DERIVATIONS OF PRIME AND SEMIPRIME RINGS

NURCAN ARGAÇ AND HULYA G. INCEBOZ

ABSTRACT. Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If $(d(x)y+xd(y)+d(y)x+yd(x))^n =$ xy + yx for all $x, y \in I$, then R is commutative. (ii) If $\operatorname{char} R \neq 2$ and $(d(x)y + xd(y) + d(y)x + yd(x))^n - (xy + yx)$ is central for all $x, y \in I$, then R is commutative. We also examine the case where R is a semiprime ring.

1. Introduction

Throughout the paper R will represent an associative ring with center Z(R). For any $x, y \in R$, the symbol [x, y] stands for the commutator xy - yx. Recall that a ring R is prime if xRy = 0 implies either x = 0 or y = 0, and R is semiprime if xRx = 0 implies x = 0. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$.

In [1], M. Ashraf and N. Rehman proved that if R is a prime ring, I is a nonzero ideal of R and d is a derivation of R such that d(x)y + xd(y) + d(y)x + yd(x) = xy + yx for all $x, y \in I$, then R is commutative. In this paper we shall generalize this result, assuming that n is a fixed positive integer and $(d(xy + yx))^n - (xy + yx)$ is 0 for all $x, y \in I$ or is central for all $x, y \in I$. We obtain some analogous results for semiprime rings in the case I = R.

2. Derivations in prime rings

In all that follows, unless stated otherwise, R will be a prime ring, I a nonzero ideal of R. For any ring S, Z(S) will denote its center.

We will also make frequent use of the following result due to Kharchenko [9] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero twosided ideal of R. Let $f(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n))$ be a differential identity in I, that is,

$$f(r_1, \ldots, r_n, d(r_1), \ldots, d(r_n)) = 0$$
 for all $r_1, \ldots, r_n \in I$.

C2009 The Korean Mathematical Society

Received November 28, 2007; Revised June 20, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16N60; Secondary 16W25.

 $Key\ words\ and\ phrases.$ prime and semiprime rings, left Utumi quotient rings, differential identities, derivations.

One of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that d(x) = [q, x] for all $x \in R$, and I satisfies the generalized polynomial identity

$$f(r_1, \ldots, r_n, [q, r_1], \ldots, [q, r_n]) = 0;$$

or

2) I satisfies the generalized polynomial identity

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=0.$$

Theorem 1. Let R be a prime ring and I a nonzero ideal of R, and let n be a fixed positive integer. If R admits a derivation d such that $(d(x)y + xd(y) + d(y)x + yd(x))^n = xy + yx$ for all $x, y \in I$, then R is commutative.

Proof. If d = 0, then xy + yx = 0 for all $x, y \in I$. Replacing y by yz and using the fact that xy = -yx, we find that y[x, z] = 0 for all $x, y, z \in I$ and hence IR[x, z] = 0 for all $x, z \in I$. Since $I \neq 0$ and R is prime, we get [x, z] = 0 for all $x, z \in I$, hence R is commutative.

Now we assume that $d \neq 0$ and $(d(x)y + xd(y) + d(y)x + yd(x))^n = xy + yx$ for all $x, y \in I$. This condition is a differential identity satisfied by I. By using Kharchenko's theorem [9], either d = ad(A) is the inner derivation induced by an element $A \in Q$, the Martindale quotient ring R, or I satisfies the polynomial identity

 $(zy + xw + wx + yz)^n = xy + yx$ for all $x, y \in I$.

In the latter case set z = w = 0 to obtain the identity xy + yx = 0 for all $x, y \in I$. Then R is commutative as we have just seen. Assume now that d = ad(A). Then $([A, x]y + x[A, y] + [A, y]x + y[A, x])^n = xy + yx$ for any $x, y \in I$. Since by [3] I and Q satisfy the same generalized polynomial identities, we have $([A, x]y + x[A, y] + [A, y]x + y[A, x])^n = xy + yx$ for any $x, y \in Q$. Moreover, since Q remains prime by the primeness of R, replacing R by Q we may assume that $A \in R$ and C is the just the center of R. Note that R is a centrally closed prime C-algebra in the present situation [5], i.e., RC = R. By Martindale's theorem in [13], RC (and so R) is a primitive ring. Since R is primitive, there exists a vector space V and a division ring D such that R is a dense ring of D-linear transformations over V.

