INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP

Sangwon Park and Jinsun Jeong

Abstract

In this paper we show that the flat property of a left R module does not imply (carry over) to the corresponding inverse polynomial module. Then we define an induced inverse polynomial module as an $R[x]$-module, i.e., given an R-linear map $f: M \rightarrow N$ of left R-modules, we define $N+x^{-1} M\left[x^{-1}\right]$ as a left $R[x]$-module. Given an exact sequence of left R-modules $$
0 \longrightarrow N \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow 0
$$ where E^{0}, E^{1} injective, we show $E^{1}+x^{-1} E^{0}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]$-module, while $E^{0}\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module. Make a left R-module N as a left $R[x]$-module by $x N=0$. We show $$
\operatorname{inj} \operatorname{dim}_{R} N=n \quad \text { implies } \quad \text { inj } \operatorname{dim}_{R[x]} N=n+1
$$

by using the induced inverse polynomial modules and their properties.

1. Introduction

If R is a left Noetherian ring, then for an injective left R-module $E, E\left[x^{-1}\right]$ is an injective left $R[x]$-module ([2], [3]). But for a projective left R-module $P, P\left[x^{-1}\right]$ is not a projective left $R[x]$-module, in general ([5]). We extend this question to the flat module and we show that for a flat left R-module F, $F\left[x^{-1}\right]$ is not a flat left $R[x]$-module, in general. Then we construct an induced inverse polynomial as an $R[x]$-module. Let M and N be left R-modules and $f: M \rightarrow N$ be an R-linear map. Then we can define $N+x^{-1} M\left[x^{-1}\right]$ as a left $R[x]$-module defined by

$$
x\left(b_{0}+a_{1} x^{-1}+\cdots+a_{n} x^{-n}\right)=b_{1}+a_{2} x^{-1}+\cdots+a_{n} x^{-n+1}
$$

where $f\left(a_{1}\right)=b_{1}, b_{0} \in N$, and $a_{i} \in M$. Given an exact sequence of R-modules

$$
0 \longrightarrow N \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow 0
$$

Received January 29, 2009
2000 Mathematics Subject Classification. Primary 16E30; Secondary 13C11, 16D80.
Key words and phrases. flat module, injective module, inverse polynomial module, induced module.

This study was supported by research funds from Dong-A University.
where E^{0}, E^{1} are injective, we show $E^{1}+x^{-1} E^{0}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]$-module, while $E^{0}\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module. Make a left R-module N as a left $R[x]$-module by $x N=0$. We show

$$
\operatorname{inj} \operatorname{dim}_{R} N=n \quad \text { implies } \quad \operatorname{inj} \operatorname{dim}_{R[x]} N=n+1
$$

by using the inverse polynomial modules. Inverse polynomial modules were developed in ([1], [6], [7], [8]) recently.

Definition 1.1 ([4]). Let R be a ring and M be a left R-module. Then $M\left[x^{-1}\right]$ is a left $R[x]$-module defined by

$$
x\left(m_{0}+m_{1} x^{-1}+\cdots+m_{i} x^{-i}\right)=m_{1}+m_{2} x^{-1}+\cdots+m_{i} x^{-i+1}
$$

and such that

$$
r\left(m_{0}+m_{1} x^{-1}+\cdots+m_{n} x^{-n}\right)=r m_{0}+r m_{1} x^{-1}+\cdots+r m_{n} x^{-n},
$$

where $r \in R$. We call $M\left[x^{-1}\right]$ as an inverse polynomial module.
Similarly, we can define $\left.M\left[\left[x^{-1}\right]\right], M\left[x, x^{-1}\right], M\left[\left[x, x^{-1}\right]\right], M\left[x, x^{-1}\right]\right]$ and $M\left[\left[x, x^{-1}\right]\right.$ as left $R[x]$-modules where, for example, $M\left[\left[x, x^{-1}\right]\right.$ is the set of Laurent series in x with coefficients in M, i.e., the set of all formal sums $\sum_{k \geq n_{0}} m_{k} x^{k}$ with n_{0} any element of $\mathbb{Z}(\mathbb{Z}$ is the set of all integers).

