Semi M-Projective and Semi N-Injective Modules

Hamza Hakmi
Department of Mathematics, Faculty of Science, Damascus University, Damascus, Syria
e-mail: hhakmi-64@hotmail.com and h.hakmi@damasuniv.edu.sy

Abstract. Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module $[M, N]$ is regular or $p i$. It is proved that the bimodule $[M, N]$ is regular if and only if a module N is semi M-projective and $\operatorname{Im}(\alpha) \subseteq{ }^{\oplus} N$ for all $\alpha \in[M, N]$, if and only if a module M is semi N-injective and $\operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} N$ for all $\alpha \in[M, N]$. Also, it is proved that the bi-module $[M, N]$ is $p i$ if and only if a module N is direct M-projective and for any $\alpha \in[M, N]$ there exists $\beta \in[N, M]$ such that $\operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} N$, if and only if a module M is direct N-injective and for any $\alpha \in[M, N]$ there exists $\beta \in[N, M]$ such that $\operatorname{Ker}(\beta \alpha) \subseteq{ }^{\oplus} M$. The relationship between the Jacobson radical and the (co)singular ideal of $[M, N]$ is described.

1. Introduction

In this paper rings R, are associative with identity unless otherwise indicated. All modules over a ring R are unitary right modules. The category of right R-modules is denoted by mod $-R$. Maps are written on the left. A submodule N of a module M is said to be small in M, if $N+K \neq M$ for any proper submodule K of M [1]. Also, a submodule Q of a module M is said to be large (essential) in M if $Q \cap K \neq 0$ for every nonzero submodule K of M [1]. For a submodule N of a module, we use $N \subseteq{ }^{\oplus} M$ to mean that N is a direct summand of M, and write $N \leq_{e} M$ and $N \ll M$ to indicate that N is a large, respectively small, submodule of M. Also, we write $J(R)$ and $U(R)$ for the Jacobson radical and the group of units of a ring R respectively. If M_{R} and N_{R} are modules, We use the notation: $E_{M}=\operatorname{End}_{R}(M)$, and $[M, N]=\operatorname{hom}_{R}(M, N)$. Thus, $[M, N]$ is an $\left(E_{N}, E_{M}\right)$-bimodule.

An important line of research in module theory is to investigate substructures

Received September 6, 2014; revised May 24, 2015; accepted November 3, 2015.
2010 Mathematics Subject Classification: Primary: 16E50, 16E70; Secondary: 16D40, 16D50.
Key words and phrases: Regular ring, Semi-potent ring, Radical Jacobson, Semi M-injective (N-projective) modules, direct M-injective (N-projective) modules, Endomorphism ring.
such as the radical, the singular and co-singular ideals, and (semi)regularity, semipotency or $(p i)$ of $[M, N]$ which are similar to ones in countered in the ring and module theory.

Our main concern is about when the endomorphism ring E_{M} of some module $M \in \bmod -R$ is regular or $p i-$ ring. In section 3,4 it is proved that for any modules $M, N \in \bmod -R,[M, N]$ is regular if and only if N is semi M-projective and $\operatorname{Im}(\alpha) \subseteq{ }^{\oplus} N$ for any $\alpha \in[M, N]$ if and only if M is semi N-injective and $\operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} M$ for any $\alpha \in[M, N]$. It is also proved that for a semi N-projective module $M, J[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Im}\left(1_{N}-\alpha \beta\right)=N\right.$ for all $\left.\beta \in[N, M]\right\}$ and for a semi M-injective module $N, J[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}\left(1_{M}-\right.\right.$ $\beta \alpha)=\{0\}$ for all $\beta \in[N, M]\}$. In section 5 , it is proved that for any two modules $M, N \in \bmod -R ;[M, N]$ is $p i$ if and only if N is direct M-projective and for any $\alpha \in[M, N]$ there exists $\beta \in[N, M]$ such that $\operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} N$ if and only if M is direct N-injective and for any $\alpha \in[M, N]$ there exists $\beta \in[N, M]$ such that $\operatorname{Ker}(\beta \alpha) \subseteq{ }^{\oplus} M$.

2. Some Properties of $[M, N]$

Lemma 2.1.([4, Lemma 2.9]) Let M_{R}, N_{R} be modules and $\alpha \in[M, N], \beta \in[N, M]$. The following statements hold:
(1) $\operatorname{Im}(\alpha)+\operatorname{Im}\left(1_{N}-\alpha \beta\right)=N$.
(2) $\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}(\alpha) \cap \operatorname{Im}\left(1_{N}-\alpha \beta\right)$.
(3) $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\}$.
(4) $\operatorname{Ker}(\alpha-\alpha \beta \alpha)=\operatorname{Ker}(\alpha)+\operatorname{Ker}\left(1_{M}-\beta \alpha\right)$.

