a + 5b + 9c. A possible solution(s) for (a, b, c) are (5, 0, 0), (2, 0, 1),
(0, 3, 0). However, m5 is not a v-ideal and P 3

1 is not a v-ideal, either. Therefore,
Q = m2P2. But this is not the case since λ(mP2/m2P2) = o(mP2) + 1 = 4 ̸=
3 = λ(mP2/Q). Therefore, Q is the simple v-ideal of order 3, i.e., Q = P3 is
the simple v-ideal associated to v with the v-predecessor P2P1.

We have shown that nv = (1, 1, 1) = (⌈ b+1
3 ⌉, 1, 1) since b = 2. Note that

the v-predecessor of P is P2P1 = Pk+1Pk+2 since k = 0. The following is the
complete sequence of v-ideals from m to P :

m ⊃ P1 ⊃ m2 ⊃ mP1 = C ⊃ P2 ⊃ P 2
1 ⊃ m2P1 ⊃ mP2 ⊃ mP 2

1 ⊃ P1P2 ⊃ P3 =P,

where v(R) = N\{1, 2, 4, 7} for N is the set of nonnegative integers. Further-
more, we have shown that rank(P ) = 3 = ⌈ b+7

3 ⌉ since b = 2. ¤

Now we consider a more general case when b = 3k + 1 for k ≥ 1.

Proposition 2.4. Let (R,m, k) be a 2-dimensional regular local ring with alge-
braically closed residue field k. Let P be a satellite simple integrally closed ideal
of R which is associated to the prime divisor v. Let o(P ) = 3, rank(P ) = t,
bv = 3k +1 for k ≥ 1. Then, nv = (⌈ b+1

3 ⌉, 1, 1), rank(P ) = ⌈ b+7
3 ⌉, and PkPk+2

is the v-predecessor of P .

Proof. We first note that n2 > 0, i.e., we have at least one simple v-ideal
of order 2. The v-predecessor P ′ of P is the product of two simple v-ideals
P ′ = Pt−1Pi for 0 ≤ i ≤ t − 2 since we assume that P is satellite. Therefore,
there exists at least one simple v-ideal Pt−1, i.e., n2 ̸= 0.

Note that v(y) = 3, v(x) = 3 + (3k + 1) for k ≥ 1. Hence, Pi = (x, yi+1) is
a simple v-ideal such that v(Pi) = min{3k + 4, 3i + 3} for 1 ≤ i ≤ k + 1:

m ⊃ P1 = (x, y2) ⊃ P2 = (x, y3) ⊃ · · · ⊃ Pk = (x, yk+1) ⊃ Pk+1 = (x, yk+2)

is the saturated sequence of v-ideals of value 3, 6, . . . , 3k, 3k + 3, 3k + 4, where
b = 3k + 1 for k ≥ 1.

Since λ(Pk/mPk) = µ(Pk) = o(Pk)+1 = 2 (cf. [4], [5]) and v(mPk) = 3k+6,
mPk is the v-ideal adjacent to Pk+1, i.e., mPk is the largest v-ideal of order 2
and hence o(Pk+2) ≥ 2. This implies that n1 = k + 1 = ⌈ b+1

3 ⌉.
Since λ(Pk+1/mPk+1) = 2 and v(mPk+1) = 3k +7, mPk+1 is the v-successor

of mPk. Therefore,

m ⊃ P1 ⊃ · · · ⊃ Pk ⊃ Pk+1 ⊃ mPk ⊃ mPk+1

are all the v-ideals from m to mPk+1 of v-values

3 < 6 < . . . < 3k + 3 < 3k + 4 < 3k + 6 < 3k + 7.
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By using [2, Corollary 2.2], we can conclude that