Lemma 1.2 ([8]). Let E be a left R-module. Then $E\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module.

Lemma 1.3. If $E\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module, then E is an injective left R-module.

Proof. Let I be a left ideal of R and $f: I \rightarrow E$ be an R-linear map. Then since $E\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module, we can complete the following diagram by g

as a commutative diagram, where $f\left[\left[x^{-1}\right]\right]\left(\sum_{i=0}^{\infty} r_{i} x^{-i}\right)=\sum_{i=0}^{\infty} f\left(r_{i}\right) x^{-i}$. Since $x R=0, x g(R)=0$ in $E\left[\left[x^{-1}\right]\right]$. But this implies $g(R) \subset E$. Thus $E|g|_{R}: R \rightarrow E$ can complete the following diagram

as a commutative diagram. Hence, E is an injective left R-module.
Lemma 1.4. Let M be a left R-module. Then

$$
\operatorname{inj} \operatorname{dim}_{R[x]} M\left[\left[x^{-1}\right]\right]=\operatorname{inj} \operatorname{dim}_{R} M
$$

Proof. Suppose $\operatorname{inj} \operatorname{dim}_{R} M=n$ and

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n} \rightarrow 0
$$

is an injective resolution of M. Then by Lemma 1.2 , for each $i, E^{i}\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module and

$$
0 \rightarrow M\left[\left[x^{-1}\right]\right] \rightarrow E^{0}\left[\left[x^{-1}\right]\right] \rightarrow E^{1}\left[\left[x^{-1}\right]\right] \rightarrow \cdots \rightarrow E^{n}\left[\left[x^{-1}\right]\right] \rightarrow 0
$$

is an injective resolution of $M\left[\left[x^{-1}\right]\right]$. Let $K^{i}=\operatorname{Ker}\left(E^{i} \rightarrow E^{i+1}\right)$ for $0 \leq$ $i<n$. Then K^{i} is not an injective left R-module for $0 \leq i<n$. So by Lemma 1.3, $K^{i}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]$-module. So then we get $\operatorname{inj} \operatorname{dim}_{R[x]} M\left[\left[x^{-1}\right]\right]=n$. Suppose inj $\operatorname{dim}_{R} M=\infty$ and

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n} \rightarrow \cdots
$$

is an injective resolution of M. Then

$$
0 \rightarrow M\left[\left[x^{-1}\right]\right] \rightarrow E^{0}\left[\left[x^{-1}\right]\right] \rightarrow E^{1}\left[\left[x^{-1}\right]\right] \rightarrow \cdots \rightarrow E^{n}\left[\left[x^{-1}\right]\right] \rightarrow \cdots
$$

is an injective resolution of $M\left[\left[x^{-1}\right]\right]$. But K^{i} is not an injective left R-module for all i. Thus $K^{i}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]$-module for all i. Therefore, inj $\operatorname{dim}_{R[x]} M\left[\left[x^{-1}\right]\right]=\infty$. Similarly, if inj $\operatorname{dim}_{R[x]} M\left[\left[x^{-1}\right]\right]=n$, then $\operatorname{inj} \operatorname{dim}_{R} M=n$, and if inj $\operatorname{dim}_{R[x]} M\left[\left[x^{-1}\right]\right]=\infty$, then $\operatorname{inj} \operatorname{dim}_{R} M=\infty$. Hence, $\operatorname{inj} \operatorname{dim}_{R[x]} M\left[\left[x^{-1}\right]\right]=\operatorname{inj} \operatorname{dim}_{R} M$.

2. Flat module

Lemma 2.1. Let M be a left R-module. Then $R[x] \otimes_{R[x]} M\left[x^{-1}\right] \cong M\left[x^{-1}\right]$.
Proof. Define $\phi: M\left[x^{-1}\right] \rightarrow R[x] \otimes M\left[x^{-1}\right]$ by $\phi(f)=1 \otimes f$ and $\psi: R[x] \otimes$ $M\left[x^{-1}\right] \rightarrow M\left[x^{-1}\right]$ by $\psi(x \otimes f)=x f$. Then ϕ and ψ are $R[x]$-linear maps. And

$$
(\phi \circ \psi)(x \otimes f)=\phi(\psi(x \otimes f))=\phi(x f)=1 \otimes x f=x \otimes f
$$

$$
(\psi \circ \phi)(f)=\psi(\phi(f))=\psi(1 \otimes f)=f .
$$

Hence, $R[x] \otimes_{R[x]} M\left[x^{-1}\right] \cong M\left[x^{-1}\right]$.