Proof. We have $\alpha \beta \in E_{N}$ and $\beta \alpha \in E_{M}$.
(1) It is clear that $N=\operatorname{Im}(\alpha \beta)+\operatorname{Im}\left(1_{N}-\alpha \beta\right) \subseteq \operatorname{Im}(\alpha)+\operatorname{Im}\left(1_{N}-\alpha \beta\right) \subseteq N$. Similarly (3) holds.
(2) It is obvious that $\alpha-\alpha \beta \alpha \in[M, N], \operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}\left(\left(1_{N}-\alpha \beta\right) \alpha\right) \subseteq$ $\operatorname{Im}\left(1_{N}-\alpha \beta\right)$ and $\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}\left(\alpha\left(1_{M}-\beta \alpha\right)\right) \subseteq \operatorname{Im}(\alpha)$. So $\operatorname{Im}(\alpha-\alpha \beta \alpha) \subseteq$ $\operatorname{Im}(\alpha) \cap \operatorname{Im}\left(1_{N}-\alpha \beta\right)$.
Let $x \in \operatorname{Im}(\alpha) \cap \operatorname{Im}\left(1_{N}-\alpha \beta\right) ; x \in N$ and $x=\alpha(y)=\left(1_{N}-\alpha \beta\right)(z)$ where $y \in M$, $z \in N$. So $x=z-\alpha \beta(z), z=x+\alpha \beta(z)=\alpha(y)+\alpha \beta(z)=\alpha(y+\beta(z))$. Let $y_{0}=y+\beta(z) \in M$. Then $z=\alpha\left(y_{0}\right)$ and $x=\left(1_{N}-\alpha \beta\right)(z)=\left(1_{N}-\alpha \beta\right) \alpha\left(y_{0}\right)=$ $(\alpha-\alpha \beta \alpha)\left(y_{0}\right) \in \operatorname{Im}(\alpha-\alpha \beta \alpha)$. Thus, $\operatorname{Im}(\alpha) \cap \operatorname{Im}\left(1_{N}-\alpha \beta\right) \subseteq \operatorname{Im}(\alpha-\alpha \beta \alpha)$. Similarly (4) holds. (5) and (7) are clear.
(6) It is clear that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\alpha-\alpha \beta \alpha)$ and $\operatorname{Ker}\left(1_{M}-\beta \alpha\right) \subseteq \operatorname{Ker}(\alpha-\alpha \beta \alpha)$, so $\operatorname{Ker}(\alpha)+\operatorname{Ker}\left(1_{M}-\beta \alpha\right) \subseteq \operatorname{Ker}(\alpha-\alpha \beta \alpha)$. Let $x \in \operatorname{Ker}(\alpha-\alpha \beta \alpha)$. Then $x \in M$ and $\alpha(x)=\alpha \beta \alpha(x)$. Since $x=\beta \alpha(x)+\left(1_{M}-\beta \alpha\right)(x)$ and $\beta \alpha(x) \in \operatorname{Ker}\left(1_{M}-\beta \alpha\right),\left(1_{M}-\right.$ $\beta \alpha)(x) \in \operatorname{Ker}(\alpha)$, hence $\left(1_{M}-\beta \alpha\right)(\beta \alpha(x))=\beta \alpha(x)-\beta \alpha \beta \alpha(x)=\beta \alpha(x)-\beta \alpha(x)=0$, $\alpha\left(1_{M}-\beta \alpha\right)(x)=\alpha(x)-\alpha \beta \alpha(x)=\alpha(x)-\alpha(x)=0$. So $x \in \operatorname{Ker}\left(1_{M}-\beta \alpha\right)+\operatorname{Ker}(\alpha)$. Thus, $\operatorname{Ker}(\alpha-\alpha \beta \alpha) \subseteq \operatorname{Ker}(\alpha)+\operatorname{Ker}\left(1_{M}-\beta \alpha\right)$. Similarly (8) holds.

Lemma 2.2. Let M_{R}, N_{R} be modules and $\alpha \in[M, N], \beta \in[N, M]$. The following
statements hold:
(1) $\operatorname{Im}\left(1_{N}-\alpha \beta\right)=N$ if and only if $\operatorname{Im}\left(1_{M}-\beta \alpha\right)=M$.
(2) $\operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\{0\}$ if and only if $\operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\}$.
(3) $1_{N}-\alpha \beta \in U\left(E_{N}\right)$ if and only if $1_{M}-\beta \alpha \in U\left(E_{M}\right)$.

Proof. $(1)(\Rightarrow)$ Assume that $\operatorname{Im}\left(1_{N}-\alpha \beta\right)=N$. Then by Lemma 2.1(4) $\operatorname{Im}(\beta) \cap$ $\operatorname{Im}\left(1_{M}-\beta \alpha\right)=\operatorname{Im}(\beta-\beta \alpha \beta)=\beta\left(\operatorname{Im}\left(1_{N}-\alpha \beta\right)\right)=\operatorname{Im}(\beta)$, which shows that $\operatorname{Im}(\beta) \subseteq$ $\operatorname{Im}\left(1_{M}-\beta \alpha\right)$. Lemma 2.1(3) implies that $M=\operatorname{Im}(\beta)+\operatorname{Im}\left(1_{M}-\beta \alpha\right)=\operatorname{Im}\left(1_{M}-\beta \alpha\right)$. Similarly (\Leftarrow) holds.
$(2)(\Rightarrow)$ Assume that $\operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\{0\}$. Let $x \in \operatorname{Ker}\left(1_{M}-\beta \alpha\right)$. Then $(\alpha-$ $\alpha \beta \alpha)(x)=\left(1_{N}-\alpha \beta\right)(\alpha(x))=0$, so $\alpha(x) \in \operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\{0\}$, thus $\alpha(x)=0$ and that $x \in \operatorname{Ker}(\alpha)$, which shows that $\operatorname{Ker}\left(1_{M}-\beta \alpha\right) \subseteq \operatorname{Ker}(\alpha)$. Lemma 2.1(5) implies that $\{0\}=\operatorname{Ker}(\alpha) \cap \operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\operatorname{Ker}\left(1_{M}-\beta \alpha\right)$. Similarly (\Leftarrow) holds.
$(3)(\Rightarrow)$ If $1_{N}-\alpha \beta \in U\left(E_{N}\right)$. Then $\mu\left(1_{N}-\alpha \beta\right)=1_{N}$ for some $\mu \in E_{N}$. So, $\left(1_{M}+\beta \mu \alpha\right)\left(1_{M}-\beta \alpha\right)=\left(1_{M}-\beta \alpha\right)+\beta \mu \alpha\left(1_{M}-\beta \alpha\right)=\left(1_{M}-\beta \alpha\right)+\beta \mu\left(1_{N}-\alpha \beta\right) \alpha=$ 1_{M}. The proof for right inverses is similar. Similarly, (\Leftarrow) holds.

Lemma 2.3. Let M_{R}, N_{R} be modules and $\alpha \in[M, N], \beta \in[N, M]$. The following statements hold
(1) $E_{N}=\alpha[N, M]+\left(1_{N}-\alpha \beta\right) E_{N}$.
(2) $E_{N}=[M, N] \beta+E_{N}\left(1_{N}-\alpha \beta\right)$.
(3) $E_{M}=\beta[M, N]+\left(1_{M}-\beta \alpha\right) E_{M}$.
(4) $E_{M}=[N, M] \alpha+E_{M}\left(1_{M}-\beta \alpha\right)$.
(5) $(\alpha-\alpha \beta \alpha)[N, M]=\alpha[N, M] \cap\left(1_{N}-\alpha \beta\right) E_{N}$.
(6) $[N, M](\alpha-\alpha \beta \alpha)=[N, M] \alpha \cap E_{M}\left(1_{M}-\beta \alpha\right)$.
(7) $(\beta-\beta \alpha \beta)[M, N]=\beta[M, N] \cap\left(1_{M}-\beta \alpha\right) E_{M}$.
(8) $[M, N](\beta-\beta \alpha \beta)=[M, N] \beta \cap E_{N}\left(1_{N}-\alpha \beta\right)$.
(9) $[M, N]=\alpha E_{M}+\left(1_{N}-\alpha \beta\right)[M, N]$.
(10) $[M, N]=E_{N} \alpha+[M, N]\left(1_{M}-\beta \alpha\right)$.

