SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

Sunsook Noh

ABSTRACT. Let (R,m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m = P_0 \supset P_1 \supset \cdots \supset P_t = P$ and all the other v-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple v-ideal P is either simple or the product of two simple v-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later.

In this paper we describe the sequence of simple v-ideals when P is satellite of order 3 in terms of the invariant $b_v = |v(x) - v(y)|$, where v is the prime divisor associated to P and $\mathfrak{m} = (x,y)$. Denote b_v by b and let b = 3k + 1 for k = 0, 1, 2. Let n_i be the number of nonmaximal simple v-ideals of order i for i = 1, 2, 3. We show that the numbers $n_v = (n_1, n_2, n_3) = (\lceil \frac{b+1}{3} \rceil, 1, 1)$ and that the rank of P is $\lceil \frac{b+7}{3} \rceil = k+3$. We then describe all the v-ideals from \mathfrak{m} to P as products of those simple v-ideals. In particular, we find the conductor ideal and the v-predecessor of the given ideal P in cases of p in the semigroup p in p in the value semigroup p in a satellite simple valuation ideal p of order 3 in terms of p.

1. Backgrounds

Let (R,m) be a 2-dimensional regular local ring with algebraically closed residue field k=R/m and K be the quotient field of R. If v is a valuation of K dominating R whose corresponding valuation ring (V,n) with residue field k(v)=V/n, then the residual transcendence degree $\operatorname{tr.deg}_k k(v) \leq 1$. Then v is called a 0-dimensional (1-dimensional, respectively) valuation if $\operatorname{tr.deg}_k k(v)=0$ (1, respectively). We call v a prime divisor of R if $\operatorname{tr.deg}_k k(v)=1$.

Received June 21, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 13A18,\ 13H05,\ 13B02,\ 13B22.$

 $Key\ words\ and\ phrases.$ simple valuation ideal, order of an ideal, prime divisor, proximity of simple integrally closed ideal, regular local ring.

This work was partially supported by KOSEF 97-0701-0201-5.

Let v be a prime divisor of R and (V, n) be the associated valuation ring of v. Such a prime divisor v is a discrete rank 1 valuation with the v-values $v(V) = \mathbf{N}$, the set of nonnegative integers [1, Theorem 1], [15].

For an ideal J of R, $v(J) = \min\{v(a) \mid a \in J\}$ is a nonnegative integer and J is called a v-ideal if $JV \cap R = J$, i.e., if $J = \{r \in R \mid v(r) \geq v(J)\}$. The sequence of contractions of the powers of the maximal ideals of V forms an infinite descending sequence of v-ideals in R

$$n \cap R \supset n^2 \cap R \supset \cdots \supset n^i \cap R \supset \cdots$$

(1)
$$m = I_0 \supset I_1 \supset I_2 \supset \cdots \supset I_j \supset I_{j+1} \supset \cdots.$$

For each $j \geq 0$, $I_j = \{r \in R \mid v(r) \geq v(I_j)\}$ is the j^{th} largest v-ideal in R. For a consecutive pair $I_j \supset I_{j+1}$ of v-ideals, I_j is called the v-predecessor of I_{j+1} and I_{j+1} is called the v-successor of I_j .

The set of v-values of all the v-ideals in the sequence (1) is called the value semigroup of v on R denoted by $v(R) = \{v(r) \mid r \in R\} = \{v(I_j) \mid \forall j \geq 0\}$:

$$(2) 0 < r_0 < r_1 < r_2 < \dots < r_i < r_{i+1} < \dots.$$

We denote $v(0) = \infty$. This value semigroup v(R) is known to be symmetric [9, Theorem 1], i.e., there exists some integer z such that $a \in v(R)$ if and only if $z - a \notin v(R)$ for all integer $a \in \mathbf{Z}$. The conductor element of v(R) is the smallest integer $c = r_i$ for some $i \geq 1$ such that $c - 1 \notin v(R)$ but $c + j \in v(R)$ for all $j \geq 0$. The corresponding ideal C with v(C) = c is called the conductor (adjoint) ideal of v.

In [17, Theorem (E), (F), pp. 391–392], Zariski showed that given such a valuation v of K, there is a corresponding simple integrally closed ideal P and a unique quadratic sequence of 2-dimensional regular local rings in the quotient field K:

$$(3) R = R_0 \subset R_1 \subset R_2 \subset \cdots \subset R_t$$

in which the transform of the simple complete ideal P in R_t is the maximal ideal of R_t and v is the m_t -adic order valuation of K. It was also shown that there exist simple complete ideal P_i whose transforms in R_i is the maximal ideal m_i of R_i for each $i \geq 0$. These are the simple v-ideals

$$(4) P_0 \supset P_1 \supset P_2 \supset \cdots \supset P_t = P,$$

where $m = P_0$ and P is the smallest one. Any other v-ideal I can be uniquely factored into a product $I = \prod_{i=0}^t P_i^{a_i}$. The number t of nonmaximal simple v-ideal is said to be the rank of v, or the rank of the smallest simple v-ideal P.

The sequence of v-ideals between $m \supset P$ then can be divided into two parts:

$$m \stackrel{1}{\supset} P_1 \stackrel{1}{\supset} I_2 \stackrel{1}{\supset} \cdots \stackrel{1}{\supset} C \stackrel{1}{\supset} \cdots \stackrel{1}{\supset} P' \stackrel{1}{\supset} P,$$

and it is also known that this sequence is saturated, i.e., any two consecutive v-ideals are adjacent [10, Lipman, Theorem A.2], and hence P is the s^{th} largest v-ideal I_s , where $s = \lambda(R/P) - 1$ since k is algebraically closed. The v-predecessor

of P is denoted by P' in the sequence. The length between any two consecutive v-ideals $I \supset J$ smaller than P can be measured [10, Theorem 3.1] in terms of the largest integer $\nu \in \mathbf{N}$ such that $P^{\nu}|I$.

For a v-ideal $P \supset J$, if J is also a w-ideal for a prime divisor w of R, then the sequence of w-ideals containing J coincides with that of v-ideals [10, Lipman, Theorem A.2].

For two regular local rings $S \supset T$ in K, S is said to be proximate to T (denoted by $S \succ T$) if $V_T \supset S$, where V_T is the m(T)-adic order valuation ring [8, (1.3)]. If v_T and v_S are the prime divisors associated to T and S, and hence to the simple integrally closed ideals $P_T \supset P_S$, we also say that $P_S \succ P_T$, i.e., P_S is proximate to P_T .

In the sequence of v-ideals, the v-predecessor of P is the unique integrally closed ideal adjacent to P from above [8, Theorem 4.11], [11, Theorem 3.1], and it was shown that it is either simple P_{t-1} or the product of simple v-ideals $P_{t-1}P_i$ for some $0 \le i \le t-2$ since k is algebraically closed. These are the simple v-ideals such that $R_t \succ R_{t-1}, R_i$ by [8, Theorem 4.11]. P is said to be free for the former and satellite for the latter. Note that Lipman showed this result in a general setting, i.e., without the assumption of k = R/m being algebraically closed [8]. We refer [3] for the proximity relations between valuation ideals for 0-dimensional valuation case. Note that the m-adic order of an ideal I is the integer r such that such that $L \subseteq m^r \backslash m^{r+1}$. We denote it by o(L).

Let us assume that P is a simple complete ideal associated to the prime divisor v. Let us assume that $o(P) = r \ge 1$, $\operatorname{rank}(P) = t \ge 0$ with the simple v-ideals $P_0, P_1, \ldots, P_t = P$. Let n_i be the number of nonmaximal simple v-ideals of order i for $1 \le i \le r$. We then may assume that the rank of P is:

$$t = n_1 + n_2 + \dots + n_{r-1} + n_r$$

and therefore the sequence of simple v-ideals are:

(5)
$$P_0 \supset P_1 \supset \cdots \supset P_{n_1} \supset \cdots \supset P_{n_1+n_2} \supset \cdots \supset P_{n_1+\cdots n_r} = P_t.$$

Let us denote the set of numbers $n'_i s$ of v as

$$n_v = (n_1, n_2, \dots, n_{r-1}, n_r).$$

In this paper, we describe the sequence of v-ideals from $\mathfrak m$ to P, find the numbers n_i , the number of simple v-ideals of order i for $1 \leq i \leq r$ in the case when P is a satellite simple complete ideal of order 3. Let m=(x,y), $v(y)=r < v(x)=r+b_v$ for $b_v=v(x)-v(y)>0$. We denote b_v by b when there is no confusion about v.