Similarly, we can get $R[x] \otimes_{R[x]} M\left[\left[x^{-1}\right]\right] \cong M\left[\left[x^{-1}\right]\right]$.
Theorem 2.2. If F is a flat left R-module, then $F\left[x^{-1}\right]$ is not a flat left $R[x]$-module, in general.

Proof. Let $R=\mathbb{R}$ (the ring of real numbers). Let $\phi: R[x] \rightarrow R[x]$ by $\phi(f)=$ $x f$. Then ϕ is an injective $R[x]$-linear map. Then $\phi \otimes_{\mathbb{R}[x]} \operatorname{id}_{F\left[x^{-1}\right]}: \mathbb{R}[x] \otimes_{\mathbb{R}[x]}$ $F\left[x^{-1}\right] \rightarrow \mathbb{R}[x] \otimes_{\mathbb{R}[x]} F\left[x^{-1}\right]$ is defined by $\phi \otimes_{\mathbb{R}[x]} \operatorname{id}_{F\left[x^{-1}\right]}\left(a x \otimes b x^{-1}\right)=a x^{2} \otimes$ $b x^{-1}$, where $a, b \in \mathbb{R}$. Since $\mathbb{R}[x] \otimes_{\mathbb{R}[x]} F\left[x^{-1}\right] \cong F\left[x^{-1}\right]$, we have the following

commutative diagram. But $(h \circ f)\left(a x \otimes b x^{-1}\right)=\left(g \circ \phi \otimes_{\mathbb{R}[x]} \mathrm{id}_{F\left[x^{-1}\right]}\right)\left(a x \otimes b x^{-1}\right)$ implies $h(a b)=0$. Thus $h: F\left[x^{-1}\right] \rightarrow F\left[x^{-1}\right]$ is not injective, so that $\phi \otimes_{\mathbb{R}[x]}$ $\operatorname{id}_{F\left[x^{-1}\right]}$ is not injective. Hence, $F\left[x^{-1}\right]$ is not a flat left $R[x]$-module.

Remark 1. Since $R[x] \otimes_{R[x]} M\left[\left[x^{-1}\right]\right] \cong M\left[\left[x^{-1}\right]\right]$, we also see that $F\left[\left[x^{-1}\right]\right]$ is not a flat left $R[x]$-module.

3. Induced inverse polynomial modules

Definition 3.1. Let $f: M \rightarrow N$ be an R-linear map. Then $N+x^{-1} M\left[x^{-1}\right]$ is a left $R[x]$-module defined by

$$
x\left(b_{0}+a_{1} x^{-1}+\cdots+a_{n} x^{-n}\right)=b_{1}+a_{2} x^{-1}+\cdots+a_{n} x^{-n+1}
$$

where $f\left(a_{1}\right)=b_{1}, b_{0} \in N, a_{i} \in M$.
Similarly, we can define $N+x^{-1} M\left[\left[x^{-1}\right]\right]$ as a left $R[x]$-module.
Note. Given a left R-module M, we can make M as a left $R[x]$-module by defining $x M=0$.

Lemma 3.2. If $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is a short exact sequence of R modules, then

$$
0 \rightarrow L \rightarrow M\left[x^{-1}\right] \rightarrow N+x^{-1} M\left[x^{-1}\right] \rightarrow 0
$$

is a short exact sequence of $R[x]$-modules.