Proof. (1) Since $1_{N}=\alpha \beta+\left(1_{N}-\alpha \beta\right)$, for any $\lambda \in E_{N}, \lambda=\alpha \beta \lambda+\left(1_{N}-\alpha \beta\right) \lambda \in$ $\alpha[N, M]+\left(1_{N}-\alpha \beta\right) E_{N}$, so $E_{N} \subseteq \alpha[N, M]+\left(1_{N}-\alpha \beta\right) E_{N} \subseteq E_{N}$. Similarly (2), (3) and (4) hold.
(5) Since $(\alpha-\alpha \beta \alpha)[N, M]=\left(1_{N}-\alpha \beta\right) \alpha[N, M] \subseteq\left(1_{N}-\alpha \beta\right) E_{N}$ and $(\alpha-$ $\alpha \beta \alpha)[N, M]=\alpha\left(1_{M}-\beta \alpha\right)[N, M] \subseteq \alpha[N, M]$, we have $(\alpha-\alpha \beta \alpha)[N, M] \subseteq$ $\alpha[N, M] \cap\left(1_{N}-\alpha \beta\right) E_{N}$.
Let $\lambda \in \alpha[N, M] \cap\left(1_{N}-\alpha \beta\right) E_{N}$. Then $\lambda=\alpha \gamma=\left(1_{N}-\alpha \beta\right) \mu$ where $\gamma \in[N, M]$, $\mu \in E_{N}$, so $\mu=\lambda+\alpha \beta \mu=\alpha \gamma+\alpha \beta \mu=\alpha(\gamma+\beta \mu) \in \alpha[N, M]$. Suppose that $\mu=\alpha \theta$ where $\theta=\gamma+\beta \mu \in[N, M]$. Then $\lambda=\left(1_{N}-\alpha \beta\right) \mu=\left(1_{N}-\alpha \beta\right) \alpha \theta=(\alpha-\alpha \beta \alpha) \theta \in$ $(\alpha-\alpha \beta \alpha)[N, M]$, which shows that $\alpha[N, M] \cap\left(1_{N}-\alpha \beta\right) E_{N} \subseteq(\alpha-\alpha \beta \alpha)[N, M]$. Similarly (6), (7), (8), (9) and (10) hold.
Lemma 2.4. Let M_{R}, N_{R} be modules and $\alpha \in[M, N], \beta \in[N, M]$. The following are equivalent:
(1) $\operatorname{Im}\left(1_{N}-\alpha \beta\right)=N$.
(2) $\operatorname{Im}\left(1_{M}-\beta \alpha\right)=M$.
(3) $\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}(\alpha)$.
(4) $\operatorname{Im}(\beta-\beta \alpha \beta)=\operatorname{Im}(\beta)$.

Proof. (1) $\Leftrightarrow(2)$ By Lemma 2.2(1) and (1) \Rightarrow (4) by Lemma 2.1(2).
(4) \Rightarrow (1) Assume (4) hold. Then $\operatorname{Im}(\beta)=\operatorname{Im}(\beta-\beta \alpha \beta)=\operatorname{Im}(\beta) \cap \operatorname{Im}\left(1_{M}-\beta \alpha\right)$, which shows that $\operatorname{Im}(\beta) \subseteq \operatorname{Im}\left(1_{M}-\beta \alpha\right)$, so $M=\operatorname{Im}(\beta)+\operatorname{Im}\left(1_{M}-\beta \alpha\right)=\operatorname{Im}\left(1_{M}-\right.$ $\beta \alpha$), proving (1). Similarly, the equivalence (2) \Leftrightarrow (3) holds.

Lemma 2.5. Let M_{R}, N_{R} be modules and $\alpha \in[M, N], \beta \in[N, M]$. The following are equivalent:
(1) $\operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\{0\}$.
(2) $\operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\}$.
(3) $\operatorname{Ker}(\alpha-\alpha \beta \alpha)=\operatorname{Ker}(\alpha)$.
(4) $\operatorname{Ker}(\beta-\beta \alpha \beta)=\operatorname{Ker}(\beta)$.

Proof. (1) $\Leftrightarrow(2)$ By Lemma 2.2(2) and (1) \Rightarrow (4) by Lemma 2.1(8).
$(4) \Rightarrow(1)$ Assume (4) hold. Then $\operatorname{Ker}(\beta)=\operatorname{Ker}(\beta-\beta \alpha \beta)=\operatorname{Ker}(\beta)+\operatorname{Ker}\left(1_{N}-\alpha \beta\right)$, which shows that $\operatorname{Ker}\left(1_{N}-\alpha \beta\right) \subseteq \operatorname{Ker}(\beta)$, so $\operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\operatorname{Ker}(\beta) \cap \operatorname{Ker}\left(1_{N}-\right.$ $\alpha \beta)=\{0\}$, proving (1). Similarly, the equivalence (2) \Leftrightarrow (3) holds.

Let M_{R} and N_{R} be modules. Write:

$$
\widehat{\nabla}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Im}\left(1_{N}-\alpha \beta\right)=N \text { for all } \beta \in[N, M]\right\} .
$$

It is clear that $\widehat{\nabla}[M, N]$ is a non empty subset in $[M, N],(0 \in \widehat{\nabla}[M, N])$. By using Lemma 2.2(1) it is easy to see that

$$
\begin{aligned}
\hat{\nabla}[M, N] & =\left\{\alpha: \alpha \in[M, N] ; \operatorname{Im}\left(1_{N}-\alpha \beta\right)=N \text { for all } \beta \in[N, M]\right\} . \\
& =\left\{\alpha: \alpha \in[M, N] ; \operatorname{Im}\left(1_{M}-\beta \alpha\right)=M \text { for all } \beta \in[N, M]\right\} .
\end{aligned}
$$

In addition to, $\hat{\nabla}[M, N]$ is an ideal in $\bmod -R$, which means that it is closed under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.6. For arbitrary $M, N, X, Y \in \bmod -R$ the following statements hold:
(1) $\hat{\nabla}[M, N][X, M] \subseteq \widehat{\nabla}[X, N]$.
(2) $[N, Y] \widehat{\nabla}[M, N] \subseteq \widehat{\nabla}[M, Y]$.
(3) $[N, Y] \widehat{\nabla}[M, N][X, M] \subseteq \widehat{\nabla}[X, Y]$.