Pk+1 ⊃ mPk ⊃ mPk+1 ⊃ P1Pk ⊃ P1Pk+1 ⊃ · · · ⊃ PkPk ⊃ PkPk+1 ⊃ Pk+2

is the saturated sequence of v-ideals from Pk+1 to Pk+2. Note that o(Pk+2) = 2,
v(Pk+2) = 6k + 8 since v(P 2

k ) = 6k + 6 and v(PkPk+1) = 6k + 7, v(P 2
k+1) =

6k + 8. Note that λ(PkPk+1/P 2
k+1) = 2, hence P 2

k+1 is not a v-predecessor
of PkPk+1. Therefore, v-successor of PkPk+1 is a simple v-ideal, Pk+2. Since
v(P 2

k+1) = 6k + 8 ∈ v(R), v(Pk+2) = v(P 2
k+1) = 6k + 8 and P 2

k+1 is not a
v-ideal.

Since Pk−1Pk+1 ⊃ P 2
k are adjacent v-ideals of v-values 6k + 4 and v(P 2

k ) =
6k + 6, we have that 6k + 5 ̸∈ v(R). Since 6k + 6, 6k + 7, 6k + 8 ∈ v(R), we
have the conductor ideal is C = P 2

k such that v(C) = 6k + 6. Let

C = P 2
k ⊃ D = PkPk+1 ⊃ E = Pk+2

be three consecutive v-ideals of v-values 6k + 6, 6k + 7, 6k + 8. Then,

mC ⊃ mD ⊃ mE ⊃ P1C ⊃ P1D ⊃ P1E ⊃ · · · ⊃ PkC ⊃ PkD ⊃ PkE

are the consecutive v-ideals of v-values 6k + 9, . . . , (6k + 9) + (b + 1).
Note that mC = mP 2

k is the largest v-ideal of order 3 and v(PkPK+2)) =
9k + 11. Since v(Pk+1Pk+2) = 9k + 12 and λ(PkPk+2/Pk+1Pk+2) = 1 +
[w(Pk+1) − w(Pk)] = 2, where w is the prime divisor associated to Pk+2 since
then Pk ⊃ Pk+1 are both w-ideals whose w-values differ by 1 [14, Theorem 3.3,
Theorem 4.1]. Therefore, the v-successor of PkPk+2 has v-value 9k + 12 and
it contains Pk+1Pk+2. Let us call it Q. Since PkPk+2 ⊃ Q ⊃ Pk+1Pk+2 are
adjacent, Q is either a product of three order 1 simple v-ideals, or Pk+2Pi for
some i ≤ k. But the latter cannot be the case for if so, Pk ⊃ Pi ⊃ Pk+1

which is a contradiction since Pk ⊃ Pk+1 are adjacent. Let Q = PiPjPℓ for
1 ≤ i ≤ j ≤ ℓ ≤ k + 1. Since m - Pk, Pk+1, Pk+2, m - Q [11, Lemma 1.2]. If
ℓ = k + 1, then Pk+1|Q and v(Q) = 9k + 12 = 3(i + j) + 10, hence 3|9k + 2,
contradiction. If ℓ = k, then Pk+2 ⊃ PiPj are adjacent ideals such that
6k + 8 = 3(i + j) + 6 which implies that 3|6k + 2, contradiction. Therefore, Pk

does not divide Q, either. Therefore, Q = PiPjPℓ for 1 ≤ i ≤ j ≤ ℓ < k. Since
v(Q) = 3(i + j + ℓ) + 9 = 9k + 12, i + j + ℓ = 3k + 1 < 3k, a contradiction.
Therefore, Q = Pk+3 is simple of order 3, i.e., Pk+3 = P is the simple complete
ideal associated to v.

