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DERIVATIONS OF PRIME AND SEMIPRIME RINGS

Nurcan Argaç and Hulya G. Inceboz

Abstract. Let R be a prime ring, I a nonzero ideal of R, d a derivation
of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+yd(x))n =
xy + yx for all x, y ∈ I, then R is commutative. (ii) If charR 6= 2 and
(d(x)y + xd(y) + d(y)x + yd(x))n − (xy + yx) is central for all x, y ∈ I,
then R is commutative. We also examine the case where R is a semiprime
ring.

1. Introduction

Throughout the paper R will represent an associative ring with center Z(R).
For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx. Recall
that a ring R is prime if xRy = 0 implies either x = 0 or y = 0, and R is
semiprime if xRx = 0 implies x = 0. An additive mapping d : R → R is called
a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R.

In [1], M. Ashraf and N. Rehman proved that if R is a prime ring, I is
a nonzero ideal of R and d is a derivation of R such that d(x)y + xd(y) +
d(y)x + yd(x) = xy + yx for all x, y ∈ I, then R is commutative. In this paper
we shall generalize this result, assuming that n is a fixed positive integer and
(d(xy + yx))n − (xy + yx) is 0 for all x, y ∈ I or is central for all x, y ∈ I. We
obtain some analogous results for semiprime rings in the case I = R.

2. Derivations in prime rings

In all that follows, unless stated otherwise, R will be a prime ring, I a
nonzero ideal of R. For any ring S, Z(S) will denote its center.

We will also make frequent use of the following result due to Kharchenko [9]
(see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-
sided ideal of R. Let f(x1, . . . , xn, d(x1), . . . , d(xn)) be a differential identity in
I, that is,

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0 for all r1, . . . , rn ∈ I.
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One of the following holds:
1) Either d is an inner derivation in Q, the Martindale quotient ring of R,

in the sense that there exists q ∈ Q such that d(x) = [q, x] for all x ∈ R, and I
satisfies the generalized polynomial identity

f(r1, . . . , rn, [q, r1], . . . , [q, rn]) = 0;

or
2) I satisfies the generalized polynomial identity

f(x1, . . . , xn, y1, . . . , yn) = 0.

Theorem 1. Let R be a prime ring and I a nonzero ideal of R, and let n be
a fixed positive integer. If R admits a derivation d such that (d(x)y + xd(y) +
d(y)x + yd(x))n = xy + yx for all x, y ∈ I, then R is commutative.

Proof. If d = 0, then xy + yx = 0 for all x, y ∈ I. Replacing y by yz and using
the fact that xy = −yx, we find that y[x, z] = 0 for all x, y, z ∈ I and hence
IR[x, z] = 0 for all x, z ∈ I. Since I 6= 0 and R is prime, we get [x, z] = 0 for
all x, z ∈ I, hence R is commutative.

Now we assume that d 6= 0 and (d(x)y + xd(y) + d(y)x + yd(x))n = xy + yx
for all x, y ∈ I. This condition is a differential identity satisfied by I. By using
Kharchenko’s theorem [9], either d = ad(A) is the inner derivation induced by
an element A ∈ Q, the Martindale quotient ring R, or I satisfies the polynomial
identity

(zy + xw + wx + yz)n = xy + yx for all x, y ∈ I.

In the latter case set z = w = 0 to obtain the identity xy + yx = 0 for
all x, y ∈ I. Then R is commutative as we have just seen. Assume now that
d = ad(A). Then ([A, x]y+x[A, y]+[A, y]x+y[A, x])n = xy+yx for any x, y ∈ I.
Since by [3] I and Q satisfy the same generalized polynomial identities, we have
([A, x]y + x[A, y] + [A, y]x + y[A, x])n = xy + yx for any x, y ∈ Q. Moreover,
since Q remains prime by the primeness of R, replacing R by Q we may assume
that A ∈ R and C is the just the center of R. Note that R is a centrally closed
prime C-algebra in the present situation [5], i.e., RC = R. By Martindale’s
theorem in [13], RC (and so R) is a primitive ring. Since R is primitive, there
exists a vector space V and a division ring D such that R is a dense ring of
D-linear transformations over V.