Assume first that $\dim_D V \geq 3$.

Our aim is to show that for any $v \in V$, v and Av are linearly *D*-dependent. If Av = 0, then $\{v, Av\}$ is *D*-dependent. So we may suppose that $Av \neq 0$. If v and Av are *D*-independent, since $\dim_D V \geq 3$, there exists $w \in V$ such that v, Av, w are also linearly independent. By the density of R, there exist $x, y \in R$ such that:

xv = 0, xAv = w, yv = 0, yAv = 0, yw = v.

Hence we get $(-1)^n v = ([A, x]y + x[A, y] + [A, y]x + y[A, x])^n v = (xy + yx)v = 0$, a contradiction. So v and Av are linearly D-dependent for all $v \in V$. Now we

want to show that there exists $\lambda \in D$ such that $Av = \lambda v$ for any $v \in V$. Now choose $v, w \in V$ linearly independent. Since $\dim_D V \ge 3$, there exists $u \in V$ such that v, w, u are linearly independent. Then $\lambda_v, \lambda_w, \lambda_u \in D$ such that

$$Av = \lambda_v v, \quad Aw = \lambda_w w, \quad Au = \lambda_u u,$$

that is,

$$A(v+w+u) = v\lambda_v + w\lambda_w + u\lambda_u.$$

Moreover $A(v + w + u) = \lambda_{v+w+u}(v + w + u)$ for a suitable $\lambda_{v+w+u} \in D$. Then we have $0 = (\lambda_{v+w+u} - \lambda_v)v + (\lambda_{v+w+u} - \lambda_w)w + (\lambda_{v+w+u} - \lambda_u)u$. Since v, w, u are linearly independent we get $\lambda_v = \lambda_w = \lambda_u = \lambda_{v+w+u}$, that is, λ does not depend on the choice of v. So there exists $\lambda \in D$ such that $Av = \lambda v$ for all $v \in V$.

Now for any $r \in R$, $v \in V$ we get $Av = v\lambda$, $r(Av) = r(v\lambda)$ and also $A(rv) = (rv)\lambda$. Thus 0 = [A, r]v for any $v \in V$, that is, [A, r]V = 0. Since V is a left faithful irreducible R-module, [A, r] = 0 for all $r \in R$, i.e., $A \in Z(R)$ and d = 0, which contradicts our hypothesis.

Therefore $\dim_D V$ must be ≤ 2 . In this case R is a simple GPI ring with 1, and so it is a central simple algebra finite dimensional over its center. From Lemma 2 in [11] it is clear that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the same generalized polynomial identity as R.

If we assume $k \ge 3$, by the same argument as in the above, we get a contradiction.

If k = 1, then it is clear that R is commutative. Thus we may assume $R \subseteq M_2(F)$, where $M_2(F)$ satisfies the generalized polynomial identity $([A, x]y + x[A, y] + [A, y]x + y[A, x])^n = xy + yx$.

Let us denote [A, x]y + x[A, y] + [A, y]x + y[A, x] by K. If we choose $x = e_{12}, y = e_{21}$, then K = 0. Hence we get $0 = K^n = xy + yx = e_{11} + e_{22} \neq 0$, a contradiction. Therefore k = 1, i.e., R is commutative.

Lemma 1. Let $R = M_s(F)$, the ring of $s \times s$ matrices over a field F of characteristic $\neq 2$, n a fixed positive integer. If there exists a nonzero matrix A in R such that $([A, x]y + x[A, y] + [A, y]x + y[A, x])^n - (xy + yx) \in F$ for any $x, y \in R$, then A is central.