Note that the v-predecessor of P is PkPk+2 and Pk+2 is the only simple
v-ideal of order 2. Hence nv = (k + 1, 1, 1) = (⌈ b+1

3 ⌉, 1, 1) since b = 3k + 1 for
k ≥ 1. ¤

Proposition 2.5. Let (R,m, k) be a 2-dimensional regular local ring with alge-
braically closed residue field k. Let P be a satellite simple integrally closed ideal
of R which is associated to the prime divisor v. Let o(P ) = 3, rank(P ) = t,
bv = 3k + 2 for k ≥ 1. Then, nv = (⌈ b+1

3 ⌉, 1, 1) and rank(P ) = ⌈ b+7
3 ⌉.
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Proof. The followings are a saturated sequence of simple v-ideals

m ⊃ P1 = (x, y2) ⊃ P2 = (x, y3) ⊃ · · · ⊃ Pk = (x, yk+1) ⊃ Pk+1 = (x, yk+2)

whose v-values are 3 < 6 < · · · < 3k + 3 < 3k + 5.
As in the proof of Proposition 2.4, we have v(mPk) is the v-ideal adjacent

to Pk+1, i.e., mPk is the largest v-ideal of order 2 and hence o(Pk+2) ≥ 2. This
implies that n1 = k + 1 = ⌈ b+1

3 ⌉. It is also true that mPk+1 is the v-successor
of mPk since v(mPk+1) = 3k + 8 > v(mPk) = 3k + 6 and λ(mPk/mPk+1) = 2.
Therefore,

m ⊃ P1 ⊃ · · · ⊃ Pk+1 ⊃ mPk ⊃ mPk+1

are all the v-ideals from m to mPk+1 of v-values

3 < 6 < · · · < 3k + 3 < 3k + 5 < 3k + 6 < 3k + 8.

By using [2, Corollary 2.2], we can also conclude that

Pk+1 ⊃ mPk ⊃ mPk+1 ⊃ P1Pk ⊃ P1Pk+1 ⊃ · · · ⊃ PkPk ⊃ PkPk+1 ⊃ Pk+2

is the saturated sequence of v-ideals from Pk+1 to Pk+2.
Note that o(Pk+2) = 2 and v(P 2

k ) = 6k+6 implies that 6k+9 ∈ v(R). Since
v(PkPk+1) = 6k+8 and v(P 2

k+1) = 6k+10, we conclude that v(Pk+2) = 6k+9.
Since λ(PkPk+1/P 2

k+1) = 2 with v(P 2
k+1) = 6k + 10, hence P 2

k+1 is a v-ideal
adjacent to Pk+2. Therefore,

PkPk+1 ⊃ Pk+2 ⊃ P 2
k+1

are consecutive v-ideals of v-values 6k +8, 6k +9, 6k +10. Since 6k +7 ̸∈ v(R),
C = PkPk+1 is the conductor ideal. Let

C = PkPk+1 ⊃ D = Pk+2 ⊃ E = P 2
k+1

be three consecutive v-ideals of v-values 6k + 8, 6k + 9, 6k + 10. Then,

mC ⊃ mD ⊃ mE ⊃ P1C ⊃ P1D ⊃ P1E ⊃ · · · ⊃ PkC ⊃ PkD ⊃ PkE

are the consecutive v-ideals.
Note that mC is the largest v-ideal of order 3 with v-value 6k+11. Note also

that v(PkPk+2) = 9k+13, v(Pk+1Pk+2) = 9k+15, and λ(PkPk+2/Pk+1Pk+2) =
2. Therefore, there exist a v-ideal Q such that

PkPk+2 ⊃ Q ⊃ Pk+1Pk+2

are consecutive v-ideals of v-values 9k + 13 < 9k + 14 < 9k + 15.
As in the proof of b = 3k + 1 case, we can show that Pk+2 - Q. Suppose

Pk+1|Q. Then, Q = Pk+1Q
′ ⊃ Pk+1Pk+2 are adjacent, and hence Q′ = PkPk+1

is the adjacent ideal to Pk+2 from above. Note that

λ(PkP 2
k+1/Pk+1Pk+2) = λ(PkPk+1/Pk+2) + [(Pk+1 · Pk+2) − (Pk+1 · PkPk+1)]

= 1 + [w(Pk+2) − w(PkPk+1)]
= 1
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since PkPk+1 ⊃ Pk+2 are adjacent and Pk+2 is not a w-ideal, where w is the
prime divisor associated to Pk+1 [11, Lemma 3.3]. However, v(PkP 2

k+1) =
9k + 13 = v(PkPk+2) implies that Q ̸= PkP 2

k+1, i.e., Pk+1 - Q. This leaves the
case to Q = PiPjPℓ for i, j, ℓ ≤ k. Since then v(Q) = 3(i+ j + k)+ 9 = 9k +14
implies that 3|3k+5, a contradiction. Therefore, Q = Pk+3 is the simple v-ideal
which is P .