Let o(P)=1. If t=0, i.e., $P=P_0$ is the maximal ideal and hence v is the m-adic order valuation, $m\supset m^2\supset m^3\supset m^4\supset \cdots$ is the sequence of all the v-ideals of R such that $\lambda(m^r/m^{r+1})=r+1$ for all $r\geq 1$. If t>0, then

$$t = n_1$$

and the sequence of the v-ideals was then described in detail in [13].

Let o(P) = 2 and rank(P) = t. In [2], we showed that

$$t = n_1 + n_2 = \lceil \frac{b+1}{2} \rceil + (t - \lceil \frac{b+1}{2} \rceil),$$

where $b_v = 2k + i$ for i = 0 or 1. It was shown that $n_1 = \lceil \frac{b+1}{2} \rceil$ and $o(P_i) = 2$ for $\lceil \frac{b+3}{2} \rceil \le i \le t$. We showed that the satellite simple v-ideal of order 2 is $P_{\lceil \frac{b+3}{2} \rceil}$ whose predecessor is $P_{\lceil \frac{b+1}{2} \rceil} P_{\lceil \frac{b-1}{2} \rceil}$ and the conductor ideal $C = P_{\lceil \frac{b-1}{2} \rceil}$ is also simple in [2].

Throughout the paper, we assume m=(x,y), o(P)=3, $\operatorname{rank}(P)=t\geq 3$, v(y)=3, $v(x)=3+b_v$ for $b_v\geq 1$. Let n_i denote the number of nonmaximal simple v-ideals of order i for i=1,2,3. Then the rank of P is $t=n_1+n_2+n_3$, and $n_3=1$ if P is proximate simple complete ideal.

In this paper, we describe n_1 and n_2 in terms of b_v (or in terms of k), where $b_v = 0, 1, 2$ or $b_v = 3k + i$ for $k \ge 1$ and i = 0, 1, 2. We then describe the sequence of v-ideals from \mathfrak{m} to P using n_1 and n_2 .

In Section 2, we show $n_1 = \lceil \frac{b+1}{3} \rceil$ and $n_2 = 1$, i.e., there exists a unique simple v-ideal of order 2. We also showed that the unique simple complete ideal of order 2 is $P_{\lceil \frac{b+4}{3} \rceil}$ and $P = P_{\lceil \frac{b+7}{3} \rceil}$. In particular, the rank of the satellite simple complete ideal P is

$$t = \lceil \frac{b+1}{3} \rceil + 1 + 1 = k+3.$$

In Section 3, we find the factorizations of v-ideals from \mathfrak{m} to P as products of simple v-ideals $P_i's$ for $0 \leq i \leq k+3$. We also find factorizations of the v-predecessor of P and the conductor ideal C of v. We also find the value semigroup v(R) of a satellite simple valuation ideal P of order 3 in terms of b_v .

2. The sequence of v-ideals of a satellite simple valuation ideal P of order 3

Throughout this paper we assume that the residue field k is algebraically closed and by an ideal we mean an \mathfrak{m} -primary ideal of R. Let v be a prime divisor of R and P be the simple complete ideal associated to v. We also assume that o(P)=3 and that P is also satellite, i.e., v-predecessor P' of P is a product of two simple v-ideals.

Let $\operatorname{rank}(P) = t \geq 3$, m = (x, y), and $v(x) \geq v(y) = v(\mathfrak{m}) = 3$. Let us denote v(x) - v(y) by b_v or often by b. Note that $v(\mathfrak{m}) = o(P) = 3$ by reciprocity by [8, Corollary (4.8)]. The rank of P is then

$$t = n_1 + n_2 + n_3$$
.

In the sequence (3) of quadratic sequence along v, consider the first quadratic transformation R_1 . Since R_1 has the maximal ideal $\mathfrak{m}_1 = (\frac{x}{y}, y)$ and V dominates R_1 and hence $m(V) \cap R_1 = \mathfrak{m}_1$. Therefore v(x) > v(y) and

 $v(x) = 3 + b_v$ for some $b_v > 0$. Let us denote b_v by b and b = 3k + i for $0 \le i \le 2$. Note that then $\lceil \frac{b+1}{3} \rceil = k+1$, $\lceil \frac{b+4}{3} \rceil = k+2$, and $\lceil \frac{b+7}{3} \rceil = k+3$.

Theorem 2.1. Let (R, m, k) be a 2-dimensional regular local ring with algebraically closed residue field k. Let P be a satellite simple integrally closed ideal of R which is associated to the prime divisor v. Let o(P) = 3 and $\operatorname{rank}(P) = t$. Let n_i be the number of nonmaximal simple v-ideals of order i for $1 \le i \le 3$. Then, $n_v = (\lceil \frac{b+1}{3} \rceil, 1, 1)$ and $\operatorname{rank}(P) = \lceil \frac{b+7}{3} \rceil$.

Proof. Denote $b_v = b$. The theorem is true for b = 1 case by Proposition 2.2, b = 2 case by Proposition 2.3, b = 3k + 1 for $k \ge 1$ case by Proposition 2.4, b = 3k + 2 for $k \ge 1$ case by Proposition 2.5, and finally b = 3k for $k \ge 1$ case by Proposition 2.6.

It is clear that $n_3 = 1$ since P is satellite. If P is satellite, its v-predecessor $P' = P_{t-1}P_i$ for some $0 \le i < t-1$. Therefore, $o(P_{t-1}) = 2$ and $o(P_i) = 1$ for $0 \le i \le t-2$ since o(P') = 3. Therefore, $n_2 = n_3 = 1$.

In [5], Huneke-Sally gave equivalent conditions of an ideal $I=(\mathfrak{m}^n,f)$ to be integrally closed for an element $f \notin \mathfrak{m}^n$. In particular they proved that I is integrally closed if o(f)=n-1 and in this case we may assume that $I=(\mathfrak{m}^n,y^{n-1})$ for $\mathfrak{m}=(x,y)$. It was also shown that such an ideal I is also simple [12]. We then described all the simple v-ideals [12, Lemma 3.6] when v is the prime divisor associated to I. We now describe the sequence of all the v-ideals from \mathfrak{m} to P in the case of $b_v=1$.

Proposition 2.2. Let R, \mathfrak{m} , P, v, b_v , n_v be as in Theorem 2.1. Let o(P) = r for $r \geq 3$. If $b_v = 1$, then $P = (\mathfrak{m}^{r+1}, x^i)$ and there are r simple v-ideals. Furthermore, $n_v = (\lceil \frac{b+1}{3} \rceil, 1, \ldots, 1)$ and $\operatorname{rank}(P) = r$.

Proof. Note that $v(y) = r, v(x) = r+1, P = (x^r, x^{r-1}y^2, \dots, xy^r, y^{r+1})$. Then, m^i is a v-ideal for all $0 \le i \le r$ ([10, Theorem 1.2]) since $\lceil \frac{r}{b} \rceil = r$ such that $v(\mathfrak{m}^i) = ri$ for all i. By [12, Lemma 3.6], all the other nonmaximal simple v-ideals are $P_i = (\mathfrak{m}^{i+1}, x^i)$ for each $1 \le i \le r$.

These two chains of v-ideals can be relisted as follows:

$$m \supset P_1 \stackrel{1}{\supset} m^2 \supset P_2 \stackrel{1}{\supset} m^3 \supset \cdots \supset P_{r-1} \stackrel{1}{\supset} m^{r-1} \supset P_r = P.$$

We now can fill up this sequence so that we obtain the complete sequence of v-ideals from $\mathfrak m$ to P. In general,

$$P_i = (\mathfrak{m}^{i+1}, x^i) = (x^i, x^{i-1}y^2, \dots, xy^i, y^{i+1}) \supset \mathfrak{m}^{i+1}$$

is the *i*-th simple *v*-ideal which is adjacent to \mathfrak{m}^{i+1} from above. Since v(x)=r+1 and v(y)=1, we see that

$$v(x^{i-j}y^{j+1}) = (r+1)i + (r-j)$$

for $1 \le j \le i \le r$ and therefore $v(P_i) = (r+1)i = v(x^i)$ since

For $1 \leq i < r$, $v(y^{i+1}) = ri + r = v(m^{i+1}) > v(x^i) = ir + i = v(P_i)$ since \mathfrak{m}^i is a v-ideal for all $1 \leq i \leq r$. Note that $v(P_i) = ri + i = v(\mathfrak{m}^{i+1})$ for each $1 \leq i \leq r$. We can inductively construct all the v-ideals from \mathfrak{m}^i to P_i for each $1 \leq i \leq r$.