Proof. Let $f\left[x^{-1}\right]: L \rightarrow M\left[x^{-1}\right]$ be defined by $f\left[x^{-1}\right](n)=f(n)$ for $n \in L$. Then since f is an injective R-linear map, $f\left[x^{-1}\right]$ is an injective $R[x]$-linear map. Let $g\left[x^{-1}\right]: M\left[x^{-1}\right] \rightarrow N+x^{-1} M\left[x^{-1}\right]$ be defined by
$g\left[x^{-1}\right]\left(e_{0}+e_{1} x^{-1}+e_{2} x^{-2}+\cdots+e_{i} x^{-i}\right)=g\left(e_{0}\right)+e_{1} x^{-1}+e_{2} x^{-2}+\cdots+e_{i} x^{-i}$. Then easily $g\left[x^{-1}\right]$ is an $R[x]$-linear map. Let $b_{0}+e_{1} x^{-1}+e_{2} x^{-2}+\cdots+e_{i} x^{-i} \in$ $N+x^{-1} M\left[x^{-1}\right]$. Then since g is a surjective R-linear map, there exists $e_{0} \in M$ such that $g\left(e_{0}\right)=b_{0}$. So, $g\left[x^{-1}\right]$ is a surjective $R[x]$-linear map. Now

$$
\begin{aligned}
\left(g\left[x^{-1}\right] \circ f\left[x^{-1}\right]\right)(n) & =g\left[x^{-1}\right](f(n)) \\
& =g(f(n)) \\
& =0 .
\end{aligned}
$$

And if $e_{0}+e_{1} x^{-1}+e_{2} x^{-2}+\cdots+e_{i} x^{-i} \in \operatorname{Ker} g\left[x^{-1}\right]$, where $e_{i} \in M$, then

$$
\begin{aligned}
& g\left[x^{-1}\right]\left(e_{0}+e_{1} x^{-1}+e_{2} x^{-2}+\cdots+e_{i} x^{-i}\right) \\
= & g\left(e_{0}\right)+e_{1} x^{-1}+e_{2} x^{-2}+\cdots+e_{i} x^{-i} \\
= & 0
\end{aligned}
$$

So $g\left(e_{0}\right)=0, e_{1}=e_{2}=\cdots=e_{i}=0$, which implies $e_{0} \in \operatorname{Ker} g=\operatorname{Im} f=f(L)$.
Hence,

$$
0 \rightarrow L \rightarrow M\left[x^{-1}\right] \rightarrow N+x^{-1} M\left[x^{-1}\right] \rightarrow 0
$$

is a short exact sequence of $R[x]$-modules.
Similarly, given a short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of R-modules, we get a short exact sequence $0 \rightarrow L \rightarrow M\left[\left[x^{-1}\right]\right] \rightarrow N+x^{-1} M\left[\left[x^{-1}\right]\right] \rightarrow 0$ of $R[x]$-modules.

Lemma 3.3. Let $0 \rightarrow N \xrightarrow{f} E^{0} \xrightarrow{g} E^{1} \rightarrow 0$ be a short exact sequence of R-modules, where E^{0}, E^{1} are injective with $\operatorname{inj} \operatorname{dim}_{R} N=1$. Then $E^{1}+$ $x^{-1} E^{0}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]$-module.

Proof. Suppose $E^{1}+x^{-1} E^{0}\left[\left[x^{-1}\right]\right]$ is an injective left $R[x]$-module. Then there exists a $R[x]$-linear map ϕ which completes the following diagram

as a commutative diagram.
Then there exists an R-linear map $h: E^{1} \rightarrow E^{0}$ such that $g \circ h=\mathrm{id}_{E^{1}}$. But since $\operatorname{inj} \operatorname{dim}_{R} N=1,0 \rightarrow N \xrightarrow{f} E^{0} \xrightarrow{g} E^{1} \rightarrow 0$ is not split, which implies a contradiction. Hence, $E^{1}+x^{-1} E^{0}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]-$ module.

Similarly, given a short exact sequence $0 \rightarrow N \rightarrow E^{0} \rightarrow E^{1} \rightarrow 0$ of R-modules with E^{0}, E^{1} injective and $\operatorname{inj} \operatorname{dim}_{R} N=1$, we see that $E^{1}+$ $x^{-1} E^{0}\left[x^{-1}\right]$ is not an injective left $R[x]$-module.