Assume first that dimD V ≥ 3.
Our aim is to show that for any v ∈ V , v and Av are linearly D-dependent. If
Av = 0, then {v, Av} is D-dependent. So we may suppose that Av 6= 0. If v
and Av are D-independent, since dimD V ≥ 3, there exists w ∈ V such that
v, Av,w are also linearly independent. By the density of R, there exist x, y ∈ R
such that:

xv = 0, xAv = w, yv = 0, yAv = 0, yw = v.

Hence we get (−1)nv = ([A, x]y+x[A, y]+[A, y]x+y[A, x])nv = (xy+yx)v = 0,
a contradiction. So v and Av are linearly D-dependent for all v ∈ V. Now we
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want to show that there exists λ ∈ D such that Av = λv for any v ∈ V. Now
choose v, w ∈ V linearly independent. Since dimD V ≥ 3, there exists u ∈ V
such that v, w, u are linearly independent. Then λv, λw, λu ∈ D such that

Av = λvv, Aw = λww, Au = λuu,

that is,
A(v + w + u) = vλv + wλw + uλu.

Moreover A(v + w + u) = λv+w+u(v + w + u) for a suitable λv+w+u ∈ D. Then
we have 0 = (λv+w+u − λv)v + (λv+w+u − λw)w + (λv+w+u − λu)u . Since
v, w, u are linearly independent we get λv = λw = λu = λv+w+u, that is, λ
does not depend on the choice of v. So there exists λ ∈ D such that Av = λv
for all v ∈ V.

Now for any r ∈ R, v ∈ V we get Av = vλ, r(Av) = r(vλ) and also A(rv) =
(rv)λ. Thus 0 = [A, r]v for any v ∈ V , that is, [A, r]V = 0. Since V is a
left faithful irreducible R-module, [A, r] = 0 for all r ∈ R, i.e., A ∈ Z(R) and
d = 0, which contradicts our hypothesis.

Therefore dimD V must be ≤ 2. In this case R is a simple GPI ring with 1,
and so it is a central simple algebra finite dimensional over its center. From
Lemma 2 in [11] it is clear that there exists a suitable field F such that R ⊆
Mk(F ), the ring of all k×k matrices over F , and moreover Mk(F ) satisfies the
same generalized polynomial identity as R.

If we assume k ≥ 3, by the same argument as in the above, we get a contra-
diction.

If k = 1, then it is clear that R is commutative. Thus we may assume R ⊆
M2(F ), where M2(F ) satisfies the generalized polynomial identity ([A, x]y +
x[A, y] + [A, y]x + y[A, x])n = xy + yx.

Let us denote [A, x]y + x[A, y] + [A, y]x + y[A, x] by K. If we choose x =
e12, y = e21, then K = 0. Hence we get 0 = Kn = xy + yx = e11 + e22 6= 0, a
contradiction. Therefore k = 1, i.e., R is commutative. ¤

Lemma 1. Let R = Ms(F ), the ring of s × s matrices over a field F of
characteristic 6= 2, n a fixed positive integer. If there exists a nonzero matrix
A in R such that ([A, x]y +x[A, y]+ [A, y]x+ y[A, x])n− (xy + yx) ∈ F for any
x, y ∈ R, then A is central.

Proof. Assume that s ≥ 3. Let i, j, r be distinct indices and A =
∑

amnemn,
with amn ∈ F . Suppose that A is not diagonal. Let aij 6= 0 for fixed i 6= j. If
we choose x = ejr, y = eri with i, j, r distinct indices, then xy + yx = eji. Let
us denote [A, x]y + x[A, y] + [A, y]x + y[A, x] = [A, xy + yx] by K. Then

K = Aeji − ejiA

and
Kn =

∑

l+t=n

(−1)l(ejiA)l(Aeji)t.
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By the hypothesis we have

(M)
∑

l+t=n

(−1)l(ejiA)l(Aeji)t − (eji) ∈ F.

All the entries of this matrix are
• (j, i) entries and we don’t care about them;
• the entries from the terms (Aeji)n and (ejiA)n.

In particular from (Aeji)n, consider all the entries ahja
n−1
ij ehi for any h 6= j, i.