$$\mathfrak{m}^i \supset \mathfrak{m}^{i-1} P_1 \supset \mathfrak{m}^{i-2} P_2 \supset \cdots \supset \mathfrak{m}^2 P_{i-2} \supset \mathfrak{m} P_{i-1} \supset P_i \supset \mathfrak{m}^{i+1},$$

where the v-values of the ideals are

$$ir < ir + 1 < ir + 2 < \dots < ir + (i-1) < ir + i < ri + r$$

since $v(\mathfrak{m}^{i-j}P_j) = r(i-j) + jr + j = ri + j$ for $0 \le j \le i, \ 1 \le i \le r$. They are i+2 distinct saturated ideals since $\lambda(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = i+1$. Since \mathfrak{m}^i is a v-ideal and $\lambda(\mathfrak{m}^i/\mathfrak{m}^{i-1}P_1) = 1$ such that $v(\mathfrak{m}^i) \ne v(\mathfrak{m}^{i-1}P_1)$, therefore we see that $\mathfrak{m}^{i-1}P_1$ is a v-successor of \mathfrak{m}^i . Similarly, $\mathfrak{m}^{i-j}P_j$'s are successive v-ideals between $\mathfrak{m}^i \supset \mathfrak{m}^{i+1}$ for all $j=1,2,\ldots,i$ and $1 \le i < r$. Therefore, the followings are the complete sequence of all the v-ideals from \mathfrak{m} to P:

The v-values of the v-ideals from \mathfrak{m} to P_{r-1} are in the lower (with the diagonals) triangular matrix of the following $r \times r$ matrix $(v_{ij})_{0 \le i,j \le r-1}$. Then the v-values of the first column are \mathfrak{m}^i for $0 \le i \le r-1$, the main diagonals are v-values of the simple v-ideals, i.e., $v_{ii} = v(P_i)$ for $0 \le i \le r-1$. The last row is the set of v-values of r consecutive valuation ideals with the conductor ideal $C = \mathfrak{m}^{r-1}$ in the first column.

$$\begin{pmatrix} 0 & 1 & 2 & \cdots & r-1 \\ r & r+1 & r+2 & \cdots & r+(r-1) \\ 2r & 2r+1 & 2r+2 & \cdots & 2r+(r-1) \\ \vdots & \vdots & \vdots & & \vdots \\ ir & ir+1 & ir+2 & \cdots & ir+(r-1) \\ \vdots & \vdots & \vdots & & \vdots \\ (r-2)r & (r-2)r+1 & (r-2)r+2 & \cdots & (r-2)r+(r-1) \\ (r-1)r & (r-1)r+1 & (r-1)r+2 & \cdots & (r-1)r+(r-1) \end{pmatrix}$$

The $r + 1^{st}$ row of the matrix would start with $v(\mathfrak{m}^r)$, i.e.,

$$\mathfrak{m}^r \supset \mathfrak{m}^{r-1} P_1 \supset \mathfrak{m}^{r-2} P_2 \supset \cdots \supset \mathfrak{m} P_{r-1} \supset P_r$$

is the saturated sequence of v-values from m^r to P_r . Note that $P_r \supset \mathfrak{m}^{r+1}$ are adjacent, and $P_r = P$ is the smallest simple v-ideal, i.e., P such that $\operatorname{rank}(P) = r$.

Each simple v-ideal P_i transforms to the maximal ideal \mathfrak{m}_i in the i^{th} quadratic transform R_i along v for $1 \le i \le r$:

$$R \subset R_1 \subset R_2 \subset \cdots \subset R_{r-1} \subset R_r = R_v$$
.

Note that the v-predecessor of P is $\mathfrak{m}P_{r-1}$ and

$$n_v = (1, 1, 1, \dots, 1, 1) = (\lceil \frac{b+1}{3} \rceil, 1, 1, \dots, 1, 1),$$

where b = 1 since P_i is the only nonmaximal simple v-ideal of order i for $1 \le i \le r$.

The largest v-ideal of order r is \mathfrak{m}^r , hence the conductor ideal $C=\mathfrak{m}^r:\mathfrak{m}=\mathfrak{m}^{r-1}$, i.e., this is the largest v-ideal of order r-1 and $v(C)=r^2-r$. The v-predecessor of \mathfrak{m}^{r-1} is P_{r-2} , where $v(P_{r-2})=v(x^{r-2})=r^2-r-2$, hence $r^2-r-1 \not\in v(R)$ is the largest number that is not in the value semigroup v(R) of v.

Among v_{ij} 's we see that the elements in the upper triangular matrix, i.e., $v_{ij} \notin v(R)$ for j > i. They are exactly the half of the conductor value, i.e., $\frac{r^2-r}{2}$. Hence

$$v(R) = \mathbf{N} \setminus \{ir + j\}_{0 \le i \le r-1, i+1 \le j \le r-1}.$$

This proves the proposition.

If r = 3, then $v(R) = \mathbb{N} \setminus \{1, 2, 5\}$ and $\operatorname{rank}(P) = 3 = \lceil \frac{b+7}{3} \rceil$ since b = 1 in the above proposition. From now we assume that o(P) = 3 and $t = n_1 + n_2 + n_3$. Therefore, there are t nonmaximal simple v-ideals:

$$\mathfrak{m} \supset P_1 \supset \cdots \supset P_{n_1} \supset P_{n_1+1} \supset \cdots \supset P_{n_1+n_2} \supset \cdots \supset P_{n_1+n_2+n_3}.$$

We further assume that P is satellite, i.e., $n_3=1,\ t=n_1+n_2+1.$ If b=1, then $n_1=n_2=n_3=1$ by Proposition 2.2 and therefore $n_v=(\lceil\frac{b+1}{3}\rceil,1,1).$

We often compute the length between two integrally closed ideals by using reciprocity of Lipman [10, Remark 2.2]. When the length between two integrally closed ideals $M \supset N$ are known and another integrally closed ideal L is given, we can compute the length between $ML \supset NL$ as $\lambda(M/L) + (N \cdot L) - (M \cdot L)$, where $(I \cdot J)$ denotes the intersection multiplicity of integrally closed ideals I and J. We also note that if $L \supset M$ complete ideals with M simple, then u(L) = u(M) if and only if M is not a u-ideal for a prime divisor u of R. If J is a simple complete ideal associated to u, then it is equivalent to say that $(L \cdot J) = (M \cdot J)$ [11, Lemma 3.3].

Proposition 2.3. Let (R, m, k) be a 2-dimensional regular local ring with algebraically closed residue field k. Let P be a satellite simple integrally closed ideal of R which is associated to the prime divisor v. Let o(P) = 3, $\operatorname{rank}(P) = t$, $b_v = 2$. Let n_i be the number of nonmaximal simple v-ideals of order i for $1 \le i \le 3$. Then, $n_v = (\lceil \frac{b+1}{3} \rceil, 1, 1)$ and $\operatorname{rank}(P) = \lceil \frac{b+7}{3} \rceil$.

Proof. Assume b=2, i.e., v(y)=3, v(x)=5. In this case, \mathfrak{m} and \mathfrak{m}^2 are videals, but \mathfrak{m}^3 is not since $\lceil \frac{r}{b} \rceil = 2$ by [10, Theorem 1.2]. Therefore, $P_1 = (x, y^2)$ and

$$m \supset P_1 \supset m^2$$

are consecutive v-ideals of v-values 3, 5, 6. This implies that $\mathfrak{m}^2 \supset P_2$, i.e., $o(P_2) \geq 2$ and hence P_1 is the only nonmaximal simple v-ideal of order 1 and $n_1 = 1$. Consider the following sequence of ideals:

$$\mathfrak{m} \supset P_1 \supset \mathfrak{m}^2 \supset \mathfrak{m} P_1 \supset I \supset \mathfrak{m}^3$$
,

where I is the v-ideal of value $v(\mathfrak{m}^3) = 9$. It is easy to see that this sequence is saturated. Since \mathfrak{m}^2 is a v-ideal and $v(\mathfrak{m}P_1) = 8 > v(\mathfrak{m}^2)$, $\mathfrak{m}P_1$ should be the v-successor of \mathfrak{m}^2 . Since $\mathfrak{m}P_1 \supset I \supset \mathfrak{m}^3$ are also saturated, v(I) = 9 and o(I) = 2.

