• 제목/요약/키워드: (m, n)-injective module

검색결과 27건 처리시간 0.025초

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

Semi M-Projective and Semi N-Injective Modules

  • Hakmi, Hamza
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.83-94
    • /
    • 2016
  • Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bi-module [M, N] is regular if and only if a module N is semi M-projective and $Im({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$, if and only if a module M is semi N-injective and $Ker({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$. Also, it is proved that the bi-module [M, N] is pi if and only if a module N is direct M-projective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Im({\alpha}{\beta}){\subseteq}^{\oplus}N$, if and only if a module M is direct N-injective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Ker({\beta}{\alpha}){\subseteq}^{\oplus}M$. The relationship between the Jacobson radical and the (co)singular ideal of [M, N] is described.

HOM AND EXT FUNCTORS OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Han, Chang-Woo;Park, Sang-Won;Cho, Eun-Ha
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.111-123
    • /
    • 2000
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[xl-module. Park generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^s]$-module, where S is a submonoid of N(N is the set of all natural numbers). In this paper we show $$Hom_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Hom_R(M,\;N)[[x^S]]$$ and using the above result and this isomorphism, finally we show that $$Ext^i_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Ext^i_R(M,\;N)[[x^S]]$$.

  • PDF

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

  • Zeng, Yuedi;Chen, Jianlong
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.11-24
    • /
    • 2013
  • Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

  • Xiang, Yueming
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.497-510
    • /
    • 2010
  • Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.

INJECTIVE REPRESENTATIONS OF QUIVERS

  • Park, Sang-Won;Shin, De-Ra
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.37-43
    • /
    • 2006
  • We prove that $M_1\longrightarrow^f\;M_2$ is an injective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ if and only if $M_1\;and\;M_2$ are injective left R-modules, $M_1\longrightarrow^f\;M_2$ is isomorphic to a direct sum of representation of the types $E_l{\rightarrow}0$ and $M_1\longrightarrow^{id}\;M_2$ where $E_l\;and\;E_2$ are injective left R-modules. Then, we generalize the result so that a representation$M_1\longrightarrow^{f_1}\;M_2\; \longrightarrow^{f_2}\;\cdots\;\longrightarrow^{f_{n-1}}\;M_n$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\cdots}{\rightarrow}{\bullet}$ is an injective representation if and only if each $M_i$ is an injective left R-module and the representation is a direct sum of injective representations.

INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP

  • Park, Sang-Won;Jeong, Jin-Sun
    • 대한수학회보
    • /
    • 제47권4호
    • /
    • pp.693-699
    • /
    • 2010
  • In this paper we show that the flat property of a left R-module does not imply (carry over) to the corresponding inverse polynomial module. Then we define an induced inverse polynomial module as an R[x]-module, i.e., given an R-linear map f : M $\rightarrow$ N of left R-modules, we define $N+x^{-1}M[x^{-1}]$ as a left R[x]-module. Given an exact sequence of left R-modules $$0\;{\rightarrow}\;N\;{\rightarrow}\;E^0\;{\rightarrow}\;E^1\;{\rightarrow}\;0$$, where $E^0$, $E^1$ injective, we show $E^1\;+\;x^{-1}E^0[[x^{-1}]]$ is not an injective left R[x]-module, while $E^0[[x^{-1}]]$ is an injective left R[x]-module. Make a left R-module N as a left R[x]-module by xN = 0. We show inj $dim_R$ N = n implies inj $dim_{R[x]}$ N = n + 1 by using the induced inverse polynomial modules and their properties.

Direct sum decompositions of indecomposable injective modules

  • Lee, Sang-Cheol
    • 대한수학회보
    • /
    • 제35권1호
    • /
    • pp.33-43
    • /
    • 1998
  • Matlis posed the following question in 1958: if N is a direct summand of a direct sum M of indecomposable injectives, then is N itself a direct sum of indecomposable innjectives\ulcorner It will be proved that the Matlis problem has an affirmative answer when M is a multiplication module, and that a weaker condition then that of M being a multiplication module can be given to module M when M is a countable direct sum of indecomposable injectives.

  • PDF

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.