• Title/Summary/Keyword: *-prime ring and *-ideal

Search Result 157, Processing Time 0.03 seconds

ON JORDAN IDEALS IN PRIME RINGS WITH GENERALIZED DERIVATIONS

  • Bennis, Driss;Fahid, Brahim;Mamouni, Abdellah
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.495-502
    • /
    • 2017
  • Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. Let F and G be two generalized derivations with associated derivations f and g, respectively. Our main result in this paper shows that if F(x)x - xG(x) = 0 for all $x{\in}J$, then R is commutative and F = G or G is a left multiplier and F = G + f. This result with its consequences generalize some recent results due to El-Soufi and Aboubakr in which they assumed that the Jordan ideal J is also a subring of R.

Results of Graded Local Cohomology Modules with respect to a Pair of Ideals

  • Dehghani-Zadeh, Fatemeh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Let $R ={\oplus}_{n{\in}Z}R_n$ be a graded commutative Noetherian ring and let I be a graded ideal of R and J be an arbitrary ideal. It is shown that the i-th generalized local cohomology module of graded module M with respect to the (I, J), is graded. Also, the asymptotic behaviour of the homogeneous components of $H^i_{I,J}(M)$ is investigated for some i's with a specified property.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.

DERIVATIONS OF PRIME AND SEMIPRIME RINGS

  • Argac, Nurcan;Inceboz, Hulya G.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.997-1005
    • /
    • 2009
  • Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+$yd(x))^n$ = xy + yx for all x, y $\in$ I, then R is commutative. (ii) If char R $\neq$ = 2 and (d(x)y + xd(y) + d(y)x + $yd(x))^n$ - (xy + yx) is central for all x, y $\in$ I, then R is commutative. We also examine the case where R is a semiprime ring.

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF

DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS

  • Dhara, Basudeb;Kar, Sukhendu;Mondal, Sachhidananda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1651-1657
    • /
    • 2013
  • Let R be a prime ring, I a nonzero ideal of R, $d$ a derivation of R, $m({\geq}1)$, $n({\geq}1)$ two fixed integers and $a{\in}R$. (i) If $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx))^m=0$ for all $x,y{\in}I$, then either $a=0$ or R is commutative; (ii) If $char(R){\neq}2$ and $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx)){\in}Z(R)$ for all $x,y{\in}I$, then either $a=0$ or R is commutative.

Using Survival Pairs to Characterize Rings of Algebraic Integers

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.187-191
    • /
    • 2017
  • Let R be a domain with quotient field K and prime subring A. Then R is integral over each of its subrings having quotient field K if and only if (A, R) is a survival pair. This shows the redundancy of a condition involving going-down pairs in a earlier characterization of such rings. In characteristic 0, the domains being characterized are the rings R that are isomorphic to subrings of the ring of all algebraic integers. In positive (prime) characteristic, the domains R being characterized are of two kinds: either R = K is an algebraic field extension of A or precisely one valuation domain of K does not contain R.

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.