If I is not simple, then I is P_1^2 since o(I) = 2. However, $v(P_1^2) = 10 > v(I)$, and hence $I \neq P_1^2$. Therefore, $I = P_2$ must simple of value $v(\mathfrak{m}^3) = 9$ of order 2. Consider the following sequence of ideals:

$$\mathfrak{m} \supset P_1 \supset \mathfrak{m}^2 \supset \mathfrak{m} P_1 \supset P_2 \supset J \supseteq P_1^2$$

where J is the v-ideal of value $v(P_1^2)=10$. But, $\lambda(mP_1/P_1^2)=1+(P_1\cdot P_1)-(m\cdot P_1)=2$ by reciprocity. Hence $J=P_1^2$ is the v-ideal adjacent to P_2 from below.

Since we have $7 \notin v(R)$ and $8, 9, 10 \in v(R)$, $8 = v(mP_1)$ is the conductor element of v since $3 \in v(R)$. Let us denote three consecutive v-ideals by

$$C = \mathfrak{m}P_1 \supset D = P_2 \supset E = P_1^2$$

of v-values 8, 9, 10. Since o(C) = 2, $\mathfrak{m}C = \mathfrak{m}^2 P_1$ is the largest v-ideal of order 3 with v-value 11. From calculating the lengths, we have the following sequence of ideals of v-values 11, 12, 13, 14, 15:

$$\mathfrak{m}C\supset\mathfrak{m}D\supset\mathfrak{m}E=P_1C\supset P_1D\supset P_1E.$$

Note that $\mathfrak{m}E = P_1C = \mathfrak{m}P_1^2$, $v(P_1D) = v(P_1P_2) = 14$ and hence P_1D is a v-ideal which is successive to $\mathfrak{m}E$ since

$$\lambda(\mathfrak{m}D/P_1D) = \lambda(\mathfrak{m}/P_1) + (P_1 \cdot D) - (\mathfrak{m} \cdot D) = 1 + 3 - 2 = 2.$$

Note also that $v(P_1E) = v(P_1^3) = 15$. However,

$$\lambda(\mathfrak{m}E/P_1E) = \lambda(\mathfrak{m}P_1/P_1^2) + 2(P_1 \cdot P_1) - 2(\mathfrak{m} \cdot P_1) = 2 + 4 - 2 = 4$$

implies that P_1^3 is not a v-ideal, i.e., $P_1E = P_1^3$ is not a v-ideal and hence there exists a v-ideal $Q \supset P_1^3$ such that v(Q) = 15:

$$\mathfrak{m}P_1^2 = \mathfrak{m}E \supset P_1D = P_1P_2 \supset Q \supset P_1E = P_1^3.$$

Since o(Q)=3, we can factorize $Q=\mathfrak{m}^aP_1^bP_2^c$ for some $a,b,c\geq 0$. Then, 15=3a+5b+9c. A possible solution(s) for (a,b,c) are (5,0,0), (2,0,1), (0,3,0). However, \mathfrak{m}^5 is not a v-ideal and P_1^3 is not a v-ideal, either. Therefore, $Q=\mathfrak{m}^2P_2$. But this is not the case since $\lambda(\mathfrak{m}P_2/\mathfrak{m}^2P_2)=o(\mathfrak{m}P_2)+1=4\neq 3=\lambda(mP_2/Q)$. Therefore, Q is the simple v-ideal of order 3, i.e., $Q=P_3$ is the simple v-ideal associated to v with the v-predecessor P_2P_1 .

We have shown that $n_v = (1, 1, 1) = (\lceil \frac{b+1}{3} \rceil, 1, 1)$ since b = 2. Note that the v-predecessor of P is $P_2P_1 = P_{k+1}P_{k+2}$ since k = 0. The following is the complete sequence of v-ideals from \mathfrak{m} to P:

$$\mathfrak{m}\supset P_1\supset\mathfrak{m}^2\supset\mathfrak{m}P_1=C\supset P_2\supset P_1^2\supset\mathfrak{m}^2P_1\supset\mathfrak{m}P_2\supset\mathfrak{m}P_1^2\supset P_1P_2\supset P_3=P,$$

where $v(R) = \mathbb{N} \setminus \{1, 2, 4, 7\}$ for \mathbb{N} is the set of nonnegative integers. Furthermore, we have shown that $\operatorname{rank}(P) = 3 = \lceil \frac{b+7}{3} \rceil$ since b = 2.

Now we consider a more general case when b = 3k + 1 for $k \ge 1$.

Proposition 2.4. Let (R, m, k) be a 2-dimensional regular local ring with algebraically closed residue field k. Let P be a satellite simple integrally closed ideal of R which is associated to the prime divisor v. Let o(P) = 3, $\operatorname{rank}(P) = t$, $b_v = 3k + 1$ for $k \ge 1$. Then, $n_v = (\lceil \frac{b+1}{3} \rceil, 1, 1)$, $\operatorname{rank}(P) = \lceil \frac{b+7}{3} \rceil$, and $P_k P_{k+2}$ is the v-predecessor of P.

Proof. We first note that $n_2 > 0$, i.e., we have at least one simple v-ideal of order 2. The v-predecessor P' of P is the product of two simple v-ideals $P' = P_{t-1}P_i$ for $0 \le i \le t-2$ since we assume that P is satellite. Therefore, there exists at least one simple v-ideal P_{t-1} , i.e., $n_2 \ne 0$.

Note that v(y) = 3, v(x) = 3 + (3k + 1) for $k \ge 1$. Hence, $P_i = (x, y^{i+1})$ is a simple v-ideal such that $v(P_i) = \min\{3k + 4, 3i + 3\}$ for $1 \le i \le k + 1$:

$$\mathfrak{m} \supset P_1 = (x, y^2) \supset P_2 = (x, y^3) \supset \cdots \supset P_k = (x, y^{k+1}) \supset P_{k+1} = (x, y^{k+2})$$

is the saturated sequence of v-ideals of value $3, 6, \ldots, 3k, 3k+3, 3k+4$, where b=3k+1 for $k\geq 1$.

Since $\lambda(P_k/\mathfrak{m}P_k) = \mu(P_k) = o(P_k) + 1 = 2$ (cf. [4], [5]) and $v(\mathfrak{m}P_k) = 3k + 6$, $\mathfrak{m}P_k$ is the v-ideal adjacent to P_{k+1} , i.e., $\mathfrak{m}P_k$ is the largest v-ideal of order 2 and hence $o(P_{k+2}) \geq 2$. This implies that $n_1 = k + 1 = \lceil \frac{b+1}{3} \rceil$.

Since $\lambda(P_{k+1}/\mathfrak{m}P_{k+1})=2$ and $v(\mathfrak{m}P_{k+1})=3k+7$, $\mathfrak{m}P_{k+1}$ is the v-successor of $\mathfrak{m}P_k$. Therefore,

$$\mathfrak{m} \supset P_1 \supset \cdots \supset P_k \supset P_{k+1} \supset \mathfrak{m} P_k \supset \mathfrak{m} P_{k+1}$$

are all the v-ideals from \mathfrak{m} to $\mathfrak{m}P_{k+1}$ of v-values

$$3 < 6 < \ldots < 3k + 3 < 3k + 4 < 3k + 6 < 3k + 7.$$

By using [2, Corollary 2.2], we can conclude that

$$P_{k+1}\supset mP_k\supset mP_{k+1}\supset P_1P_k\supset P_1P_{k+1}\supset\cdots\supset P_kP_k\supset P_kP_{k+1}\supset P_{k+2}$$

is the saturated sequence of v-ideals from P_{k+1} to P_{k+2} . Note that $o(P_{k+2}) = 2$, $v(P_{k+2}) = 6k + 8$ since $v(P_k^2) = 6k + 6$ and $v(P_kP_{k+1}) = 6k + 7$, $v(P_{k+1}^2) = 6k + 8$. Note that $\lambda(P_kP_{k+1}/P_{k+1}^2) = 2$, hence P_{k+1}^2 is not a v-predecessor of P_kP_{k+1} . Therefore, v-successor of P_kP_{k+1} is a simple v-ideal, P_{k+2} . Since $v(P_{k+1}^2) = 6k + 8 \in v(R)$, $v(P_{k+2}) = v(P_{k+1}^2) = 6k + 8$ and P_{k+1}^2 is not a v-ideal

Since $P_{k-1}P_{k+1} \supset P_k^2$ are adjacent v-ideals of v-values 6k+4 and $v(P_k^2) = 6k+6$, we have that $6k+5 \notin v(R)$. Since $6k+6, 6k+7, 6k+8 \in v(R)$, we have the conductor ideal is $C = P_k^2$ such that v(C) = 6k+6. Let

$$C = P_k^2 \supset D = P_k P_{k+1} \supset E = P_{k+2}$$

be three consecutive v-ideals of v-values 6k + 6, 6k + 7, 6k + 8. Then,

$$\mathfrak{m}C\supset\mathfrak{m}D\supset\mathfrak{m}E\supset P_1C\supset P_1D\supset P_1E\supset\cdots\supset P_kC\supset P_kD\supset P_kE$$

are the consecutive v-ideals of v-values $6k + 9, \dots, (6k + 9) + (b + 1)$.