Proof. (1)Let $\alpha \in \widehat{\nabla}[M, N]$ and $\lambda \in[X, M]$. Then $\alpha \lambda \in[X, N]$ and for all $\beta \in$ $[N, X], \operatorname{Im}\left(1_{N}-(\alpha \lambda) \beta\right)=\operatorname{Im}\left(1_{N}-\alpha(\lambda \beta)\right)=N$, hence $\lambda \beta \in[N, M]$. Thus, $\alpha \lambda \in \widehat{\nabla}[X, N]$. (2) is analogous. (3) by (1) and (2).

Again, let M_{R} and N_{R} be modules. Write:

$$
\widehat{\Delta}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\{0\} \text { for all } \beta \in[N, M]\right\}
$$

It is clear that $\widehat{\Delta}[M, N]$ is a non empty subset in $[M, N],(0 \in \widehat{\Delta}[M, N])$. By using Lemma 2.2(2) it is easy to see that

$$
\begin{aligned}
\widehat{\Delta}[M, N] & =\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}\left(1_{N}-\alpha \beta\right)=\{0\} \text { for all } \beta \in[N, M]\right\} . \\
& =\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\} \text { for all } \beta \in[N, M]\right\} .
\end{aligned}
$$

In addition to, $\widehat{\Delta}[M, N]$ is an ideal in $\bmod -R$, which means that it is closed under arbitrary multiplication from either side, by the following Lemma:
Lemma 2.7. For arbitrary $M, N, X, Y \in \bmod -R$ the following statements hold:
(1) $\widehat{\Delta}[M, N][X, M] \subseteq \widehat{\Delta}[X, N]$.
(2) $[N, Y] \widehat{\Delta}[M, N] \subseteq \widehat{\Delta}[M, Y]$.
(3) $[N, Y] \widehat{\Delta}[M, N][X, M] \subseteq \widehat{\Delta}[X, Y]$.

Proof. As in Lemma 2.6.
Following $[2,7]$, the Jacobson radical of the bimodule $[M, N]$ defined by Kasch as follows:

$$
\begin{aligned}
J[M, N] & =\left\{\alpha: \alpha \in[M, N] ;\left(1_{N}-\alpha \beta\right) \in U\left(E_{N}\right) \text { for all } \beta \in[N, M]\right\} . \\
& =\left\{\alpha: \alpha \in[M, N] ;\left(1_{M}-\beta \alpha\right) \in U\left(E_{M}\right) \text { for all } \beta \in[N, M]\right\} .
\end{aligned}
$$

Lemma 2.8. Let M_{R} and N_{R} be modules. The following statements hold:
(1) $J[M, N] \subseteq \widehat{\nabla}[M, N]$.
(2) $J[M, N] \subseteq \widehat{\Delta}[M, N]$.

Proof. This is obvious.
Let M_{R} and N_{R} be modules. Recall that a morphism $\alpha \in[M, N]$ is regular [2], if there exists $\beta \in[N, M]$ such that $\alpha=\alpha \beta \alpha$. Also, $[M, N]$ is called regular if and only if every $\alpha \in[M, N]$ is regular.
Lemma 2.9.([7]) Let M_{R} and N_{R} be modules. The following are equivalent:
(1) $[M, N]$ is regular.
(2) For every $\alpha \in[M, N], \operatorname{Im}(\alpha) \subseteq{ }^{\oplus} N$ and $\operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} M$.

In particular, for a module M, E_{M} is regular if and only if $\operatorname{Im}(\alpha) \subseteq{ }^{\oplus} M$ and $\operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} M$ for all $\alpha \in E_{M},[5$, Lemma 3.1].
Proposition 2.10. Let M and N be modules and $\alpha, \beta \in[M, N]$. If $[M, N]$ is regular. Then the following statements hold:
(1) $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$ if and only if $\alpha[N, M] \subseteq \beta[N, M]$.
(2) $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$ if and only if $\alpha[N, M]=\beta[N, M]$.
(3) $\alpha[N, M]=\left\{\mu: \mu \in E_{N} ; \operatorname{Im}(\mu) \subseteq \operatorname{Im}(\alpha)\right\}$.
(4) $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$ if and only if $[N, M] \beta \subseteq[N, M] \alpha$.
(5) $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta)$ if and only if $[N, M] \beta=[N, M] \alpha$.
(6) $[N, M] \alpha=\left\{\mu: \mu \in E_{M} ; \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\mu)\right\}$.

Proof. (1) (\Rightarrow) Suppose that $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(\beta)$. Since $[M, N]$ is regular, there exists $\mu \in[N, M]$ such that $\beta=\beta \mu \beta$. For $e=\beta \mu ; e^{2}=e \in E_{N}$ and $\operatorname{Im}(e)=\operatorname{Im}(\beta)$, so $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(e)$. Thus, for all $x \in M, e(\alpha(x))=\alpha(x)$, so $\alpha=e \alpha=\beta \mu \alpha \in \beta E_{M}$. Therefore, $\alpha[N, M] \subseteq \beta E_{M}[N, M] \subseteq \beta[N, M]$.
(\Leftarrow) Suppose that $\alpha[N, M] \subseteq \beta[N, M]$. Since $[M, N]$ is regular, $\alpha=\alpha \lambda \alpha$ for some $\lambda \in[N, M]$. Since $\alpha \lambda \in \alpha[N, M] \subseteq \beta[N, M], \alpha \lambda=\beta \delta$ for some $\delta \in[N, M]$. Thus, $\operatorname{Im}(\alpha)=\operatorname{Im}(\alpha \lambda \alpha)=\operatorname{Im}(\beta \delta \alpha) \subseteq \operatorname{Im}(\beta)$.
(2) and (3) are clear by (1).
(4) (\Rightarrow) Suppose that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$. Then $\beta(\operatorname{Ker}(\alpha))=0$. Since $[M, N]$ is regular, there exists $\mu \in[N, M]$ such that $\alpha=\alpha \mu \alpha$. For $e=\mu \alpha \in E_{M}$; $e^{2}=e$ and $\operatorname{Ker}(\alpha)=\operatorname{Ker}(e)$, so $\beta(\operatorname{Ker}(\alpha))=\beta(\operatorname{Ker}(e))=\beta\left(\operatorname{Im}\left(1_{M}-e\right)\right)=$ $\operatorname{Im}\left(\beta\left(1_{M}-e\right)\right)=0$. Thus, $\beta\left(1_{M}-e\right)=0$ and that $\beta=\beta e=\beta \mu \alpha \in\left(E_{N}\right) \alpha$. So $[N, M] \beta \subseteq[N, M]\left(E_{N}\right) \alpha \subseteq[N, M] \alpha$.
(\Leftarrow) Suppose that $[N, M] \beta \subseteq[N, M] \alpha$. Since $[M, N]$ is regular, $\beta=\beta \delta \beta$ for some $\delta \in[N, M]$ and $\delta \beta \in[N, M] \beta \subseteq[N, M] \alpha$. So $\delta \beta=\lambda \alpha$ for some $\lambda \in[N, M]$. Thus, $\beta=\beta \lambda \alpha$ and $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$.
(5) and (6) are clear by (4).