Proof. Assume that $s \ge 3$. Let i, j, r be distinct indices and $A = \sum a_{mn}e_{mn}$, with $a_{mn} \in F$. Suppose that A is not diagonal. Let $a_{ij} \ne 0$ for fixed $i \ne j$. If we choose $x = e_{jr}, y = e_{ri}$ with i, j, r distinct indices, then $xy + yx = e_{ji}$. Let us denote [A, x]y + x[A, y] + [A, y]x + y[A, x] = [A, xy + yx] by K. Then

$$K = Ae_{ji} - e_{ji}A$$

and

$$K^n = \sum_{l+t=n} (-1)^l (e_{ji}A)^l (Ae_{ji})^t.$$

j

By the hypothesis we have

(M)
$$\sum_{l+t=n} (-1)^l (e_{ji}A)^l (Ae_{ji})^t - (e_{ji}) \in F.$$

All the entries of this matrix are

- (j, i) entries and we don't care about them;
- the entries from the terms $(Ae_{ii})^n$ and $(e_{ii}A)^n$.

In particular from $(Ae_{ji})^n$, consider all the entries $a_{hj}a_{ij}^{n-1}e_{hi}$ for any $h \neq j, i$. First of all notice that these entries don't occur in $(e_{ji}A)^n$. Since $h \neq i$ and (M) must be central, it follows that $a_{hj}a_{ij}^{n-1} = 0$ for any $h \neq j, i$. Since $a_{ij} \neq 0$, we obtain $a_{hj} = 0$ for all $h \neq i, j$. Now, if we choose

 $xy + yx = e_{jk}$ for a fixed $k \neq i, j$, we have that

(M')
$$\sum_{l+t=n} (-1)^l (e_{jk}A)^l (Ae_{jk})^t - (e_{jk}) \in F.$$

But we know that $a_{kj} = 0$ for all $k \neq i, j$, that is, the matrix (M') is reduced to $e_{jk} \in F$, a contradiction. Therefore $a_{ij} = 0$ for all $i \neq j$, i.e., A is diagonal. Now we suppose that s = 2. Then we have

 $[A, xy + yx]^n - (xy + yx) \in F$ and $R = M_2(F)$.

If n = 1, then $K - (xy + yx) \in F$. Choose $x = e_{11}, y = e_{12}$ so that $xy + yx = e_{12}$. Hence $B = [A, e_{12}] - e_{12} \in F$. In the matrix $B = \sum_{i,j} b_{ij} e_{ij}$ we must have $b_{11} = b_{22}$. Moreover one can see that $b_{11} = -a_{21}$ and $b_{22} = a_{21}$. Then we have $2a_{21} = 0$. Since char $R \neq 2$, we get $a_{21} = 0$. Similarly we can see that $a_{12} = 0$. Therefore A is a diagonal matrix.

Let n = 2 and $K = \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix}$. So we get

$$K^{2} = \begin{pmatrix} k_{11}^{2} + k_{12}k_{21} & k_{11}k_{12} + k_{12}k_{22} \\ k_{21}k_{11} + k_{22}k_{21} & k_{21}k_{12} + k_{22}^{2} \end{pmatrix}.$$

Moreover since K = [A, xy + yx] we get trace(K) = 0, that is, $k_{11} + k_{22} = 0$. By using the this fact, we have

$$K^{2} = \begin{pmatrix} k_{11}^{2} + k_{12}k_{21} & 0\\ 0 & k_{21}k_{12} + k_{11}^{2} \end{pmatrix} \text{ and hence } K^{2} \in F.$$

Therefore when n is even, we have $K^n \in F$. So we get $xy + yx \in F$. Choose $x = e_{11}, y = e_{12}$, so that $xy + yx = e_{12} \in F$, a contradiction.