Note that $\mathfrak{m}C = \mathfrak{m}P_k^2$ is the largest v-ideal of order 3 and $v(P_k P_{K+2})) =$ 9k + 11. Since $v(P_{k+1}P_{k+2}) = 9k + 12$ and $\lambda(P_kP_{k+2}/P_{k+1}P_{k+2}) = 1 + 12$ $[w(P_{k+1}) - w(P_k)] = 2$, where w is the prime divisor associated to P_{k+2} since then $P_k \supset P_{k+1}$ are both w-ideals whose w-values differ by 1 [14, Theorem 3.3, Theorem 4.1]. Therefore, the v-successor of $P_k P_{k+2}$ has v-value 9k + 12 and it contains $P_{k+1}P_{k+2}$. Let us call it Q. Since $P_kP_{k+2}\supset Q\supset P_{k+1}P_{k+2}$ are adjacent, Q is either a product of three order 1 simple v-ideals, or $P_{k+2}P_i$ for some $i \leq k$. But the latter cannot be the case for if so, $P_k \supset P_i \supset P_{k+1}$ which is a contradiction since $P_k \supset P_{k+1}$ are adjacent. Let $Q = P_i P_j P_\ell$ for $1 \leq i \leq j \leq \ell \leq k+1$. Since $\mathfrak{m} \nmid P_k, P_{k+1}, P_{k+2}, \mathfrak{m} \nmid Q$ [11, Lemma 1.2]. If $\ell = k + 1$, then $P_{k+1}|Q$ and v(Q) = 9k + 12 = 3(i + j) + 10, hence 3|9k + 2, contradiction. If $\ell=k$, then $P_{k+2}\supset P_iP_j$ are adjacent ideals such that 6k + 8 = 3(i + j) + 6 which implies that 3|6k + 2, contradiction. Therefore, P_k does not divide Q, either. Therefore, $Q = P_i P_j P_\ell$ for $1 \le i \le j \le \ell < k$. Since $v(Q) = 3(i+j+\ell) + 9 = 9k + 12, i+j+\ell = 3k+1 < 3k,$ a contradiction. Therefore, $Q = P_{k+3}$ is simple of order 3, i.e., $P_{k+3} = P$ is the simple complete ideal associated to v.

Note that the v-predecessor of P is $P_k P_{k+2}$ and P_{k+2} is the only simple v-ideal of order 2. Hence $n_v = (k+1,1,1) = (\lceil \frac{b+1}{3} \rceil,1,1)$ since b=3k+1 for $k \ge 1$.

Proposition 2.5. Let (R, m, k) be a 2-dimensional regular local ring with algebraically closed residue field k. Let P be a satellite simple integrally closed ideal of R which is associated to the prime divisor v. Let o(P) = 3, $\operatorname{rank}(P) = t$, $b_v = 3k + 2$ for $k \ge 1$. Then, $n_v = (\lceil \frac{b+1}{3} \rceil, 1, 1)$ and $\operatorname{rank}(P) = \lceil \frac{b+7}{3} \rceil$.

Proof. The followings are a saturated sequence of simple v-ideals

$$\mathfrak{m} \supset P_1 = (x, y^2) \supset P_2 = (x, y^3) \supset \cdots \supset P_k = (x, y^{k+1}) \supset P_{k+1} = (x, y^{k+2})$$

whose *v*-values are $3 < 6 < \cdots < 3k + 3 < 3k + 5$.

As in the proof of Proposition 2.4, we have $v(\mathfrak{m}P_k)$ is the v-ideal adjacent to P_{k+1} , i.e., mP_k is the largest v-ideal of order 2 and hence $o(P_{k+2}) \geq 2$. This implies that $n_1 = k+1 = \lceil \frac{b+1}{3} \rceil$. It is also true that $\mathfrak{m}P_{k+1}$ is the v-successor of $\mathfrak{m}P_k$ since $v(\mathfrak{m}P_{k+1}) = 3k+8 > v(\mathfrak{m}P_k) = 3k+6$ and $\lambda(\mathfrak{m}P_k/\mathfrak{m}P_{k+1}) = 2$. Therefore,

$$\mathfrak{m} \supset P_1 \supset \cdots \supset P_{k+1} \supset \mathfrak{m} P_k \supset \mathfrak{m} P_{k+1}$$

are all the v-ideals from \mathfrak{m} to $\mathfrak{m}P_{k+1}$ of v-values

$$3 < 6 < \dots < 3k + 3 < 3k + 5 < 3k + 6 < 3k + 8.$$

By using [2, Corollary 2.2], we can also conclude that

$$P_{k+1} \supset \mathfrak{m} P_k \supset \mathfrak{m} P_{k+1} \supset P_1 P_k \supset P_1 P_{k+1} \supset \cdots \supset P_k P_k \supset P_k P_{k+1} \supset P_{k+2}$$

is the saturated sequence of v-ideals from P_{k+1} to P_{k+2} .

Note that $o(P_{k+2}) = 2$ and $v(P_k^2) = 6k + 6$ implies that $6k + 9 \in v(R)$. Since $v(P_k P_{k+1}) = 6k + 8$ and $v(P_{k+1}^2) = 6k + 10$, we conclude that $v(P_{k+2}) = 6k + 9$. Since $\lambda(P_k P_{k+1}/P_{k+1}^2) = 2$ with $v(P_{k+1}^2) = 6k + 10$, hence P_{k+1}^2 is a v-ideal adjacent to P_{k+2} . Therefore,

$$P_k P_{k+1} \supset P_{k+2} \supset P_{k+1}^2$$

are consecutive v-ideals of v-values 6k+8, 6k+9, 6k+10. Since $6k+7 \notin v(R)$, $C=P_kP_{k+1}$ is the conductor ideal. Let

$$C = P_k P_{k+1} \supset D = P_{k+2} \supset E = P_{k+1}^2$$

be three consecutive v-ideals of v-values 6k + 8, 6k + 9, 6k + 10. Then,

$$\mathfrak{m}C\supset\mathfrak{m}D\supset\mathfrak{m}E\supset P_1C\supset P_1D\supset P_1E\supset\cdots\supset P_kC\supset P_kD\supset P_kE$$

are the consecutive v-ideals.

Note that $\mathfrak{m}C$ is the largest v-ideal of order 3 with v-value 6k+11. Note also that $v(P_kP_{k+2})=9k+13, \ v(P_{k+1}P_{k+2})=9k+15, \ \text{and} \ \lambda(P_kP_{k+2}/P_{k+1}P_{k+2})=2$. Therefore, there exist a v-ideal Q such that

$$P_k P_{k+2} \supset Q \supset P_{k+1} P_{k+2}$$

are consecutive v-ideals of v-values 9k + 13 < 9k + 14 < 9k + 15.

As in the proof of b=3k+1 case, we can show that $P_{k+2} \nmid Q$. Suppose $P_{k+1}|Q$. Then, $Q=P_{k+1}Q' \supset P_{k+1}P_{k+2}$ are adjacent, and hence $Q'=P_kP_{k+1}$ is the adjacent ideal to P_{k+2} from above. Note that

$$\lambda(P_k P_{k+1}^2 / P_{k+1} P_{k+2}) = \lambda(P_k P_{k+1} / P_{k+2}) + [(P_{k+1} \cdot P_{k+2}) - (P_{k+1} \cdot P_k P_{k+1})]$$

$$= 1 + [w(P_{k+2}) - w(P_k P_{k+1})]$$

$$= 1$$

since $P_k P_{k+1} \supset P_{k+2}$ are adjacent and P_{k+2} is not a w-ideal, where w is the prime divisor associated to P_{k+1} [11, Lemma 3.3]. However, $v(P_k P_{k+1}^2) = 9k + 13 = v(P_k P_{k+2})$ implies that $Q \neq P_k P_{k+1}^2$, i.e., $P_{k+1} \nmid Q$. This leaves the case to $Q = P_i P_j P_\ell$ for $i, j, \ell \leq k$. Since then v(Q) = 3(i+j+k) + 9 = 9k + 14 implies that 3|3k+5, a contradiction. Therefore, $Q = P_{k+3}$ is the simple v-ideal which is P.