3. Semi M-Projective Modules.

Theorem 3.1. Let M_{R} and N_{R} be modules. The following are equivalent:
(1) For every submodule $K \subseteq N$ and every epimorphism $\alpha: M \rightarrow K$, homomorphism $\lambda: N \rightarrow K$ there exists $\beta: N \rightarrow M$ such that $\alpha \beta=\lambda$.
(2) For every $\alpha \in[M, N], \alpha[N, M]=[N, \operatorname{Im}(\alpha)]$.
(3) For every $\alpha \in[M, N], \alpha[N, M]=\left\{\lambda: \lambda \in E_{N} ; \operatorname{Im}(\lambda) \subseteq \operatorname{Im}(\alpha)\right\}$.

Proof. (1) $\Rightarrow(2)$ Let $\alpha \in[M, N]$. It is clear that $\alpha[N, M] \subseteq[N, \operatorname{Im}(\alpha)]$. Let $\lambda \in[N, \operatorname{Im}(\alpha)]$. Then by assumption there exists $\beta \in[N, M]$ such that $\alpha \beta=\lambda$, so $\lambda \in \alpha[N, M]$.
$(2) \Rightarrow$ (1) Let K be a submodule of $N, \alpha: M \rightarrow K$ be an epimorphism and $\lambda: N \rightarrow K$ be a homomorphism. Since $\operatorname{Im}(\lambda) \subseteq K=\operatorname{Im}(\alpha)$, we have $\lambda \in$ $[N, \operatorname{Im}(\alpha)]=\alpha[N, M]$ by assumption. So there exists $\beta \in[N, M]$ such that $\alpha \beta=\lambda$, which proves (1). The equivalence $(2) \Leftrightarrow(3)$ is clear.

Let M_{R} and N_{R} be modules. Now a module N is called semi M-projective if M, N are satisfy the conditions of Theorem 3.1.
We remark that a module M_{R} is semi projective [6], if and only if M is a semi M-projective module.

Theorem 3.2. Let M_{R} and N_{R} be modules. The following are equivalent:
(1) $[M, N]$ is regular.
(2) For every $\alpha \in[M, N], \operatorname{Im}(\alpha) \subseteq \subseteq^{\oplus} N$, and N is a semi M-projective module.
(3) For every finite set $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\} \subseteq[M, N], \Sigma_{i=1}^{n} \operatorname{Im}\left(\alpha_{i}\right) \subseteq{ }^{\oplus} N$, and N is a semi M-projective module.
Proof. (1) $\Rightarrow(2)$ If $\alpha \in[M, N]$. Then $\operatorname{Im}(\alpha) \subseteq \oplus N$ by Lemma 2.9. On the other hand, since $[M, N]$ is regular, $\alpha[N, M]=\left\{\mu: \mu \in E_{N} ; \operatorname{Im}(\mu) \subseteq \operatorname{Im}(\alpha)\right\}$ for every $\alpha \in[M, N]$ by Proposition 2.10(3). So Theorem 3.1(3) implies that N is semi M-projective.
$(2) \Rightarrow(3)$ We prove (3) by induction on n. The case $n=1$ holds by (2). Assume that $n>1$ and $\sum_{i=1}^{n-1} \operatorname{Im}\left(\alpha_{i}\right)=\operatorname{Im}(e)$, where $e^{2}=e \in E_{N}$, hence $\sum_{i=1}^{n-1} \operatorname{Im}\left(\alpha_{i}\right) \subseteq{ }^{\oplus} N$. Since $1_{N}-e \in E_{N}$ and $\alpha_{n} \in[M, N],\left(1_{N}-e\right) \alpha_{n} \in[M, N]$, so $\operatorname{Im}\left((1-e) \alpha_{n}\right) \subseteq{ }^{\oplus} N$ and by assumption $\operatorname{Im}\left((1-e) \alpha_{n}\right)=\operatorname{Im}(f)$ where $f^{2}=f \in E_{N}$. Then ef $=0$, and for $\mu=e+f-f e$, we have $\mu^{2}=\mu \in E_{N}$. Since $f \mu=f$ and $\mu e=e$, $\operatorname{Im}(\mu)=\operatorname{Im}(e)+\operatorname{Im}(f)$. Therefore $\operatorname{Im}(\alpha)=\operatorname{Im}(e)+\operatorname{Im}(f)=\operatorname{Im}(e)+\operatorname{Im}\left((1-e) \alpha_{n}\right)$. Thus $\Sigma_{i=1}^{n} \operatorname{Im}\left(\alpha_{i}\right)=\sum_{i=1}^{n-1} \operatorname{Im}\left(\alpha_{i}\right)+\operatorname{Im}\left(\alpha_{n}\right)=\operatorname{Im}(e)+\operatorname{Im}\left(\alpha_{n}\right)=\operatorname{Im}(e)+\operatorname{Im}((1-$ e) α_{n}) $=\operatorname{Im}(e)+\operatorname{Im}(f)=\operatorname{Im}(\mu) \subseteq^{\oplus} N$, proving (3).
(3) \Rightarrow (1) Let $\alpha \in[M, N]$. Then $\operatorname{Im}(\alpha) \subseteq{ }^{\oplus} N$ by assumption. Denote by $\pi: N \rightarrow$ $\operatorname{Im}(\alpha)$ the projection. Then $\pi \in E_{N}$ and $\operatorname{Im}(\pi)=\operatorname{Im}(\alpha)$, so $\pi \in[N, \operatorname{Im}(\alpha)]=$ $\alpha[N, M]$ by Theorem 3.1, hence N is semi M-projective. Thus $\pi=\alpha \beta$ for some $\beta \in[N, M]$. Since $\alpha(x) \in \operatorname{Im}(\alpha)=\operatorname{Im}(\pi)$ for all $x \in M ; \pi \alpha(x)=\alpha(x)$ and $\alpha(x)=\alpha \beta \alpha(x)$, so $\alpha=\alpha \beta \alpha$, which shows that α is regular, proving (1).

