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DERIVATIONS WITH ANNIHILATOR CONDITIONS IN

PRIME RINGS

Basudeb Dhara, Sukhendu Kar, and Sachhidananda Mondal

Abstract. Let R be a prime ring, I a nonzero ideal of R, d a derivation
of R, m(≥ 1), n(≥ 1) two fixed integers and a ∈ R. (i) If a((d(x)y +
xd(y) + d(y)x + yd(x))n − (xy + yx))m = 0 for all x, y ∈ I, then either
a = 0 or R is commutative; (ii) If char(R) 6= 2 and a((d(x)y + xd(y) +
d(y)x+ yd(x))n − (xy+ yx)) ∈ Z(R) for all x, y ∈ I, then either a = 0 or
R is commutative.

1. Introduction

Throughout this paper R always denotes a prime ring with center Z(R),
extended centroid C and Q its two-sided Martindale quotient ring. Recall that
a ring R is said to be prime, if for any a, b ∈ R, aRb = (0) implies either a = 0
or b = 0 and it is semiprime if for any a ∈ R, aRa = (0) implies a = 0. For
any x, y ∈ R, the Lie commutator of x, y is denoted by [x, y] and defined by
[x, y] = xy− yx and the anti-commutator is denoted by x ◦ y and is defined by
x ◦ y = xy + yx. By d we mean a derivation of R. A derivation d is inner if
there exists b ∈ R such that d(x) = [b, x] holds for all x ∈ R.

A well known theorem of Posner [15] states that if R is prime and the com-
mutator [d(x), x] ∈ Z(R) for all x ∈ R, then either d = 0 or R is commutative.
This result of Posner was generalized in many directions by several authors
and they studied the relationship between the structure of prime or semiprime
ring and the behaviour of additive maps satisfying various conditions. Some
authors have studied the derivations with annihilator conditions in prime and
semiprime rings (see [3], [4], [6], [7], [8], [9]; where further references can be
found).

In [2], Ashraf and Rehman proved that if R is a prime ring, I is a nonzero
ideal of R and d is a derivation of R such that d(x)y+xd(y)+ d(y)x+ yd(x) =
xy + yx for all x, y ∈ I, then R is commutative. Recently, in [1]; Argac and
Inceboz generalized the above result as follows:
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Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n
a fixed positive integer. (i) If (d(x)y + xd(y) + d(y)x + yd(x))n = xy + yx for

all x, y ∈ I, then R is commutative. (ii) If char(R) 6= 2 and (d(x)y + xd(y) +
d(y)x+ yd(x))n − xy + yx is central for all x, y ∈ I, then R is commutative.

In this present paper we study this situation with annihilator condition in
more generalized way. We mainly prove the following results:

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R, m(≥
1), n(≥ 1) two fixed integers and a ∈ R. (i) If a((d(x)y + xd(y) + d(y)x +
yd(x))n−(xy+yx))m = 0 for all x, y ∈ I, then either a = 0 orR is commutative;
(ii) If char(R) 6= 2 and a((d(x)y+xd(y)+d(y)x+ yd(x))n − (xy+ yx)) ∈ Z(R)
for all x, y ∈ I, then either a = 0 or R is commutative.

2. Main results

We first begin with the following lemma:

Lemma 2.1. Let R be a prime ring, b ∈ Q and m,n(≥ 1) fixed integers. If

0 6= a ∈ R such that a([b, xy + yx]n − (xy + yx))m = 0 for all x, y ∈ R, then

either b ∈ C or R satisfies a nontrivial generalized polynomial identity (GPI).

Proof. Let T = R ∗C C{x, y} be the free product of R and C{x, y}, where
C{x, y} is the free C-algebra in noncommuting indeterminates x and y. Sup-
pose that R does not satisfy any nontrivial GPI. Then, we find that a([b, xy +
yx]n − (xy + yx))m is the zero element in the free product T , that is

a([b, xy + yx]n − (xy + yx))m = 0

in T . This can be re-written as

a([b, xy + yx]n − (xy + yx))m−1

·([b, xy + yx]n−1(b(xy + yx)− (xy + yx)b)− (xy + yx)) = 0.(1)

We assume that b /∈ C. Then 1 and b are linearly independent over C. Since
(1) is a trivial GPI, (1) implies that