We showed that $n_v = (k+1,1,1) = (\lceil \frac{b+1}{3} \rceil, 1, 1)$ and the rank of P is $k+3 = \lceil \frac{b+7}{3} \rceil$ since b=3k+2 for $k \geq 1$.

Our proof does heavily depend on the reciprocity formula of Lipman which may be stated as w(I) = v(J) for prime divisors v and w associated to simple \mathfrak{m} -primary complete ideals I and J. We often use this formula to compute the intersection multiplicity $(L \cdot M)$ of two complete \mathfrak{m} -primary ideals L and M (cf. [6, Corollary (3.7)], [4, Corollary 4.4]).

Proposition 2.6. Let (R, m, k) be a 2-dimensional regular local ring with algebraically closed residue field k. Let P be a satellite simple integrally closed ideal of R which is associated to the prime divisor v. Let o(P) = 3, $b_v = 3k$ for $k \geq 1$. Then, $n_v = (\lceil \frac{b+1}{3} \rceil, 1, 1)$, rank $(P) = \lceil \frac{b+7}{3} \rceil$, and $P_k P_{k+2}$ is the v-predecessor of P.

Proof. The followings are simple v-ideals

$$P_1 = (x, y^2) \supset P_2 = (x, y^3) \supset \cdots \supset P_k = (x, y^{k+1})$$

whose v-values are $6 < 9 < \cdots < 3k < 3k + 3$ for $k \ge 1$. Since $\lambda(P_k/\mathfrak{m}P_k) = 2$, $v(\mathfrak{m}P_k) = 3k + 6$, and $P_k \supset I \supset \mathfrak{m}P_k$, where I is the v-successor of P_k containing $\mathfrak{m}P_k$.

We then have that $I = (x - \alpha y^{k+1}, y^{k+2})$ for a unit α of R. Such an ideal I is simple, and hence $I = P_{k+1}$ is the $k+1^{st}$ simple v-ideal. Note that the v-successor of P_{k+1} is $\mathfrak{m}P_k$. Since $v(P_k) = 3k+3$ and $v(\mathfrak{m}P_k) = 3k+6$, we have either $v(P_{k+1}) = 3k+4$ or 3k+5. Therefore, $\mathfrak{m}P_k$ is the largest v-ideal of order 2 and hence $n_1 = k+1$.

Claim 1: $P_{i-1}P_k \supset P_{i-1}P_{k+1} \supset P_iP_k \supset P_iP_{k+1}$ are successive, adjacent v-ideals for $1 \le i \le k$.

Since $o(P_{k+1}) = 1$, we have $\lambda(P_{k+1}/\mathfrak{m}P_{k+1}) = 2$. Therefore, $\mathfrak{m}P_{k+1}$ is the successor of $\mathfrak{m}P_k$ since $v(\mathfrak{m}P_{k+1}) > v(\mathfrak{m}P_k)$. Let w be the prime divisor associated to the simple integrally closed ideal $P_1 = (x, y^2)$. Hence w(y) = 1 and w(x) = 2. Since $k+1 \geq 2$, we also have $w(P_k) = w(x, y^{k+1}) = 2$. Then

$$\lambda(\mathfrak{m}P_k/P_1P_k) = \lambda(\mathfrak{m}/P_1) + [(P_1 \cdot P_k) - (\mathfrak{m} \cdot P_k)] = 1 + w(P_k) - o(P_k) = 2,$$

we have $\mathfrak{m}P_k \supset \mathfrak{m}P_{k+1}$ are adjacent v-ideals of v-value 3k+6 < 3k+7 or 3k+8. Since $v(P_1P_k)=3k+9$, we have that $\mathfrak{m}P_{k+1}\supset P_1P_k$ are adjacent, i.e., therefore

$$\mathfrak{m}P_k \supset \mathfrak{m}P_{k+1} \supset P_1P_k$$

are consecutive v-ideals. In general, we have by reciprocity

$$\begin{array}{lll} \lambda(P_{i-1}P_k/P_iP_k) & = & \lambda(P_{i-1}/P_i) + [(P_i \cdot P_k) - (P_{i-1} \cdot P_k)] \\ & = & 1 + [w_i(P_k) - w_{i-1}(P_k)] \\ & = & 1 + [w_i(P_i) - w_{i-1}(P_{i-1})] \\ & = & 1 + [e(P_i) - e(P_{i-1})] \\ & = & 1 + [(i+1) - i] = 2, \end{array}$$

where w_i is the prime divisor associated to the simple v-ideal P_i for $1 \le i \le k$ and $e(\cdot)$ denotes the multiplicity of the ideal. Therefore,

$$P_{i-1}P_k \supset P_{i-1}P_{k+1} \supset P_iP_k$$

are the adjacent v-ideals since their v-values are 3(i+k)+3<3(i+k)+4, 5<3(i+k)+6. Inductively, we can show that these are v-ideals.

Similarly, we prove that $\lambda(P_i P_{k+1}/P_{i+1} P_{k+1}) = 2$ and hence that

$$P_{i-1}P_{k+1}\supset P_iP_k\supset P_iP_{k+1}$$

are adjacent v-ideals since

$$\begin{array}{lcl} v(P_{i-1}P_{k+1}) & = & 3(i+k)+4(\text{or } 3(i+k)+5) \\ & < & v(P_{i}P_{k})=3(i+k)+6 \\ & < & v(P_{i}P_{k+1})=3(i+k)+7(\text{or } 3(i+k)+8) \end{array}$$

for all $1 \le i \le k$. Therefore, the following is the complete sequence of v-ideals from $\mathfrak{m}P_k$ to P_kP_{k+1} :

$$mP_k \supset mP_{k+1} \supset P_1P_k \supset \cdots \supset P_kP_k \supset P_kP_{k+1}$$
.

This proves Claim 1.

Let Q be the v-successor of P_kP_{k+1} . Then o(Q)=2 and hence $Q=P_iP_j$ for some $0\leq i,j\leq k+1$. If $P_{k+1}|Q$, since if so $Q=P_{k+1}^2$ since $P_kP_{k+1}\supset Q$ are adjacent. However, the length between $P_kP_{k+1}\supset Q$

$$\lambda(P_k P_{k+1}/P_{k+1}^2) = 1 + [e(P_{k+1}) - e(P_k)] = 1 + [(k+2) - (k+1)] = 2$$

gives a contradiction. Therefore, $P_{k+1} \nmid Q$. If $P_k | Q$, then $Q = P_k Q'$ for some simple v-ideal of order 1 which is smaller than P_{k+1} , contradiction. Therefore, $P_k \nmid Q$. Suppose now that $Q = P_i P_j$ for i, j < k. Then, v(Q) = 3(i+j) + 6 < 6k + 7 or 6k + 8 which is $v(P_k P_{k+1})$, contradiction to $P_k P_{k+1} \supset Q$ are v-ideals. Therefore, Q is simple, i.e., $Q = P_{k+2}$ is the largest simple v-ideal of order 2. Now we further claim the following:

Claim 2: The conductor ideal is $C = P_k^2$ and $P_{k+2} \supset \mathfrak{m} P_k P_k \supset \mathfrak{m} P_k P_{k+1} \supset \mathfrak{m} P_{k+2}$ are successive, adjacent v-ideals.

Note that the v-values of those three ideals are

$$v(P_{k+2}) < 6k + 9 < 6k + 10, 6k + 11 < v(P_{k+2}) + 3.$$

Therefore, $v(P_{k+1}) = 3k+4$, $v(P_kP_{k+1}) = 6k+7$, and $v(P_{k+2}) = 6k+8$. Hence $\mathfrak{m}P_k^2 \supset \mathfrak{m}P_kP_{k+1} \supset \mathfrak{m}P_{k+2}$ are another three successive v-ideals of v-value 6k+9, 6k+10, 6k+11 due to the length computations. Since $v(P_{k-1}P_{k+1}) = 0$

6k+4 and hence $6k+5 \notin v(R)$. Since $6k+6, 6k+7, 6k+8 \in v(R)$ and $3 \in v(R)$, we see that 6k+6 is the conductor element and P_k^2 is the conductor ideal. This proves Claim 2.