Following [4, Lemma 2.1], for any module $M, \operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} M$ for every $\alpha \in E_{M}$ if and only if $\operatorname{Im}(\alpha)$ is semi M-projective for every $\alpha \in E_{M}$. From [4, Lemma 2.1] and Theorem 3.2 in case $N=M$, we derive the following:
Corollary 3.3. Let M_{R} be a module. The following are equivalent:
(1) E_{M} is a regular rings.
(2) For every $\alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq{ }^{\oplus} M$ and M is a semi projective module.
(3) For every $\alpha \in E_{M}, \operatorname{Ker}(\alpha) \subseteq{ }^{\oplus}$ and $\operatorname{Im}(\alpha)$ is semi M-projective for every $\alpha \in E_{M}$.
(4) For every finite set $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\} \subseteq E_{M} ; \sum_{i=1}^{n} \operatorname{Im}\left(\alpha_{i}\right) \subseteq{ }^{\oplus} M$, and M is a semi projective module.

Following [2], let M_{R}, N_{R} be modules, the co-singular ideal of [M, N] is

$$
\nabla[M, N]=\{\alpha: \alpha \in[M, N] ; \operatorname{Im}(\alpha) \ll N\}
$$

Corollary 3.4. Let M_{R} and N_{R} be modules. If N is semi M-projective, then:
(1) $J[M, N]=\widehat{\nabla}[M, N]$.
(2) $\nabla[M, N] \subseteq J[M, N]$.

Proof. (1) By Lemma 2.8 we have $J[M, N] \subseteq \widehat{\nabla}[M, N]$.

Let $\alpha \in \widehat{\nabla}[M, N]$. Then $\operatorname{Im}\left(1_{N}-\alpha \beta\right)=N$ for all $\beta \in[N, M]$, by Lemma 2.1(2), $\operatorname{Im}(\alpha-\alpha \beta \alpha)=\operatorname{Im}(\alpha)$. Since N is semi M-projective and that $\alpha, \alpha-\alpha \beta \alpha \in$ $[M, N],[N, \operatorname{Im}(\alpha-\alpha \beta \alpha)]=(\alpha-\alpha \beta \alpha)[N, M],[N, \operatorname{Im}(\alpha)]=\alpha[N, M]$, so $\alpha[N, M]=$ $(\alpha-\alpha \beta \alpha)[N, M]=\alpha[N, M] \cap\left(1_{N}-\alpha \beta\right) E_{N}$, by Lemma 2.3(5). This shows that $\alpha[N, M] \subseteq\left(1_{N}-\alpha \beta\right) E_{N}$, again by Lemma 2.3(1) it follows that $E_{N}=\left(1_{N}-\alpha \beta\right) E_{N}$, thus $\alpha \in J[M, N]$.
(2) Let $\alpha \in \nabla[M, N]$. Then by Lemma $2.1(1), N=\operatorname{Im}(\alpha)+\operatorname{Im}\left(1_{N}-\alpha \beta\right)=$ $\operatorname{Im}\left(1_{N}-\alpha \beta\right)$ for all $\beta \in[N, M]$, hence $\operatorname{Im}(\alpha) \ll N$. So $\alpha \in \widehat{\nabla}[M, N]$, by (1) $\alpha \in J[M, N]$.

4. Semi N-Injective Modules.

Theorem 4.1. Let M_{R} and N_{R} be modules. The following are equivalent:
(1) For every factor module K of M and every monomorphism $\alpha: K \rightarrow N$, homomorphism $\lambda: K \rightarrow M$, there exists $\beta: N \rightarrow M$ such that $\beta \alpha=\lambda$.
(2) For every $\alpha \in[M, N] ;[N, M] \alpha=\left\{\beta: \beta \in E_{M} ; \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)\right\}$ $=\left\{\beta: \beta \in E_{M} ; \beta(\operatorname{Ker}(\alpha))=0\right\}$.
Proof. (1) $\Rightarrow(2)$ Let $\alpha \in[M, N]$. It is clear that $[N, M] \alpha \subseteq\left\{\beta: \beta \in E_{M} ; \operatorname{Ker}(\alpha) \subseteq\right.$ $\operatorname{Ker}(\beta)\}$.
Let $\beta \in E_{M}$ such that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$. Then the map $\alpha^{\prime}: M / \operatorname{Ker}(\alpha) \rightarrow N$ defined by $\alpha^{\prime}(\bar{x})=\alpha(x)$ for all $\bar{x} \in M / \operatorname{Ker}(\alpha)$ is a monomorphism. Also, since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$, the map $\beta^{\prime}: M / \operatorname{Ker}(\alpha) \rightarrow M$ defined by $\beta^{\prime}(\bar{x})=\beta(x)$ for all $\bar{x} \in M / \operatorname{Ker}(\alpha)$ is a homomorphism. By assumption, there exists $\lambda: N \rightarrow M$ such that $\lambda \alpha^{\prime}=\beta^{\prime}$. Thus, $\lambda \alpha(x)=\lambda \alpha^{\prime}(\bar{x})=\beta^{\prime}(\bar{x})=\beta(x)$ for all $x \in M$, so $\lambda \alpha=\beta$ and $\beta \in[N, M] \alpha$, proving (2).
$(2) \Rightarrow(1)$ Let K be a factor module of $M, \alpha: K \rightarrow N$ be a monomorphism and $\lambda: K \rightarrow M$ be a homomorphism. Denote by $\pi: M \rightarrow K$ the canonical homomorphism of a module M onto factor module K. Then $\lambda \pi \in E_{M}, \alpha \pi \in$ $[M, N]$ and $\operatorname{Ker}(\alpha \pi) \subseteq \operatorname{Ker}(\lambda \pi)$. By assumption $\lambda \pi \in[N, M](\alpha \pi)$, so there exists $\beta \in[N, M]$ such that $\lambda \pi=\beta(\alpha \pi)$. Let $y \in K$. Then $y=\pi(x)$ for some $x \in M$ and $\lambda(y)=\lambda \pi(x)=\beta \alpha \pi(x)=\beta \alpha(y)$. Thus, $\lambda=\beta \alpha$, this proves (1).

Let M_{R} and N_{R} be modules. Now a module M is called semi N-injective if M, N are satisfy the conditions of Theorem 4.1.
We remark that a module N_{R} is semi injective [6], if and only if N is a semi N-injective module.