We showed that nv = (k + 1, 1, 1) = (⌈ b+1
3 ⌉, 1, 1) and the rank of P is

k + 3 = ⌈ b+7
3 ⌉ since b = 3k + 2 for k ≥ 1. ¤

Our proof does heavily depend on the reciprocity formula of Lipman which
may be stated as w(I) = v(J) for prime divisors v and w associated to simple
m-primary complete ideals I and J . We often use this formula to compute the
intersection multiplicity (L · M) of two complete m-primary ideals L and M
(cf. [6, Corollary (3.7)], [4, Corollary 4.4]).

Proposition 2.6. Let (R,m, k) be a 2-dimensional regular local ring with al-
gebraically closed residue field k. Let P be a satellite simple integrally closed
ideal of R which is associated to the prime divisor v. Let o(P ) = 3, bv = 3k
for k ≥ 1. Then, nv = (⌈ b+1

3 ⌉, 1, 1), rank(P ) = ⌈ b+7
3 ⌉, and PkPk+2 is the

v-predecessor of P .

Proof. The followings are simple v-ideals

P1 = (x, y2) ⊃ P2 = (x, y3) ⊃ · · · ⊃ Pk = (x, yk+1)

whose v-values are 6 < 9 < · · · < 3k < 3k + 3 for k ≥ 1. Since λ(Pk/mPk) = 2,
v(mPk) = 3k+6, and Pk ⊃ I ⊃ mPk, where I is the v-successor of Pk containing
mPk.

We then have that I = (x − αyk+1, yk+2) for a unit α of R. Such an ideal
I is simple, and hence I = Pk+1 is the k + 1st simple v-ideal. Note that the
v-successor of Pk+1 is mPk. Since v(Pk) = 3k + 3 and v(mPk) = 3k + 6, we
have either v(Pk+1) = 3k + 4 or 3k + 5. Therefore, mPk is the largest v-ideal
of order 2 and hence n1 = k + 1.

Claim 1: Pi−1Pk⊃Pi−1Pk+1⊃PiPk⊃PiPk+1 are successive, adjacent v-ideals
for 1 ≤ i ≤ k.

Since o(Pk+1) = 1, we have λ(Pk+1/mPk+1) = 2. Therefore, mPk+1 is
the successor of mPk since v(mPk+1) > v(mPk). Let w be the prime divisor
associated to the simple integrally closed ideal P1 = (x, y2). Hence w(y) = 1
and w(x) = 2. Since k + 1 ≥ 2, we also have w(Pk) = w(x, yk+1) = 2. Then

λ(mPk/P1Pk) = λ(m/P1) + [(P1 · Pk) − (m · Pk)] = 1 + w(Pk) − o(Pk) = 2,

we have mPk ⊃ mPk+1 are adjacent v-ideals of v-value 3k + 6 < 3k + 7 or
3k +8. Since v(P1Pk) = 3k +9, we have that mPk+1 ⊃ P1Pk are adjacent, i.e.,
therefore

mPk ⊃ mPk+1 ⊃ P1Pk
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are consecutive v-ideals. In general, we have by reciprocity

λ(Pi−1Pk/PiPk) = λ(Pi−1/Pi) + [(Pi · Pk) − (Pi−1 · Pk)]
= 1 + [wi(Pk) − wi−1(Pk)]
= 1 + [wi(Pi) − wi−1(Pi−1)]
= 1 + [e(Pi) − e(Pi−1)]
= 1 + [(i + 1) − i] = 2,

where wi is the prime divisor associated to the simple v-ideal Pi for 1 ≤ i ≤ k
and e(·) denotes the multiplicity of the ideal. Therefore,

Pi−1Pk ⊃ Pi−1Pk+1 ⊃ PiPk

are the adjacent v-ideals since their v-values are 3(i+k)+3 < 3(i+k)+4, 5 <
3(i + k) + 6. Inductively, we can show that these are v-ideals.