If n = 2t + 1 is odd, then for any $x, y \in R$, there exists $\gamma \in F$ such that

$$[A, xy + yx]^{2t}[A, xy + yx] = (xy + yx) + \gamma.$$

Moreover there exists $\beta \in F$ such that $[A, xy + yx]^{2t} = \beta$, say

$$\beta[A, xy + yx] = (xy + yx) + \gamma.$$

In particular pick $x = e_{11}, y = e_{12}$, then there exist $\beta, \gamma \in F$ such that

$$\beta[A, e_{12}] = e_{12} + \gamma$$

If $\beta = 0$, then $e_{12} \in F$ -a contradiction. Hence it follows that $\beta \neq 0$ and we have

$$B = \beta[A, e_{12}] - e_{12} \in F.$$

In the matrix $B = \sum_{i,j} b_{ij} e_{ij}$ we must have $b_{11} = b_{22}$. Moreover one can see that:

$$-\beta a_{21} = b_{11}$$
 and $b_{22} = \beta a_{21}$.

Then we have $2a_{21} = 0$. Since char $F \neq 2$, we get $a_{21} = 0$. Similarly we can see that $a_{12} = 0$. Therefore A is a diagonal matrix in any case, unless s=1 and R is commutative.

For any φ the inner automorphism on $M_k(F)$, we have $[\varphi(A), \varphi(x)\varphi(y) + \varphi(y)\varphi(x)]^n - (\varphi(x)\varphi(y) + \varphi(y)\varphi(x)) \in F$ for all $x, y \in F$ and so, by the previous case, $\varphi(A)$ must be a diagonal matrix in $M_2(F)$. In particular, if $\varphi(x) = (1 - e_{ij})x(1 + e_{ij})$ for $i \neq j$, then $\varphi(A) = \sum_t a_{tt}e_{tt} + (a_{ii} - a_{jj})e_{ij}$ must be diagonal, that is $a_{ii} = a_{jj}$ for $i \neq j$. Hence A is a central matrix. \Box

Theorem 2. Let R be a prime ring with char $R \neq 2$, I a nonzero ideal of R and n a fixed positive integer. If R admits a derivation d such that $(d(x)y + xd(y) + d(y)x + yd(x))^n - (xy + yx) \in Z(R)$ for all $x, y \in I$, then R is commutative.

Proof. If d = 0, then $xy + yx \in Z(R)$ for all $x, y \in I$ and R satisfies the same identities. In this case the identity is polynomial so that there exists a field F such that R and F_n satisfy the same identities. Thus pick $x = e_{12}$, and $y = e_{22}$ and $xy + yx = e_{12} \notin Z(R)$, a contradiction. Therefore n = 1 and R is commutative. We may assume that $d \neq 0$.

If $(d(x)y + xd(y)) + d(y)x + yd(x))^n = xy + yx$ for all $x, y \in I$, then R is commutative by Theorem 1. Otherwise we have $I \cap Z(R) \neq 0$ by our assumptions. Let now J be a nonzero two-sided ideal of R_Z , the ring of the central quotients of R. Since $J \cap R$ is an ideal of R, then $J \cap R \cap Z(R) \neq 0$. Hence that is J contains an invertible element in R_Z , and so R_Z is simple with 1. By the hypothesis for any $x, y \in I$ and $r \in R$, thus I satisfies the differential identity

$$[(d(x)y + xd(y) + d(y)x + yd(x))^{n} - (xy + yx), r] = 0.$$

If d is not inner, then I satisfies the polynomial identity

$$[(zy + xw + yz + wx)^{n} - (xy + yx), r] = 0$$

by Kharchenko's theorem; and setting z = w = 0 yields the identity [xy + yx, r] = 0. In this case it is well known that there exists a field F such that R and F_m satisfy the same polynomial identities. Thus xy + yx is central in F_m . Suppose $m \ge 2$ and choose $x = e_{12}, y = e_{22}$. Then $xy + yx = e_{12} \notin Z(R)$ contrary to our assumptions. This forces $m \le 1$, i.e., R is commutative.