Let $C = P_k^2 \supset D = P_k P_{k+1} \supset E = P_{k+2}$ be three consecutive v-ideals of v-values 6k+6, 6k+7, 6k+8. Then, we construct the v-ideals further as follows:

Claim 3: $\lambda(P_{i-1}C/P_iC) = \lambda(P_{i-1}D/P_iD) = \lambda(P_{i-1}D/P_iD) = 3 \text{ for } 1 \le i \le k$.

Let w_i be the prime divisor associated to P_i for each $1 \le i \le k$. We multiply $P_{i-1} \supset P_i$ by $C = P_k^2$ to calculate the lengths:

$$\begin{array}{lll} \lambda(P_{i-1}C/P_iC) & = & \lambda(P_{i-1}/P_i) + [(P_i \cdot C) - (P_{i-1} \cdot C)] \\ & = & \lambda(P_{i-1}/P_i) + [(P_i \cdot P_k^2) - (P_{i-1} \cdot P_k^2)] \\ & = & 1 + 2[w_i(P_k) - w_{i-1}(P_k)] \\ & = & 1 + 2[w_i(P_i) - w_{i-1}(P_{i-1})] \\ & = & 1 + 2[e(P_i) - e(P_{i-1})] \\ & = & 3 \end{array}$$

since P_k is not a w_{i^-} , w_{i-1} -ideal [11, Lemma 3.3], where $e(\cdot)$ denotes the multiplicity of the ideal. Similarly, we multiply $P_{i-1} \supset P_i$ by $D = P_k P_{k+1}$ and compute the length:

$$\begin{array}{lll} \lambda(P_{i-1}D/P_iD) & = & \lambda(P_{i-1}/P_i) + [(P_i \cdot D) - (P_{i-1} \cdot D)] \\ & = & 1 + [w_i(P_kP_{k+1}) - w_{i-1}(P_kP_{k+1})] \\ & = & 1 + [w_i(P_k) + w_i(P_{k+1})] - [w_{i-1}(P_k) + w_{i-1}(P_{k+1})] \\ & = & 1 + 2w_i(P_i) - 2w_{i-1}(P_{i-1}) \\ & = & 1 + 2[e(x,y^{i+1}) - e(x,y^i)] \\ & = & 3 \end{array}$$

since $P_i = (x, y^{i+1})$ for $1 \le i \le k$. Finally, we multiply $P_{i-1} \supset P_i$ by $E = P_{k+2}$. Let w be the prime divisor associated to P_{k+2} . Then by reciprocity, $w_i(P_{k+2}) = w(P_i) = w(x, y^{i+1})$ for all $1 \le i \le k$:

$$\begin{array}{lll} \lambda(P_{i-1}E/P_iE) & = & \lambda(P_{i-1}/P_i) + [(P_i \cdot E) - (P_{i-1} \cdot E)] \\ & = & \lambda(P_{i-1}/P_i) + [(P_i \cdot P_{k+2}) - (P_{i-1} \cdot P_{k+2})] \\ & = & 1 + [w_i(P_{k+2}) - w_{i-1}(P_{k+2})] \\ & = & 1 + [w(P_i) - w(P_{i-1})] \\ & = & 1 + [(2i+2) - (2i)] \\ & = & 3 \end{array}$$

as in the proof of [2, Theorem 2.1] since $w(y) = w(m) = o(P_{k+2}) = 2$, $w(P_i) = w(x, y^{i+1}) = 2(i+1)$ for $1 \le i \le k$. This proves Claim 3.

Let us denote $C = P_k^2$, $D = P_k P_{k+1}$, and $E = P_{k+2}$. We have constructed all the successive v-ideals from m to $P_k E$ using Claim 1, Claim 2, Claim 3 as

follows:

$$m \supset P_1 \supset P_2 \supset \cdots \supset P_k \supset P_{k+1}$$

$$\supset mP_k \supset mP_{k+1} \supset \cdots \supset C = P_kP_k \supset D = P_kP_{k+1} \supset E = P_{k+2}$$

$$\supset mC \supset mD \supset mE \supset P_1C \supset P_1D \supset P_1E \supset \cdots$$

$$\supset P_kC = P_k^3 \supset P_kD = P_k^2P_{k+1} \supset P_kE = P_kP_{k+2}.$$

The v-values of ideals in the last row are 9k+9, 9k+10, 9k+11 since P_k^2 is the conductor ideal by Claim 2. Let M be the v-successor of P_kP_{k+2} , i.e., v(M)=9k+12. Then, M is either simple or a product of $P_i's$ for $0 \le i \le k+2$. Since $\mathfrak{m}C=\mathfrak{m}P_k^2\supset M$, the order of M is 3, too. Therefore, M can be factored into $P_{k+2}P_i$ for $i \le k+1$, or it is a product of three P_i 's for $i \le k+1$.

If the former, i.e., $P_{k+2}|M$, then $P_kP_{k+2}\supset M=P_iP_{k+2}$ for some $P_k\supset P_i$, hence $M=P_{k+2}P_{k+1}$. However,

$$\lambda(P_k P_{k+2} / P_{k+1} P_{k+2}) = 1 + w(P_{k+1}) - w(P_k) > 1$$

since $P_k \supset P_{k+1}$ are w-ideals, where w is the prime divisor associated to P_{k+2} of order 2. Therefore, $P_{k+2} \nmid M$.

For the latter, let us assume that $M=P_{k+1}P_iP_j$ for some $i,j\leq k$. Then, v(M)=(3k+4)+(3i+3)+(3j+3)=9k+12 which implies that 6k+2=3(i+j), this is also a contradiction. Therefore, $P_{k+1}\nmid M$ either. Finally, suppose that $P_k|M$, i.e., $M=P_kL$ for some integrally closed ideal L. Since $P_kP_{k+2}\supset M$ are adjacent, $P_{k+2}\supset L$ are also adjacent v-ideals. Therefore, we show that $L=\mathfrak{m}P_k^2$ and $M=P_k(\mathfrak{m}P_k^2)=\mathfrak{m}P_k^3$ has order 4, contradiction. Therefore, $M=P_iP_jP_\ell$ for $i,j,\ell< k$. Therefore, $v(M)=3(i+j+\ell)+9=9k+12$ implies that $3k+1=i+j+\ell<3k$, a contradiction.

Therefore, we conclude that M is simple of order 3 with v(M) = 9k + 12, i.e., $M = P_{k+3}$ is the simple complete ideal associated to v adjacent to $P_{k+2}P_k$. The above sequence of v-ideals are the complete sequence of v-ideals from \mathfrak{m} to $P = P_{k+3}$. We also have $\operatorname{rank}(P) = k + 3 = \lceil \frac{b+7}{3} \rceil$ since b = 3k.

3. The conductor ideal and the value semigroup v(R) of a satellite simple valuation ideal P of order 3

In the previous section, we described the complete sequence of v-ideals associated to a simple integrally closed ideal P of order 3. In particular, we measure n_i , the number of nonmaximal simple v-ideals of order i for i = 1, 2, 3 in the case of when P is a satellite simple complete ideal of order 3.

In describing the v-ideals from \mathfrak{m} to the smallest simple v-ideal P, we also found the factorization of the v-predecessor of P in terms of larger simple v-ideals.

Theorem 3.1. Let P, v be as in Theorem 2.1. Let v(y) = 3, $v(x) = 3 + b_v$, where $\mathfrak{m} = (x, y)$. Let $b_v = 3k + i$ for i = 0, 1, 2. Then, the v-predecessor of P

(i)
$$P_{k+2}P_{k+1}$$
, if $b_v = 2$

(ii) $P_{k+2}P_k$, otherwise.

Proof. We denote b_v by b.

- (i) If b=1, then the v-predecessor of P is $\mathfrak{m}P_2$ since k=0 and $P=P_3$ by Proposition 2.2.
- (ii) If b=2, then the v-predecessor of $P=P_{k+3}=P_3$ is $P_2P_1=P_{k+2}P_{k+1}$ since k = 0 by Proposition 2.3.
 - (iii) If b = 3k + 1 for $k \ge 1$, we refer to the proof of Proposition 2.4.
- (iv) If b = 3k + 2 for $k \ge 1$, then $P_{k+2}P_k$ is the v-predecessor of $P = P_{k+3}$ by Proposition 2.5.
- (v) If b = 3k for $k \ge 1$, then the v-predecessor of $P = P_{k+3}$ is $P_{k+2}P_k$ by Proposition 2.6.

We also obtained the unique factorization of the conductor ideal C in the previous section. The conductor ideal of P (or v) is the v-ideal C such that for any successive v-ideals $J \supset J'$ smaller than C have v(J') = v(J) + 1. It is known that C = L : m for the largest v-ideal L of order o(P) [7, Theorem 2.2]. Using this we obtained the conductor ideal of v in Section 2.