Similarly, we prove that λ(PiPk+1/Pi+1Pk+1) = 2 and hence that

Pi−1Pk+1 ⊃ PiPk ⊃ PiPk+1

are adjacent v-ideals since

v(Pi−1Pk+1) = 3(i + k) + 4(or 3(i + k) + 5)
< v(PiPk) = 3(i + k) + 6
< v(PiPk+1) = 3(i + k) + 7(or 3(i + k) + 8)

for all 1 ≤ i ≤ k. Therefore, the following is the complete sequence of v-ideals
from mPk to PkPk+1:

mPk ⊃ mPk+1 ⊃ P1Pk ⊃ · · · ⊃ PkPk ⊃ PkPk+1.

This proves Claim 1.

Let Q be the v-successor of PkPk+1. Then o(Q) = 2 and hence Q = PiPj

for some 0 ≤ i, j ≤ k + 1. If Pk+1|Q, since if so Q = P 2
k+1 since PkPk+1 ⊃ Q

are adjacent. However, the length between PkPk+1 ⊃ Q

λ(PkPk+1/P 2
k+1) = 1 + [e(Pk+1) − e(Pk)] = 1 + [(k + 2) − (k + 1)] = 2

gives a contradiction. Therefore, Pk+1 - Q. If Pk|Q, then Q = PkQ′ for some
simple v-ideal of order 1 which is smaller than Pk+1, contradiction. Therefore,
Pk - Q. Suppose now that Q = PiPj for i, j < k. Then, v(Q) = 3(i + j) + 6 <
6k +7 or 6k +8 which is v(PkPk+1), contradiction to PkPk+1 ⊃ Q are v-ideals.
Therefore, Q is simple, i.e., Q = Pk+2 is the largest simple v-ideal of order 2.
Now we further claim the following:
Claim 2: The conductor ideal is C = P 2

k and Pk+2⊃mPkPk⊃mPkPk+1⊃mPk+2

are successive, adjacent v-ideals.
Note that the v-values of those three ideals are

v(Pk+2) < 6k + 9 < 6k + 10, 6k + 11 < v(Pk+2) + 3.

Therefore, v(Pk+1) = 3k+4, v(PkPk+1) = 6k+7, and v(Pk+2) = 6k+8. Hence
mP 2

k ⊃ mPkPk+1 ⊃ mPk+2 are another three successive v-ideals of v-value
6k + 9, 6k + 10, 6k + 11 due to the length computations. Since v(Pk−1Pk+1) =
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6k+4 and hence 6k+5 ̸∈ v(R). Since 6k+6, 6k+7, 6k+8 ∈ v(R) and 3 ∈ v(R),
we see that 6k+6 is the conductor element and P 2

k is the conductor ideal. This
proves Claim 2.

Let C = P 2
k ⊃ D = PkPk+1 ⊃ E = Pk+2 be three consecutive v-ideals of

v-values 6k+6, 6k+7, 6k+8. Then, we construct the v-ideals further as follows:

Claim 3: λ(Pi−1C/PiC) = λ(Pi−1D/PiD) = λ(Pi−1D/PiD) = 3 for 1 ≤ i ≤
k.