Now let d be an inner derivation induced by an element $A \in Q$. Since $d \neq 0$ we may assume that $0 \neq A$. By localizing R at Z(R) it is easy to see that $([A, x]y + x[A, y] + [A, y]x + y[A, x])^n - (xy + yx) \in Z(R_Z)$ for any $x, y \in R_Z$. Since R and R_Z satisfy the same polynomial identities, in order to prove that R satisfies $s_4(x_1, x_2, x_3, x_4)$, we may assume that R is simple

with 1. In this case, $([A, x]y + x[A, y] + [A, y]x + y[A, x])^n - (xy + yx) \in Z(R)$ for all $x, y \in R$. Therefore R satisfies a generalized polynomial identity and it is simple with 1, which implies that Q = RC = R and R has a minimal right ideal. Thus $A \in R = Q$ and R is simple Artinian; that is, $R = D_k$, where D is a division ring finite dimensional over Z(R) by [13]. Then it follows that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the generalized polynomial identity $[([A, x]y + x[A, y] + [A, y]x + y[A, x])^n - (xy + yx), r] = 0$ by [11, Lemma 2]. By Lemma 1, R is commutative. \Box

Corollary 1. Let R be a prime ring, I a nonzero ideal of R and d a derivation of R.

(i) If $d(x)x + xd(x) = x^2$ for all $x \in I$, then R is commutative.

(ii) If char $R \neq 2$ and $d(x)x + xd(x) - x^2 \in Z(R)$ for all $x \in I$, then R is commutative.

Proof. (i) Linearizing $d(x)x + xd(x) = x^2$ for all $x \in I$ we get d(x)y + xd(y) + d(y)x + yd(x) = xy + yx for all $x, y \in I$. Now apply Theorem 1 for n = 1. Similarly (ii) can be proved by using Theorem 2.

The following examples show that we cannot omit the primeness condition on Theorem 1.

Example. Let S be any commutative ring.

(i) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in S \right\}$$
 and $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in S \right\}$.

Define $d: R \to R$ by $d\left(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$. Then R is a ring under the usual operations. It is easy to see that I is a nonzero ideal of R and d is a nonzero derivation of R such that for all positive integers $n (d(x)y + xd(y) + d(y)x + yd(x))^n = xy + yx$ for all $x, y \in I$ but R is not commutative.

(ii) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in S \right\}$$
 and $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in S \right\}.$

Define $d: R \to R$ by $d\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} 0 & a-b-c \\ 0 & 0 \end{pmatrix}$. Then R is a ring under the usual operations. It is easy to see that I is a nonzero ideal of R and d is a nonzero derivation of R such that d(x)y+xd(y)+d(y)x+yd(x) = xy+yx for all $x, y \in I$ but R is not commutative.

3. Derivations in semiprime rings

In all that follows, R will be a semiprime ring. We will make use of the left Utumi quotient ring U of R. So we need to mention that the definition, the axiomatic formulation and the properties of this quotient ring can be found in [2], [6], [10].

In order to prove that the same results are also valid for a semiprime ring R rather than any nonzero ideal of R, we will make use of the following facts:

Claim 1 ([2, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended to a derivation of its left Utumi quotient ring U and so any derivation of R can be defined on the whole U.

Claim 2 ([2, p. 38]). If R is a semiprime ring, then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.

Claim 3 ([2, p. 42]). Let *B* be the set of all the idempotents in *C*, the extended centroid of *R*. Assume *R* is a *B*-algebra which is orthogonal complete. For any maximal ideal *P* of *B*, *PR* forms a minimal prime ideal of *R*, which is invariant under any derivation of *R*.

Theorem 3. Let R be a semiprime ring and n a fixed positive integer. If R admits a derivation d such that $(d(x)y + xd(y) + d(y)x + yd(x))^n = xy + yx$ for all $x, y \in R$, then R is a commutative ring.

Proof. Since R is semiprime, by Claim 2, Z(U) = C, the extended centroid of R, and, by Claim 1, derivation d can be uniquely extended on U. Since U and R satisfy the same differential identities (see [12]), then $(d(x)y + xd(y) + d(y)x + yd(x))^n = xy + yx$ for all $x, y \in U$. Let B be the complete boolean algebra of idempotents in C and M be any maximal ideal of B.