First of all notice that these entries don’t occur in (ejiA)n. Since h 6= i and
(M) must be central, it follows that ahja

n−1
ij = 0 for any h 6= j, i.

Since aij 6= 0, we obtain ahj = 0 for all h 6= i, j. Now, if we choose
xy + yx = ejk for a fixed k 6= i, j, we have that

(M ′)
∑

l+t=n

(−1)l(ejkA)l(Aejk)t − (ejk) ∈ F.

But we know that akj = 0 for all k 6= i, j, that is, the matrix (M ′) is reduced
to ejk ∈ F , a contradiction. Therefore aij = 0 for all i 6= j, i.e., A is diagonal.

Now we suppose that s = 2. Then we have

[A, xy + yx]n − (xy + yx) ∈ F and R = M2(F ).

If n = 1, then K − (xy + yx) ∈ F . Choose x = e11, y = e12 so that
xy + yx = e12. Hence B = [A, e12] − e12 ∈ F . In the matrix B =

∑
i,j bijeij

we must have b11 = b22. Moreover one can see that b11 = −a21 and b22 = a21.
Then we have 2a21 = 0. Since charR 6= 2, we get a21 = 0. Similarly we can see
that a12 = 0. Therefore A is a diagonal matrix.

Let n = 2 and K =
(

k11 k12
k21 k22

)
. So we get

K2 =
(

k2
11 + k12k21 k11k12 + k12k22

k21k11 + k22k21 k21k12 + k2
22

)
.

Moreover since K = [A, xy + yx] we get trace(K) = 0, that is, k11 + k22 = 0.
By using the this fact, we have

K2 =
(

k2
11 + k12k21 0

0 k21k12 + k2
11

)
and hence K2 ∈ F.

Therefore when n is even, we have Kn ∈ F . So we get xy + yx ∈ F . Choose
x = e11, y = e12, so that xy + yx = e12 ∈ F , a contradiction.

If n = 2t + 1 is odd, then for any x, y ∈ R, there exists γ ∈ F such that

[A, xy + yx]2t[A, xy + yx] = (xy + yx) + γ.

Moreover there exists β ∈ F such that [A, xy + yx]2t = β, say

β[A, xy + yx] = (xy + yx) + γ.

In particular pick x = e11, y = e12, then there exist β, γ ∈ F such that

β[A, e12] = e12 + γ.
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If β = 0, then e12 ∈ F -a contradiction. Hence it follows that β 6= 0 and we
have

B = β[A, e12]− e12 ∈ F.

In the matrix B =
∑

i,j bijeij we must have b11 = b22. Moreover one can see
that:

−βa21 = b11 and b22 = βa21.

Then we have 2a21 = 0. Since charF 6= 2, we get a21 = 0. Similarly we can see
that a12 = 0. Therefore A is a diagonal matrix in any case, unless s=1 and R
is commutative.

For any ϕ the inner automorphism on Mk(F ), we have [ϕ(A), ϕ(x)ϕ(y) +
ϕ(y)ϕ(x)]n−(ϕ(x)ϕ(y)+ϕ(y)ϕ(x)) ∈ F for all x, y ∈ F and so, by the previous
case, ϕ(A) must be a diagonal matrix in M2(F ). In particular, if ϕ(x) =
(1 − eij)x(1 + eij) for i 6= j, then ϕ(A) =

∑
t attett + (aii − ajj)eij must be

diagonal, that is aii = ajj for i 6= j. Hence A is a central matrix. ¤
Theorem 2. Let R be a prime ring with charR 6= 2, I a nonzero ideal of R and
n a fixed positive integer. If R admits a derivation d such that (d(x)y+xd(y)+
d(y)x + yd(x))n − (xy + yx) ∈ Z(R) for all x, y ∈ I, then R is commutative.

Proof. If d = 0, then xy + yx ∈ Z(R) for all x, y ∈ I and R satisfies the same
identities. In this case the identity is polynomial so that there exists a field
F such that R and Fn satisfy the same identities. Thus pick x = e12, and
y = e22 and xy + yx = e12 /∈ Z(R), a contradiction. Therefore n = 1 and R is
commutative. We may assume that d 6= 0.