Let wi be the prime divisor associated to Pi for each 1 ≤ i ≤ k. We multiply
Pi−1 ⊃ Pi by C = P 2

k to calculate the lengths:

λ(Pi−1C/PiC) = λ(Pi−1/Pi) + [(Pi · C) − (Pi−1 · C)]
= λ(Pi−1/Pi) + [(Pi · P 2

k ) − (Pi−1 · P 2
k )]

= 1 + 2[wi(Pk) − wi−1(Pk)]
= 1 + 2[wi(Pi) − wi−1(Pi−1)]
= 1 + 2[e(Pi) − e(Pi−1)]
= 3

since Pk is not a wi-, wi−1-ideal [11, Lemma 3.3], where e(·) denotes the mul-
tiplicity of the ideal. Similarly, we multiply Pi−1 ⊃ Pi by D = PkPk+1 and
compute the length:

λ(Pi−1D/PiD) = λ(Pi−1/Pi) + [(Pi · D) − (Pi−1 · D)]
= 1 + [wi(PkPk+1) − wi−1(PkPk+1)]
= 1 + [wi(Pk) + wi(Pk+1)] − [wi−1(Pk) + wi−1(Pk+1)]
= 1 + 2wi(Pi) − 2wi−1(Pi−1)
= 1 + 2[e(x, yi+1) − e(x, yi)]
= 3

since Pi = (x, yi+1) for 1 ≤ i ≤ k. Finally, we multiply Pi−1 ⊃ Pi by E =
Pk+2. Let w be the prime divisor associated to Pk+2. Then by reciprocity,
wi(Pk+2) = w(Pi) = w(x, yi+1) for all 1 ≤ i ≤ k:

λ(Pi−1E/PiE) = λ(Pi−1/Pi) + [(Pi · E) − (Pi−1 · E)]
= λ(Pi−1/Pi) + [(Pi · Pk+2) − (Pi−1 · Pk+2)]
= 1 + [wi(Pk+2) − wi−1(Pk+2)]
= 1 + [w(Pi) − w(Pi−1)]
= 1 + [(2i + 2) − (2i)]
= 3

as in the proof of [2, Theorem 2.1] since w(y) = w(m) = o(Pk+2) = 2, w(Pi) =
w(x, yi+1) = 2(i + 1) for 1 ≤ i ≤ k. This proves Claim 3.

Let us denote C = P 2
k , D = PkPk+1, and E = Pk+2. We have constructed

all the successive v-ideals from m to PkE using Claim 1, Claim 2, Claim 3 as
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follows:
m ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pk ⊃ Pk+1

⊃ mPk ⊃ mPk+1 ⊃ · · · ⊃ C = PkPk ⊃ D = PkPk+1 ⊃ E = Pk+2

⊃ mC ⊃ mD ⊃ mE ⊃ P1C ⊃ P1D ⊃ P1E ⊃ · · ·
⊃ PkC = P 3

k ⊃ PkD = P 2
k Pk+1 ⊃ PkE = PkPk+2.

The v-values of ideals in the last row are 9k + 9, 9k + 10, 9k + 11 since P 2
k

is the conductor ideal by Claim 2. Let M be the v-successor of PkPk+2, i.e.,
v(M) = 9k+12. Then, M is either simple or a product of P ′

is for 0 ≤ i ≤ k+2.
Since mC = mP 2

k ⊃ M , the order of M is 3, too. Therefore, M can be factored
into Pk+2Pi for i ≤ k + 1, or it is a product of three Pi’s for i ≤ k + 1.

If the former, i.e., Pk+2|M , then PkPk+2 ⊃ M = PiPk+2 for some Pk ⊃ Pi,
hence M = Pk+2Pk+1. However,

λ(PkPk+2/Pk+1Pk+2) = 1 + w(Pk+1) − w(Pk) > 1

since Pk ⊃ Pk+1 are w-ideals, where w is the prime divisor associated to Pk+2

of order 2. Therefore, Pk+2 - M .
For the latter, let us assume that M = Pk+1PiPj for some i, j ≤ k. Then,

v(M) = (3k+4)+(3i+3)+(3j+3) = 9k+12 which implies that 6k+2 = 3(i+j),
this is also a contradiction. Therefore, Pk+1 - M either. Finally, suppose that
Pk|M , i.e., M = PkL for some integrally closed ideal L. Since PkPk+2 ⊃ M
are adjacent, Pk+2 ⊃ L are also adjacent v-ideals. Therefore, we show that
L = mP 2

k and M = Pk(mP 2
k ) = mP 3

k has order 4, contradiction. Therefore,
M = PiPjPℓ for i, j, ℓ < k. Therefore, v(M) = 3(i+j +ℓ)+9 = 9k+12 implies
that 3k + 1 = i + j + ℓ < 3k, a contradiction.