Theorem 4.2. Let M_{R} and N_{R} be modules. The following are equivalent:
(1) $[M, N]$ is regular.
(2) For every $\alpha \in[M, N], \operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} M$, and M is a semi N-injective module.
(3) For every finite set $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\} \subseteq[M, N] ; \cap_{i=1}^{n} \operatorname{Ker}\left(\alpha_{i}\right) \subseteq{ }^{\oplus} M$, and M is a semi N-injective module.
Proof. (1) $\Rightarrow(2)$ If $\alpha \in[M, N]$. Then $\operatorname{Ker}(\alpha) \subseteq{ }^{\oplus} M$ by Lemma 2.9. On the
other hand, since $[M, N]$ is regular, $[N, M] \alpha=\left\{\mu: \mu \in E_{M} ; \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\mu)\right\}$ for all $\alpha \in[M, N]$ by Proposition $2.10(6)$. So Theorem 4.1 implies that M is semi N-injective.
$(2) \Rightarrow(3)$ We prove (3) by induction on n. The case $n=1$ holds by (2). Assume $n>1$ and that $X=\cap_{i=1}^{n-1} \operatorname{Ker}\left(\alpha_{i}\right) \subseteq \oplus$, say $M=X \oplus Y$ where Y is a submodule of M. Denote by $\pi: M \rightarrow X$ the projection. Then $\alpha_{n} \pi \in[M, N]$ and $\operatorname{Ker}\left(\alpha_{n} \pi\right)=$ $\left[X \cap \operatorname{Ker}\left(\alpha_{n}\right)\right] \oplus Y$. Since $\operatorname{Ker}\left(\alpha_{n} \pi\right) \subseteq \subseteq^{\oplus} M$ by assumption, $\left[X \cap \operatorname{Ker}\left(\alpha_{n}\right)\right] \subseteq^{\oplus} M$. Thus, $\cap_{i=1}^{n} \operatorname{Ker}\left(\alpha_{i}\right)=X \cap \operatorname{Ker}\left(\alpha_{n}\right) \subseteq{ }^{\oplus} M$ which proves (3).
$(3) \Rightarrow(1)$ Let $\alpha \in[M, N]$. Then $\operatorname{Ker}(\alpha) \subseteq \subseteq^{\oplus} M$ by assumption, say $M=\operatorname{Ker}(\alpha) \oplus P$ for some submodule P of M. Denote by $\pi: M \rightarrow P$ the projection. Then $\pi \in E_{M}$ and $\operatorname{Ker}(\pi)=\operatorname{Ker}(\alpha)$. Also, since $\alpha(\operatorname{Ker}(\pi))=\alpha(\operatorname{Im}(1-\pi))=0, \alpha=\alpha \pi$. On the other hand, since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\pi)$ and M is semi N-injective, by assumption $\pi \in[N, M] \alpha$ by Theorem 4.1, so $\pi=\beta \alpha$ for some $\beta \in[N, M]$, which gives $\alpha=\alpha \beta \alpha$, proving (1).

Taking $N=M$ in Theorem 4.2 gives
Corollary 4.3. Let M_{R} be a module. The following are equivalent:
(1) E_{M} is a regular ring.
(2) For every $\alpha \in E_{M}$, $\operatorname{Ker}(\alpha) \subseteq \oplus M$ and M is a semi injective module.
(3) For every finite set $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\} \subseteq E_{M} ; \cap_{i=1}^{n} \operatorname{Ker}\left(\alpha_{i}\right) \subseteq{ }^{\oplus} M$, and M is a semi injective module.
Following [2], let M_{R}, N_{R} be modules, the singular ideal of [M, N] is

$$
\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}(\alpha) \leq_{e} M\right\}
$$

Corollary 4.4. Let M_{R} and N_{R} be modules. If M is semi N-injective, then:
(1) For any $\alpha, \theta \in[M, N]$ such that $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\theta)$, then $[N, M] \alpha=[N, M] \theta$.
(2) $J[M, N]=\widehat{\Delta}[M, N]$.
(3) $\Delta[M, N] \subseteq J[M, N]$.

Proof. (1) Assume $\alpha, \theta \in[M, N]$ with $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\theta)$. Let $\beta \in[N, M] \alpha$. Then $\beta \in E_{M}$ and by Theorem 4.1, $\beta(\operatorname{Ker}(\alpha))=\{0\}$, so $\beta(\operatorname{Ker}(\theta))=\{0\}$, thus $\beta \in[N, M] \theta$, therefore $[N, M] \alpha \subseteq[N, M] \theta$. The converse is analogous.
(2) By Lemma 2.8 we have $J[M, N] \subseteq \widehat{\Delta}[M, N]$.

Let $\alpha \in \widehat{\Delta}[M, N]$. Then for all $\beta \in[N, M] ; \operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\}$, so by Lemma 2.1(6) $\operatorname{Ker}(\alpha-\alpha \beta \alpha)=\operatorname{Ker}(\alpha)$ and by (1), $[N, M](\alpha-\alpha \beta \alpha)=[N, M] \alpha$, hence $\alpha-\alpha \beta \alpha, \alpha \in[M, N]$. Thus by Lemma 2.3(6), $[N, M] \alpha=[N, M](\alpha-\alpha \beta \alpha)=$ $[N, M] \alpha \cap E_{M}\left(1_{M}-\beta \alpha\right)$, which shows that $[N, M] \alpha \subseteq E_{M}\left(1_{M}-\beta \alpha\right)$. By Lemma 2.3(4), $E_{M}=[N, M] \alpha+E_{M}\left(1_{M}-\beta \alpha\right)=E_{M}\left(1_{M}-\beta \alpha\right)$, so $\alpha \in J[M, N]$.
(3) Let $\alpha \in \Delta[M, N]$. Then $\operatorname{Ker}(\alpha) \leq_{e} M$. Since for all $\beta \in[N, M], \operatorname{Ker}(\alpha) \cap$ $\operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\}$ implies that $\operatorname{Ker}\left(1_{M}-\beta \alpha\right)=\{0\}$, so $\alpha \in \widehat{\Delta}[M, N]$, by (2) $\alpha \in J[M, N]$.