If (d(x)y + xd(y)) + d(y)x + yd(x))n = xy + yx for all x, y ∈ I, then R is
commutative by Theorem 1. Otherwise we have I ∩ Z(R) 6= 0 by our assump-
tions. Let now J be a nonzero two-sided ideal of RZ , the ring of the central
quotients of R. Since J ∩R is an ideal of R, then J ∩R∩Z(R) 6= 0. Hence that
is J contains an invertible element in RZ , and so RZ is simple with 1. By the
hypothesis for any x, y ∈ I and r ∈ R, thus I satisfies the differential identity

[(d(x)y + xd(y) + d(y)x + yd(x))n − (xy + yx), r] = 0.

If d is not inner, then I satisfies the polynomial identity

[(zy + xw + yz + wx)n − (xy + yx), r] = 0

by Kharchenko’s theorem; and setting z = w = 0 yields the identity [xy +
yx, r] = 0. In this case it is well known that there exists a field F such that
R and Fm satisfy the same polynomial identities. Thus xy + yx is central in
Fm. Suppose m ≥ 2 and choose x = e12, y = e22. Then xy + yx = e12 /∈ Z(R)
contrary to our assumptions. This forces m ≤ 1, i.e., R is commutative.

Now let d be an inner derivation induced by an element A ∈ Q. Since
d 6= 0 we may assume that 0 6= A. By localizing R at Z(R) it is easy to
see that ([A, x]y + x[A, y] + [A, y]x + y[A, x])n − (xy + yx) ∈ Z(RZ) for any
x, y ∈ RZ . Since R and RZ satisfy the same polynomial identities, in order
to prove that R satisfies s4(x1, x2, x3, x4), we may assume that R is simple
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with 1. In this case, ([A, x]y + x[A, y] + [A, y]x + y[A, x])n − (xy + yx) ∈ Z(R)
for all x, y ∈ R. Therefore R satisfies a generalized polynomial identity and
it is simple with 1, which implies that Q = RC = R and R has a minimal
right ideal. Thus A ∈ R = Q and R is simple Artinian; that is, R = Dk,
where D is a division ring finite dimensional over Z(R) by [13]. Then it follows
that there exists a suitable field F such that R ⊆ Mk(F ), the ring of all
k×k matrices over F , and moreover Mk(F ) satisfies the generalized polynomial
identity [([A, x]y + x[A, y] + [A, y]x + y[A, x])n − (xy + yx), r] = 0 by [11,
Lemma 2]. By Lemma 1, R is commutative. ¤

Corollary 1. Let R be a prime ring, I a nonzero ideal of R and d a derivation
of R.

(i) If d(x)x + xd(x) = x2 for all x ∈ I, then R is commutative.
(ii) If charR 6= 2 and d(x)x + xd(x) − x2 ∈ Z(R) for all x ∈ I, then R is

commutative.

Proof. (i) Linearizing d(x)x + xd(x) = x2 for all x ∈ I we get d(x)y + xd(y) +
d(y)x + yd(x) = xy + yx for all x, y ∈ I. Now apply Theorem 1 for n = 1.

Similarly (ii) can be proved by using Theorem 2. ¤

The following examples show that we cannot omit the primeness condition
on Theorem 1.

Example. Let S be any commutative ring.

(i) Let R =
{(

a b
0 0

)
: a, b ∈ S

}
and I =

{(
0 a
0 0

)
: a ∈ S

}
.

Define d : R → R by d (( a b
0 0 )) = ( 0 a

0 0 ). Then R is a ring under the usual
operations. It is easy to see that I is a nonzero ideal of R and d is a nonzero
derivation of R such that for all positive integers n (d(x)y + xd(y) + d(y)x +
yd(x))n = xy + yx for all x, y ∈ I but R is not commutative.

(ii) Let R =
{(

a b
0 c

)
: a, b, c ∈ S

}
and I =

{(
0 a
0 0

)
: a ∈ S

}
.

Define d : R → R by d (( a b
0 c )) =

(
0 a−b−c
0 0

)
. Then R is a ring under the usual

operations. It is easy to see that I is a nonzero ideal of R and d is a nonzero
derivation of R such that d(x)y+xd(y)+d(y)x+yd(x) = xy+yx for all x, y ∈ I
but R is not commutative.