(2) a([b, xy + yx]n − (xy + yx))m−1([b, xy + yx]n−1(xy + yx)b) = 0

and so

(3) a([b, xy + yx]n − (xy + yx))m−1((xy + yx)b)n = 0

in T . Continuing the same process, it reduces to a((xy + yx)b)mn = 0 ∈ T ,
implying b = 0, a contradiction. Hence we conclude that b ∈ C, as desired. �

Theorem 2.2. Let R be a prime ring, I a non zero ideal of R, d a derivation

of R, m(≥ 1), n(≥ 1) two fixed integers. If a ∈ R such that a((d(x)y + xd(y) +
d(y)x + yd(x))n − (xy + yx))m = 0 for all x, y ∈ I, then either a = 0 or R is

commutative.
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Proof. Let a 6= 0. By our assumption

(4) a((d(x)y + xd(y) + d(y)x+ yd(x))n − (xy + yx))m = 0

for all x, y ∈ I. Let d = 0. Then from (4) we get (−1)ma(xy + yx)m = 0,
that is a(xy + yx)m = 0 for all x, y ∈ I. This is a generalized polynomial
identity (GPI) for I. By Chuang [5, Theorem 2], this GPI is also satisfied
by Q and hence by R. Let w = (xy + yx)m. Then aw = 0. Thus we can
write a(pwqa + wqap)m = 0 for all p, q ∈ R. Since aw = 0, it reduces to
a(pwqa)m = 0. This can be written as (wqap)m+1 = 0 for all p, q ∈ R. By
Levitzki’s lemma [11, Lemma 1.1], wqa = 0 for all q ∈ R. Since R is prime,
either a = 0 or w = 0. Since a 6= 0, w = (xy + yx)m = 0 for all x, y ∈ R.
This is a polynomial identity (PI) for R. So by Lemma 1 in [13], there exists
a suitable field F such that R ⊆ Mk(F ), the ring of all k × k matrices over F ,
and moreover Mk(F ) satisfies the same polynomial identity as R satisfies. Let
k ≥ 2. In this case, if we take x = e12, y = e21, then we find a contradiction
that 0 = (xy + yx)m = e11 + e22. Hence k = 1 and so R is commutative.

Next we assume that d 6= 0. Then a((d(x)y + xd(y) + d(y)x + yd(x))n −
(xy + yx))m = 0 is a differential identity for I. If d is not Q-inner, then by
Kharchenko’s theorem [12], I satisfies the identity a((ry + xs + sx + yr)n −
(xy + yx))m = 0. In particular for r = s = 0, we find that a(xy + yx)m = 0
for all x, y ∈ I. Then R is commutative as above. Now let d be Q-inner, i.e.,
d(x) = [b, x] for all x ∈ R and for some b ∈ Q. Since d 6= 0, b /∈ C. Then (4)
becomes

(5) a(([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx))m = 0

for all x, y ∈ I. By Chuang [5, Theorem 2], this GPI is also satisfied by Q, that
is,

(6) f(x, y) = a(([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx))m = 0

for all x, y ∈ Q. In case the center C of Q is infinite, we have f(x, y) = 0 for
all x, y ∈ Q

⊗

C C, where C is the algebraic closure of C. Since both Q and

Q
⊗

C C are prime and centrally closed [10, Theorems 2.5 and 3.5], we may

replace R by Q or Q
⊗

C C according as C is finite or infinite. Thus we may
assume that R is centrally closed over C (i.e., RC = R), which is either finite or
algebraically closed and f(x, y) = 0 for all x, y ∈ R. By Lemma 2.1, it follows
that f(x, y) = 0 is a nontrivial GPI for R. Then by Martindale’s theorem [14],
RC = R is a primitive ring with nonzero socle and C is the associated division
ring. Hence R is isomorphic to a dense ring of linear transformations of a vector
space V over C. If V is finite dimensional over C, then the density of R on V
implies that R ∼= Mk(C), where k = dimC V .

Suppose that dimC V ≥ 3.
We shall show that for any v ∈ V , v and bv are linearly C-dependent.

Suppose that v and bv are linearly C-independent for some v ∈ V . Since
dimC V ≥ 3, there exists w ∈ V such that v, bv, w are linearly C-independent.
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By density there exist x, y ∈ R such that

xv = 0, xbv = w, xw = 0;

yv = 0, ybv = 0, yw = v.