Corollary 3.2. Let P, v be as in Theorem 2.1. Let v(y) = 3, $v(x) = 3 + b_v$, where $\mathfrak{m}=(x,y)$. Let $b_v=3k+i$ for i=0,1,2. Then, the conductor ideal of P is as follows:

- (i) $C = P_k P_{k+1}, v(C) = 6k + 8$ if $b_v = 3k + 2, k \ge 0$
- (ii) $C = P_k P_k, v(C) = 6k + 6$ otherwise.

Proof. Let $b_v = b$ and b = 3k + i for i = 0, 1, 2. If b = 3k, we assume $k \ge 1$.

- (i) If b=2, then the conductor ideal is $\mathfrak{m}P_1=P_kP_{k+1}$ of v-value 8=6k+8. It was shown that rank(P) = 3 in by Proposition 2.3. If $k \geq 1$, then it was shown that $C = P_k P_{k+1}$ of v-value 6k + 8 by Proposition 2.5.
- (ii) If b=1, it was shown that the conductor ideal is $C=\mathfrak{m}^2=P_kP_k$ with v(C) = 6 = 6k + 6 since k = 0 in Proposition 2.2. It was also shown that the conductor ideal of $P = P_{k+3}$ is $P_k P_k$ with v(C) = 6k + 6 in Proposition 2.4, Proposition 2.6 for $k \geq 0$.

We showed that there exists a unique simple v-ideal P_{k+2} of order 2, i.e., $n_2 = 1$ for a satellite simple complete ideal P in Theorem 2.1. In Corollary 3.2, we showed the factorization of the conductor ideal. Note that $\mathfrak{m}C$ is the largest v-ideal of order 3, we have $\lambda(C/\mathfrak{m}C)=4$. Hence, we showed that the simple v-ideal P_{k+2} of order 2 is in between C and $\mathfrak{m}C$ as follows.

Corollary 3.3. Let P, v be as in Theorem 2.1. Let v(y) = 3, $v(x) = 3 + b_v$, where $\mathfrak{m}=(x,y)$. Let $b_v=3k+i$ for i=0,1,2. Then, the successive v-ideals from C to $\mathfrak{m}C$ are as follows:

- $\begin{array}{ll} \text{(i)} \ \ C=P_kP_{k+1}\supset P_{k+2}\supset P_{k+1}^2\supset \mathfrak{m}C \quad if \quad b_v=3k+2, \ k\geq 0 \\ \text{(ii)} \ \ C=P_kP_k\supset P_kP_{k+1}\supset P_{k+2}\supset \mathfrak{m}C \ \ otherwise. \end{array}$

Proof. Let us denote b_v by b. (i) If b=2, then $C=\mathfrak{m}P_1\supset P_2\supset P_1^2\supset \mathfrak{m}^2P_1$ are consecutive v-ideals of v-values 8,9,10,11 as in Proposition 2.2. We also showed that

$$C = P_k P_{k+1} \supset P_{k+2} \supset P_{k+1}^2 \supset \mathfrak{m}C$$

are the consecutive v-ideals of v-values 6k+8, 6k+9, 6k+10, 6k+11 in Proposition 2.5 for $k \ge 1$ case as well.

(ii) If b = 1, then k = 0 and these are

$$C = \mathfrak{m}^2 \supset \mathfrak{m}P_1 \supset P_2 \supset \mathfrak{m}^3$$

are the such ideals of v-values 6k+6, 6k+7, 6k+8, 6k+9 in Proposition 2.2. If b=3k+1 for $k\geq 1$, then

$$C = P_k P_k \supset P_k P_{k+1} \supset P_{k+2} \supset \mathfrak{m}C$$

are consecutive v-ideals from C whose v-values are 6k+6, 6k+7, 6k+8, 6k+9 in Proposition 2.4. The same is true if b=3k for $k\geq 1$ as in Proposition 2.6. \square

Corollary 3.4. Let P, v be as in Theorem 2.1. Let v(y) = 3, $v(x) = 3 + b_v$, where $\mathfrak{m} = (x, y)$. Let $b_v = 3k + i$ for i = 0, 1, 2 and $k \geq 0$. Then, the value semigroup v(R) is as follows:

- (i) $v(R) = \mathbf{N} \setminus \{3i+1, 3j+2 \mid 0 \le i \le k, 0 \le j \le 2k+1\}$ if $b_v = 3k+1, k \ge 0$,
- (ii) $v(R) = \mathbf{N} \setminus \{3i+2, 3j+1 \mid 0 \le i \le k, \ 0 \le j \le 2k+2\} \text{ if } b_v = 3k+2, \ k \ge 0,$
- (iii) $v(R) = \mathbf{N} \setminus \{3i+1, 3j+2 \mid 0 \le i \le k, \ 0 \le j \le 2k+1\}$ or
 - $v(R) = \mathbf{N} \setminus \{3i + 2, 3j + 1 \mid 0 \le i \le k, 0 \le j \le 2k + 1\} \text{ if } b_v = 3k, k \ge 1.$

Proof. Let us denote b_v by b. We can prove (i) by Proposition 2.2 and Proposition 2.4. Note that $v(R) = \mathbb{N} \setminus \{1, 2, 5\}$ if b = 1. We can prove (ii) by Proposition 2.3 and Proposition 2.5. Note that $v(R) = \mathbb{N} \setminus \{1, 2, 4, 7\}$ if b = 2. We prove (iii) the proof of Proposition 2.6. In case of (iii), $v(R) = \mathbb{N} \setminus \{3i + 1\}_{0 \le i \le k} \cup \{3j + 2\}_{0 \le j \le 2k+1}$ if $v(P_{k+1}) = 3k + 4$. If $v(P_{k+1}) = 3k + 5$, then $v(R) = \mathbb{N} \setminus \{3i + 2\}_{0 \le i \le k} \cup \{3j + 1\}_{0 \le j \le 2k+1}$.

References

- S. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 70–99.
- [2] J. Hong, H. Lee, and S. Noh, Simple valuation ideals of order two in 2-dimensional regular local rings, Commun. Korean Math. Soc. 20 (2005), no. 3, 427–436.
- [3] M. A. Hoskin, Zero-dimensional valuation ideals associated with plane curve branches, Proc. London Math. Soc. 6 (1956), no. 3, 70–99.
- [4] C. Huneke, Integrally closed ideals in two-dimensional regular local rings, Proc. Microprogram, in: Commutative Algebra, June 1987, MSRI Publication Series, Vol. 15, Springer-Verlag, New York, 1989, 325–337.
- [5] C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 481–500.
- [6] J. Lipman, On complete ideals in regular local rings, in: Algebraic Geometry and Commutative Algebra, Collected Papers in Honor of Massayoshi Nagata, Academic Press, New York, 1988, pp. 203–231.

- [7] ______, Adjoints and polars of simple complete ideals in two-dimensional regular local rings, Bull. Soc. Math. Belgique 45 (1993), 223–244.
- [8] _____, Proximity inequalities for complete ideals in two-dimensional regular local rings, Contemporary Math. 159 (1994), 293–306.
- [9] S. Noh, The value semigroups of prime divisors of the second kind on 2-dimensional regular local rings, Trans. Amer. Math. Soc. **336** (1993), 607–619.
- [10] ______, Sequence of valuation ideals of prime divisors of the second kind in 2-dimensional regular local rings, J. Algebra 158 (1993), 31–49.
- [11] ______, Adjacent integrally closed ideals in dimension two, J. Pure and Applied Algebra 85 (1993), 163–184.
- [12] _____, Powers of simple complete ideals in two-dimensional reular local rings, Comm. Algebra 23 (1995), no. 8, 3127–3143.
- [13] ______, Valuation ideals of order one in two-dimensional regular local rings, Comm. Algebra 28 (2000), no. 2, 613–624.
- [14] ______, Valuation ideals of order two in 2-dimensional regular local rings, Math. Nachr. **261-262** (2003) 123–140.
- [15] P. Ribenboim, The Theory of Classical Valuations, Sringer-Verlag, New York, 1999.
- [16] O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math. 60 (1938) 151–204.
- [17] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, D. Van Nostrand, Princeton, 1960.

DEPARTMENT OF MATHEMATICS EDUCATION

EWHA WOMANS UNIVERSITY

Seoul 120-750, Korea

E-mail address: noh@ewha.ac.kr