Theorem 3.4. Let $\operatorname{inj} \operatorname{dim}_{R} N=n($ with $N \neq 0)$. Make N into an left $R[x]-$ module so that $x N=0$. Then

$$
\operatorname{inj} \operatorname{dim}_{R[x]} N=n+1
$$

Proof. Let N be a left R-module. Then

$$
\operatorname{inj} \operatorname{dim}_{R} N=\operatorname{inj} \operatorname{dim}_{R[x]} N\left[\left[x^{-1}\right]\right]=n .
$$

And we have the short exact sequence of $R[x]$-modules

$$
0 \rightarrow N \rightarrow N\left[\left[x^{-1}\right]\right] \rightarrow N\left[\left[x^{-1}\right]\right] \rightarrow 0 .
$$

Then $\operatorname{inj} \operatorname{dim}_{R[x]} N \leq\left(\operatorname{inj} \operatorname{dim}_{R} N\right)+1=n+1$. Since if N is an injective $R[x]$-module, then N is an injective R-module so that

$$
\operatorname{inj} \operatorname{dim}_{R} N \leq \operatorname{inj} \operatorname{dim}_{R[x]} N \leq\left(\operatorname{inj} \operatorname{dim}_{R} N\right)+1
$$

Now by induction on n, if $n=0$, then we want to show $\operatorname{inj} \operatorname{dim}_{R[x]} N=1$. But $\operatorname{inj} \operatorname{dim}_{R} N=0$ means that N is an injective R-module. If N is an injective $R[x]$-module, then N is divisible by x. But $x N=0$. Thus N is not divisible by x. Thus N is not an injective $R[x]$-module. Therefore, $\operatorname{inj} \operatorname{dim}_{R[x]} N \neq 0$, i.e., $\operatorname{inj} \operatorname{dim}_{R[x]} N=1$.

If $n=1$, then we have a short exact sequence $0 \rightarrow N \rightarrow E^{0} \rightarrow E^{1} \rightarrow 0$ of R-modules with E^{0}, E^{1} injective. Then by Lemma $3.3, E^{1}+x^{-1} E^{0}\left[\left[x^{-1}\right]\right]$ is not an injective left $R[x]$-module and by Lemma $3.2,0 \rightarrow N \rightarrow E^{0}\left[\left[x^{-1}\right]\right] \rightarrow$ $E^{1}+x^{-1} E^{0}\left[\left[x^{-1}\right]\right] \rightarrow 0$ is a short exact sequence. Therefore, $\operatorname{inj} \operatorname{dim}_{R[x]} N=2$.

Now we suppose $\operatorname{inj} \operatorname{dim}_{R} N=n>1$ and make the obvious induction hypothesis. Let $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ be an exact sequence of left R modules with E injective. Then $\operatorname{inj} \operatorname{dim}_{R} L=n-1$. Now make N, E, L into $R[x]$-modules with $x N=0, x E=0, x L=0$. Then $\operatorname{inj} \operatorname{dim}_{R[x]} E=1$ and by the induction hypothesis we know $\operatorname{inj} \operatorname{dim}_{R[x]} L=n$. Using the long exact sequence of $\operatorname{Ext}_{R[x]}(A,-)$ where A is any left R-module, we get that $\operatorname{inj} \operatorname{dim}_{R[x]} N=n+1$.

References

1] Z. Liu, Injectivity of modules of generalized inverse polynomials, Comm. Algebra 29 (2001), no. 2, 583-592.
[2] A. S. McKerrow, On the injective dimension of modules of power series, Quart. J. Math. Oxford Ser. (2) 25 (1974), 359-368
[3] D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974), 290-296.
[4] S. Park, Inverse polynomials and injective covers, Comm. Algebra 21 (1993), no. 12, 4599-4613.
[5] \qquad The Macaulay-Northcott functor, Arch. Math. (Basel) 63 (1994), no. 3, 225-230.
[6] 785-789.
[7] , The general structure of inverse polynomial modules, Czechoslovak Math. J. 51(126) (2001), no. 2, 343-349.
[8] S. Park and E. Cho, Injective and projective properties of $R[x]$-modules, Czechoslovak Math. J. 54(129) (2004), no. 3, 573-578.

Sangwon Park
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail address: swpark@donga.ac.kr
Jinsun Jeong
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail address: jsjeong@donga.ac.kr