Then 0 = a(([b, x]y + x[b, y] + [b, y]x + y[b, x])n − (xy + yx))mv = (−1)mnav.
This implies that if av 6= 0, then by contrary v and bv are linearly C-dependent.
Now suppose that av = 0. Since a 6= 0, there exists w ∈ V such that aw 6= 0
and then a(v + w) = aw 6= 0. By the previous argument, we find that w, bw
are linearly C-dependent and also so are v + w, b(v + w). Thus there exists
α, β ∈ C such that bw = wα and b(v + w) = (v + w)β. Moreover, v and w are
linearly C-independent and so by density there exist x, y ∈ R such that

xw = v, xv = 0;

yw = 0, yv = −w(α − β).

Then we obtain that 0 = a(([b, x]y+x[b, y]+[b, y]x+y[b, x])n−(xy+yx))mw =
aw(α − β)m. Since aw 6= 0, α = β and so bv = vα, a contradiction. Hence
we conclude that for any v ∈ V , v and bv are linearly C-dependent, that is
bv = vαv for some αv ∈ C. It is very easy to prove that αv is independent of
the choice of v ∈ V . Thus we can write bv = vα for all v ∈ V and α ∈ C fixed.
Now let r ∈ R, v ∈ V . Since bv = vα, we have

[b, r]v = (br)v − (rb)v = b(rv) − r(bv) = (rv)α − r(vα) = 0.

Thus [b, r]v = 0 for all v ∈ V , i.e., [b, r]V = 0. Since [b, r] acts faithfully as a
linear transformation on the vector space V , [b, r] = 0 for all r ∈ R. Therefore,
b ∈ Z(R) which implies d = 0, a contradiction.

If dimC V = 1, then R is commutative and we are done in this case.
Now suppose dimC V = 2. Then R ∼= M2(C). Then M2(C) satisfies the

identity a(([b, x]y+x[b, y]+[b, y]x+y[b, x])n−(xy+yx))m = 0. But by choosing
x = e12, y = e21, we arrive at a contradiction that 0 = (−1)ma(e11 + e22) =
(−1)maI2 = (−1)ma.

This completes the proof of the theorem. �

Lemma 2.3. Let R = Mk(F ), k ≥ 2 be the ring of all k × k matrices over a

field F and a ∈ R. If for some b ∈ R, a(([b, x]y + x[b, y] + [b, y]x+ y[b, x])n −
(xy+ yx)) ∈ Z(R) for all x, y ∈ R, where n(≥ 1) is a fixed integer, then a = 0.

Proof. Let a = (aij)k×k and b = (bij)k×k. If for all x, y ∈ Mk(F ),

a

(

([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx)

)

= 0,

then by Theorem 2.2, we find that a = 0, as desired. So, let for some x, y ∈
Mk(F ),

a

(

([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx)

)

6= 0.
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Then a is invertible. Thus for each x, y ∈ Mk(F ),

(([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx)) ∈ F · a−1.

Therefore, for each x, y ∈ Mk(F ), either

(([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx))

is zero or invertible in Mk(F ).
Now we consider the following two cases:
Case-1: k ≥ 3.
We choose x = e11, y = e12. Then xy + yx = e12 and ([b, x]y + x[b, y] +

[b, y]x + y[b, x])n − (xy + yx) = [b, e12]
n − e12. Since rank of [b, e12]

n − e12 is
≤ 2, it can not be invertible and so [b, e12]

n − e12 = 0. Left multiplying by e12,
we get

0 = e12([b, e12]
n − e12) = e12(be12)

n = bn21e12

implying b21 = 0. Thus for any i 6= j, bij = 0 implying b is diagonal. Let

b =
∑k

i=1 biieii. For any F -automorphism θ of R, bθ enjoys the same property

as b does, namely, ([bθ, x]y + x[bθ, y] + [bθ, y]x + y[bθ, x])n − (xy + yx) is zero
or invertible for every x, y ∈ R. Hence bθ must be diagonal. For each j 6= 1,

we have (1 + e1j)b(1 − e1j) =
∑k

i=1 biieii + (bjj − b11)e1j diagonal. Therefore,
bjj = b11 and so b ∈ F · Ik. Then our identity reduces to (xy + yx) ∈ F · a−1

for all x, y ∈ R. But by choosing x = e11, y = e12, we find that (xy+ yx) = e12
which is neither zero nor invertible in R, a contradiction.

Case-2: k = 2.
We choose x = e12, y = e21. Then we have xy + yx = e11 + e22 = I2 and

([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx) = [b, I2]
n − I2 = −I2 ∈ F · a−1.