Therefore, we conclude that M is simple of order 3 with v(M) = 9k + 12,
i.e., M = Pk+3 is the simple complete ideal associated to v adjacent to Pk+2Pk.
The above sequence of v-ideals are the complete sequence of v-ideals from m
to P = Pk+3. We also have rank(P ) = k + 3 = ⌈ b+7

3 ⌉ since b = 3k. ¤

3. The conductor ideal and the value semigroup v(R) of a satellite
simple valuation ideal P of order 3

In the previous section, we described the complete sequence of v-ideals asso-
ciated to a simple integrally closed ideal P of order 3. In particular, we measure
ni, the number of nonmaximal simple v-ideals of order i for i = 1, 2, 3 in the
case of when P is a satellite simple complete ideal of order 3.

In describing the v-ideals from m to the smallest simple v-ideal P , we also
found the factorization of the v-predecessor of P in terms of larger simple
v-ideals.

Theorem 3.1. Let P , v be as in Theorem 2.1. Let v(y) = 3, v(x) = 3 + bv,
where m = (x, y). Let bv = 3k + i for i = 0, 1, 2. Then, the v-predecessor of P
is

(i) Pk+2Pk+1, if bv = 2
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(ii) Pk+2Pk, otherwise.

Proof. We denote bv by b.
(i) If b = 1, then the v-predecessor of P is mP2 since k = 0 and P = P3 by

Proposition 2.2.
(ii) If b = 2, then the v-predecessor of P = Pk+3 = P3 is P2P1 = Pk+2Pk+1

since k = 0 by Proposition 2.3.
(iii) If b = 3k + 1 for k ≥ 1, we refer to the proof of Proposition 2.4.
(iv) If b = 3k + 2 for k ≥ 1, then Pk+2Pk is the v-predecessor of P = Pk+3

by Proposition 2.5.
(v) If b = 3k for k ≥ 1, then the v-predecessor of P = Pk+3 is Pk+2Pk by

Proposition 2.6. ¤

We also obtained the unique factorization of the conductor ideal C in the
previous section. The conductor ideal of P (or v) is the v-ideal C such that
for any successive v-ideals J ⊃ J ′ smaller than C have v(J ′) = v(J) + 1. It is
known that C = L : m for the largest v-ideal L of order o(P ) [7, Theorem 2.2].
Using this we obtained the conductor ideal of v in Section 2.

Corollary 3.2. Let P , v be as in Theorem 2.1. Let v(y) = 3, v(x) = 3 + bv,
where m = (x, y). Let bv = 3k + i for i = 0, 1, 2. Then, the conductor ideal of
P is as follows:

(i) C = PkPk+1, v(C) = 6k + 8 if bv = 3k + 2, k ≥ 0
(ii) C = PkPk, v(C) = 6k + 6 otherwise.

Proof. Let bv = b and b = 3k + i for i = 0, 1, 2. If b = 3k, we assume k ≥ 1.
(i) If b = 2, then the conductor ideal is mP1 = PkPk+1 of v-value 8 = 6k+8.

It was shown that rank(P ) = 3 in by Proposition 2.3. If k ≥ 1, then it was
shown that C = PkPk+1 of v-value 6k + 8 by Proposition 2.5.