3. Derivations in semiprime rings

In all that follows, R will be a semiprime ring. We will make use of the left
Utumi quotient ring U of R. So we need to mention that the definition, the
axiomatic formulation and the properties of this quotient ring can be found in
[2], [6], [10].

In order to prove that the same results are also valid for a semiprime ring R
rather than any nonzero ideal of R, we will make use of the following facts:
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Claim 1 ([2, Proposition 2.5.1]). Any derivation of a semiprime ring R can be
uniquely extended to a derivation of its left Utumi quotient ring U and so any
derivation of R can be defined on the whole U .

Claim 2 ([2, p. 38]). If R is a semiprime ring, then so is its left Utumi quotient
ring. The extended centroid C of a semiprime ring coincides with the center of
its left Utumi quotient ring.

Claim 3 ([2, p. 42]). Let B be the set of all the idempotents in C, the extended
centroid of R. Assume R is a B-algebra which is orthogonal complete. For any
maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant
under any derivation of R.

Theorem 3. Let R be a semiprime ring and n a fixed positive integer. If R
admits a derivation d such that (d(x)y + xd(y) + d(y)x + yd(x))n = xy + yx
for all x, y ∈ R, then R is a commutative ring.

Proof. Since R is semiprime, by Claim 2, Z(U) = C, the extended centroid
of R, and, by Claim 1, derivation d can be uniquely extended on U . Since U
and R satisfy the same differential identities (see [12]), then (d(x)y + xd(y) +
d(y)x + yd(x))n = xy + yx for all x, y ∈ U . Let B be the complete boolean
algebra of idempotents in C and M be any maximal ideal of B.

Since U is a B-algebra which is orthogonal complete (see [12], p. 42, (2) of
Fact 1), by Claim 3, MU is a prime ideal of U , which is d-invariant. Denote
U = U/MU and d the derivation induced by d on U . Therefore d satisfies
in U the same property of d on U . In particular U is a prime ring and so,
by Theorem 1, for all maximal ideals M of B we obtain that [U,U ] ⊆ MU .
Therefore [U,U ] ⊆ ⋂

M MU = 0. In particular R is commutative. ¤
Theorem 4. Let R be a 2-torsion free semiprime ring and n a fixed positive
integer. If R admits a derivation d such that (d(x)y+xd(y)+d(y)x+yd(x))n−
(xy + yx) ∈ Z(R) for all x, y ∈ R, then R is commutative.

Proof. By Claim 2, Z(U) = C, and by Claim 1, d can be uniquely defined on
whole U . Since U and R satisfies the same differential identities (d(x)y+xd(y)+
d(y)x+yd(x))n−(xy+yx) ∈ Z(U) for all x, y ∈ U . Let B the complete boolean
algebra of idempotents in C and M any maximal ideal of B. As already pointed
out in the proof of Theorem 3, U is a B-algebra which is orthogonal complete
and by Claim 3, MU is a prime ideal of U , which is d-invariant. Let d be the
derivation induced by d on U = U/MU . Since Z(U) = (C + MU)/MU =
C/MU , then (d(x)y + xd(y) + d(y)x + yd(x))n − (xy + yx) ∈ (C + MU)/MU
for any x, y ∈ U . Moreover U is a prime ring, hence we may conclude U is
commutative by Theorem 2. This implies that, for any maximal ideal M of
B, we have [U,U ] ⊆ MU . Hence [U,U ] ⊆ ⋂

M MU = 0. In particular R is
commutative. ¤
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Corollary 2. Let R be a semiprime ring and d a nonzero derivation of R.
(i) If d(x)x + xd(x) = x2 for all x ∈ R, then R is commutative.
(ii) If R is 2-torsion free and d(x)x + xd(x)−x2 ∈ Z(R) for all x ∈ R, then

R is commutative.

Proof. (i) Linearizing d(x)x+xd(x) = x2 for all x ∈ R, we get (d(x)y+xd(y)+
d(y)x + yd(x))n − (xy + yx) = 0 for all x, y ∈ R. Then R is commutative by
Theorem 3.

Similarly (ii) can be proved by using Theorem 4. ¤

Acknowledgement. Authors would like to thank referee for his/her valuable
suggestions and comments.
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