This gives a ∈ F · I2. Thus our assumption becomes ([b, x]y+ x[b, y] + [b, y]x+
y[b, x])n− (xy+ yx) ∈ F · I2 for all x, y ∈ R. If n is even then ([b, x]y+x[b, y]+
[b, y]x + y[b, x])n = [b, xy + yx]n ∈ F · I2 and hence (xy + yx) ∈ F · I2 for all
x, y ∈ R. This leads to a contradiction, since (xy + yx) = e11e12 + e12e11 =
e12 /∈ F · I2. Thus we assume that n is an odd integer. In this case, we choose
x = e11, y = e12 and then obtain ([b, x]y+x[b, y]+[b, y]x+y[b, x])n−(xy+yx) =
[b, e12]

n− e12 ∈ F · I2. Commuting both sides with e12, we have 0 = [[b, e12]
n−

e12, e12] = [b, e12]
ne12 − e12[b, e12]

n = (−1)nbn21e12 − bn21e12 = −2bn21e12. Since
char (R) 6= 2, we get b21 = 0. Thus for any i 6= j, bij = 0 that is, b is
diagonal. Then by same argument as above we conclude that b is central, that
is b ∈ F · I2. Thus we have (xy + yx) ∈ F · I2 for all x, y ∈ R. But this case
leads to a contradiction, since (xy + yx) = e11e12 + e12e11 = e12 /∈ F · I2. �

Theorem 2.4. Let R be a prime ring with char (R) 6= 2, I a nonzero ideal of

R, d a derivation of R. If a ∈ R such that a((d(x)y+xd(y)+d(y)x+yd(x))n −
(xy + yx)) ∈ Z(R) for all x, y ∈ I, where n ≥ 1 is a fixed integer, then either

a = 0 or R is commutative.
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Proof. By our assumption

a((d(x)y + xd(y) + d(y)x + yd(x))n − (xy + yx)) ∈ Z(R)(7)

for all x, y ∈ I. If a((d(x)y + xd(y) + d(y)x + yd(x))n − (xy + yx)) = 0 for all
x, y ∈ I, then by Theorem 2.2, we get our conclusion. So let there exist some
x, y ∈ I such that 0 6= a((d(x)y+xd(y)+d(y)x+yd(x))n−(xy+yx)) ∈ I∩Z(R).
Thus I ∩ Z(R) 6= 0. Let K be a nonzero two-sided ideal of RZ , the ring of
the central quotients of R. Since K ∩R is an ideal of R, (K ∩R) ∩ Z(R) 6= 0.
Hence K contains an invertible element in RZ , and so RZ is a simple ring with
1.

By the hypothesis for any x, y ∈ I and r ∈ R, we have

[a((d(x)y + xd(y) + d(y)x + yd(x))n − (xy + yx)), r] = 0.(8)

If d is not Q-inner then by Kharchenko’s theorem [12],

[a((sy + xt+ tx+ ys)n − (xy + yx)), r] = 0(9)

for all x, y, s, t ∈ I and r ∈ R. By Chuang [5], this GPI of (9) is also satisfied
by Q and hence by R too. By localizing R at Z(R), it follows that [a((sy +
xt+ tx+ ys)n− (xy+ yx)), r] is also an identity of RZ . Since R and RZ satisfy
the same polynomial identity, in order to prove that R is commutative, we may
assume that R is simple ring with 1. Thus R satisfies the identity (9). If R
is commutative we are done. So, let R be noncommutative. Then there exists
b ∈ R such that b /∈ Z(R). Now putting s = [b, x] and t = [b, y], we obtain that
R satisfies

[

a

(

([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx)

)

, r

]

= 0.

By Martindale’s theorem [14], R is a primitive ring with minimal right ideal,
whose commuting ring D is a division ring which is finite dimensional over
Z(R). However, since R is simple with 1, R must be Artinian. Hence R = Dk′ ,
the k′×k′ matrices overD, for some k′ ≥ 2. Again, by [13, Lemma 2], it follows
that there exists a field F such that R ⊆ Mk(F ), the ring of k × k matrices
over the field F , and Mk(F ) satisfies

[

a

(

([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx)

)

, r

]

= 0,

that is,

a

(

([b, x]y + x[b, y] + [b, y]x+ y[b, x])n − (xy + yx)

)

∈ Z(Mk(F )).

Then by Lemma 2.3, we conclude that a = 0.
By the same argument as above, we can draw the same conclusion in case d

is a Q-inner derivation that is d(x) = [b, x] for all x ∈ R and for some b ∈ Q. �
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