(ii) If b = 1, it was shown that the conductor ideal is C = m2 = PkPk with
v(C) = 6 = 6k + 6 since k = 0 in Proposition 2.2. It was also shown that the
conductor ideal of P = Pk+3 is PkPk with v(C) = 6k + 6 in Proposition 2.4,
Proposition 2.6 for k ≥ 0. ¤

We showed that there exists a unique simple v-ideal Pk+2 of order 2, i.e.,
n2 = 1 for a satellite simple complete ideal P in Theorem 2.1. In Corollary 3.2,
we showed the factorization of the conductor ideal. Note that mC is the largest
v-ideal of order 3, we have λ(C/mC) = 4. Hence, we showed that the simple
v-ideal Pk+2 of order 2 is in between C and mC as follows.

Corollary 3.3. Let P , v be as in Theorem 2.1. Let v(y) = 3, v(x) = 3 + bv,
where m = (x, y). Let bv = 3k + i for i = 0, 1, 2. Then, the successive v-ideals
from C to mC are as follows:

(i) C = PkPk+1 ⊃ Pk+2 ⊃ P 2
k+1 ⊃ mC if bv = 3k + 2, k ≥ 0

(ii) C = PkPk ⊃ PkPk+1 ⊃ Pk+2 ⊃ mC otherwise.
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Proof. Let us denote bv by b. (i) If b = 2, then C = mP1 ⊃ P2 ⊃ P 2
1 ⊃ m2P1

are consecutive v-ideals of v-values 8, 9, 10, 11 as in Proposition 2.2. We also
showed that

C = PkPk+1 ⊃ Pk+2 ⊃ P 2
k+1 ⊃ mC

are the consecutive v-ideals of v-values 6k+8, 6k+9, 6k+10, 6k+11 in Propo-
sition 2.5 for k ≥ 1 case as well.

(ii) If b = 1, then k = 0 and these are

C = m2 ⊃ mP1 ⊃ P2 ⊃ m3

are the such ideals of v-values 6k + 6, 6k + 7, 6k + 8, 6k + 9 in Proposition 2.2.
If b = 3k + 1 for k ≥ 1, then

C = PkPk ⊃ PkPk+1 ⊃ Pk+2 ⊃ mC

are consecutive v-ideals from C whose v-values are 6k+6, 6k+7, 6k+8, 6k+9 in
Proposition 2.4. The same is true if b = 3k for k ≥ 1 as in Proposition 2.6. ¤

Corollary 3.4. Let P , v be as in Theorem 2.1. Let v(y) = 3, v(x) = 3 + bv,
where m = (x, y). Let bv = 3k + i for i = 0, 1, 2 and k ≥ 0. Then, the value
semigroup v(R) is as follows:

(i) v(R) = N\{3i+1, 3j+2 | 0 ≤ i ≤ k, 0 ≤ j ≤ 2k+1} if bv = 3k+1, k ≥ 0,
(ii) v(R) = N\{3i+2, 3j+1 | 0 ≤ i ≤ k, 0 ≤ j ≤ 2k+2} if bv = 3k+2, k ≥ 0,
(iii) v(R) = N\{3i + 1, 3j + 2 | 0 ≤ i ≤ k, 0 ≤ j ≤ 2k + 1} or

v(R) = N\{3i + 2, 3j + 1 | 0 ≤ i ≤ k, 0 ≤ j ≤ 2k + 1} if bv = 3k, k ≥ 1.

Proof. Let us denote bv by b. We can prove (i) by Proposition 2.2 and Propo-
sition 2.4. Note that v(R) = N\{1, 2, 5} if b = 1. We can prove (ii) by
Proposition 2.3 and Proposition 2.5. Note that v(R) = N\{1, 2, 4, 7} if b = 2.
We prove (iii) the proof of Proposition 2.6. In case of (iii), v(R) = N\{3i +
1}0≤i≤k ∪ {3j + 2}0≤j≤2k+1 if v(Pk+1) = 3k + 4. If v(Pk+1) = 3k + 5, then
v(R) = N\{3i + 2}0≤i≤k ∪ {3j + 1}0≤j≤2k+1. ¤
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