Since U is a B-algebra which is orthogonal complete (see [12], p. 42, (2) of Fact 1), by Claim 3, MU is a prime ideal of U, which is d-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by d on U. Therefore \overline{d} satisfies in \overline{U} the same property of d on U. In particular \overline{U} is a prime ring and so, by Theorem 1, for all maximal ideals M of B we obtain that $[U,U] \subseteq MU$. Therefore $[U,U] \subseteq \bigcap_M MU = 0$. In particular R is commutative. \Box

Theorem 4. Let R be a 2-torsion free semiprime ring and n a fixed positive integer. If R admits a derivation d such that $(d(x)y+xd(y)+d(y)x+yd(x))^n - (xy+yx) \in Z(R)$ for all $x, y \in R$, then R is commutative.

Proof. By Claim 2, Z(U) = C, and by Claim 1, *d* can be uniquely defined on whole *U*. Since *U* and *R* satisfies the same differential identities $(d(x)y+xd(y)+d(y)x+yd(x))^n - (xy+yx) \in Z(U)$ for all $x, y \in U$. Let *B* the complete boolean algebra of idempotents in *C* and *M* any maximal ideal of *B*. As already pointed out in the proof of Theorem 3, *U* is a *B*-algebra which is orthogonal complete and by Claim 3, *MU* is a prime ideal of *U*, which is *d*-invariant. Let \overline{d} be the derivation induced by *d* on $\overline{U} = U/MU$. Since $Z(\overline{U}) = (C + MU)/MU =$ C/MU, then $(\overline{d}(x)y + x\overline{d}(y) + \overline{d}(y)x + y\overline{d}(x))^n - (xy + yx) \in (C + MU)/MU$ for any $x, y \in \overline{U}$. Moreover \overline{U} is a prime ring, hence we may conclude \overline{U} is commutative by Theorem 2. This implies that, for any maximal ideal *M* of *B*, we have $[U,U] \subseteq MU$. Hence $[U,U] \subseteq \bigcap_M MU = 0$. In particular *R* is commutative. \Box **Corollary 2.** Let R be a semiprime ring and d a nonzero derivation of R.

(i) If $d(x)x + xd(x) = x^2$ for all $x \in R$, then R is commutative.

(ii) If R is 2-torsion free and $d(x)x + xd(x) - x^2 \in Z(R)$ for all $x \in R$, then R is commutative.

Proof. (i) Linearizing $d(x)x + xd(x) = x^2$ for all $x \in R$, we get $(d(x)y + xd(y) + d(y)x + yd(x))^n - (xy + yx) = 0$ for all $x, y \in R$. Then R is commutative by Theorem 3.

Similarly (ii) can be proved by using Theorem 4.

Acknowledgement. Authors would like to thank referee for his/her valuable suggestions and comments.

References

- M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1-2, 3–8.
- [2] K. I. Beidar, W. S. Martindale, and V. Mikhalev, *Rings with Generalized Identities*, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
- [3] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728.
- [4] _____, Hypercentral derivations, J. Algebra 166 (1994), no. 1, 39–71.
- [5] J. S. Erickson, W. S. Martindale III, and J. M. Osborn, *Prime nonassociative algebras*, Pacific J. Math. **60** (1975), no. 1, 49–63.
- [6] C. Faith, Lecture on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, No. 49 Springer-Verlag, Berlin-New York, 1967.
- [7] Y. Hirano, A. Kaya, and H. Tominaga, On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), no. 2, 125–132.
- [8] N. Jacobson, PI-Algebras: An Introduction, Lecture Notes in Mathematics, Vol. 441. Springer-Verlag, Berlin-New York, 1975.
- [9] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220–238, 242–243.
- [10] J. Lambek, Lecture on Rings and Modules, With an appendix by Ian G. Connell Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London 1966.
- [11] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731–734.
- [12] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27–38.
- [13] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.

NURCAN ARGAÇ DEPARTMENT OF MATHEMATICS SCIENCE FACULTY EGE UNIVERSITY 35100, BORNOVA, IZMIR, TURKEY *E-mail address:* nurcan.argac@ege.edu.tr

HULYA G. INCEBOZ DEPARTMENT OF MATHEMATICS SCIENCE AND ART FACULTY ADNAN MENDERES UNIVERSITY 09010, AYDIN, TURKEY *E-mail address*: hinceboz@adu.edu.tr