5. Direct M-Projective (N-Injective) Modules.

Lemma 5.1.([6]) Let M_{R} and N_{R} be modules. The following are equivalent:
(1) For any submodule K of M and any direct summand P of N such that $M / K \cong P$ we have $K \subseteq{ }^{\oplus} M$.
(2) For any direct summand P of N, every epimorphism $\alpha: M \rightarrow P$ splits.
(3) For every direct summand K of N and every epimorphism $\alpha: M \rightarrow K$, there exists $\beta: N \rightarrow M$ such that $\alpha \beta=\pi$ where $\pi: N \rightarrow K$ is the projection.

Let M_{R} and N_{R} be modules. Recall a module N is direct M-projective if M, N are satisfy the conditions of Lemma 5.1. From Lemma 5.1 we derive the following:
Corollary 5.2. Let M_{R} and N_{R} be modules. The following are equivalent:
(1) A module N is direct M-projective.
(2) For every direct summand K of N and every epimorphism $\alpha: M \rightarrow K$, $\alpha[N, M]=[N, K]$.
(3) For every direct summand K of N and every epimorphism $\alpha: M \rightarrow K$, $\alpha[N, M]=\left\{\beta: \beta \in E_{N} ; \operatorname{Im}(\beta) \subseteq K\right\}$.
Proof. (1) \Rightarrow (2) Let K be a direct summand of N and $\alpha: M \rightarrow K$ be an epimorphism. It is clear that $\alpha[N, M] \subseteq[N, K]$. Let $\lambda \in[N, K]$. Since N is direct M-projective, there exists $\beta \in[N, M]$ such that $\alpha \beta=\pi$. Since $\operatorname{Im}(\lambda) \subseteq K=$ $\operatorname{Im}(\pi)$, for every $x \in N, \lambda(x) \in K, \pi(\lambda(x))=\lambda(x)$, so $\lambda=\pi \lambda=\alpha \beta \lambda \in \alpha[N, M]$, proving (2).
$(2) \Rightarrow(1)$ Let K be a direct summand of N and $\alpha: M \rightarrow K$ be an epimorphism. Denote by $\pi: N \rightarrow K$ the projection. Since $\pi \in[N, K]=\alpha[M, N]$, by assumption, there exists $\beta \in[N, M]$ such that $\alpha \beta=\pi$, proving (1). The equivalence (2) \Leftrightarrow (3) is clear.

Let M_{R} and N_{R} be modules. Recall that [M, N] is semi-potent [7], if for any $\alpha \in[M, N], \alpha \notin J[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq(\alpha \beta)^{2}=\alpha \beta \in E_{N}$, [6]. In particular, a ring R is called semi-potent (or $I_{0}-$ ring [3]), if every principal right ideal not contained in $J(R)$ contains a nonzero idempotent. [M, N] is called partial invertible or $p i[2]$, if $\beta=\beta \alpha \beta$ for some $0 \neq \beta \in[N, M]$ which is equivalent to that $[M, N]$ is semi-potent and $J[M, N]=0$.
Lemma 5.3. Let M_{R} and N be a modules, $\alpha \in[M, N]$. The following are equivalent:
(1) An element α is partial invertible.
(2) There exists $0 \neq \beta \in[N, M]$ such that $\operatorname{Im}(\alpha \beta)$ and $\operatorname{Ker}(\alpha \beta)$ are direct summands of N.
(3) There exists $0 \neq \beta \in[N, M]$ such that $\operatorname{Im}(\beta \alpha)$ and $\operatorname{Ker}(\beta \alpha)$ are direct summands of M.

Proof. Is obvious.
Proposition 5.4. Let M_{R} and N be a modules. The following are equivalent:
(1) For every $\alpha \in[M, N], \alpha$ is partial invertible.
(2) A module N is direct M-projective and for any $\alpha \in[M, N]$, there exists $0 \neq \beta \in[N, M]$ such that $\operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} N$.
Proof. (1) $\Rightarrow(2)$ Let $\alpha \in[M, N]$. By assumption $\beta=\beta \alpha \beta$ for some $0 \neq \beta \in[N, M]$. Since $(\alpha \beta)^{2}=\alpha \beta \in E_{N}, \operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} N$.
Let K be a direct summand of N and $\alpha: M \rightarrow K$ be an epimorphism. Denote by $\pi: N \rightarrow K$ the projection. By assumption $\beta=\beta \alpha \beta$ for some $0 \neq \beta \in[N, N]$. Then for $e=\alpha \beta ; 0 \neq e^{2}=e \in E_{N}$ and $\operatorname{Im}(e)=\operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha)=K$. Since for any $x \in N, x=e(x)+\left(1_{N}-e\right)(x)$ and $e(x) \in K$ implies that $\pi(x)=e(x)$. This shows that $\alpha \beta=\pi$, by Lemma 5.1 which implies that a module N is direct M-projective. $(2) \Rightarrow(1)$ Let $\alpha \in[M, N]$. By assumption there exists $0 \neq \beta \in[N, M]$ such that $\operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} N$. Since N is direct M-projective, the epimorphism $\alpha \beta: M \rightarrow$ $\operatorname{Im}(\alpha \beta)$ splits, so $\operatorname{Ker}(\alpha \beta) \subseteq{ }^{\oplus} N$, by Lemma 5.2 which implies that α is pi.

Lemma 5.5.([6]) Let M_{R} and N_{R} be modules. The following are equivalent:
(1) For any submodule K of N and any direct summand P of M such that $K \cong P$, we have $K \subseteq{ }^{\oplus} N$.
(2) For any direct summand P of M, every monomorphism $\alpha: P \rightarrow N$ splits.
(3) For every direct summand K of M and every monomorphism $\alpha: K \rightarrow N$, there exists $\beta: N \rightarrow M$ such that $\beta \alpha=\tau$ where $\tau: K \rightarrow M$ the inclusion.

Let M_{R} and N_{R} be modules. Recall a module M is direct N-injective if M, N are satisfy the conditions of Lemma 5.4. From Lemma 5.5 we derive the following:
Corollary 5.6. Let M_{R} and N_{R} be modules. The following are equivalent:
(1) A module M is direct N-injective.
(2) For every direct summand K of M and every monomorphism $\alpha: K \rightarrow N$, $[N, M] \alpha=[K, M]$.
Proof. (1) \Rightarrow (2) Assume (1) holds. It is clear that $[N, M] \alpha \subseteq[K, M]$. Let $\lambda \in[K, M]$. By assumption there exists $\beta \in[N, M]$ such that $\beta \alpha=\tau$ where $\tau: K \rightarrow M$ is the inclusion, so $\lambda=\lambda \tau=\lambda \beta \alpha \in[N, M] \alpha$, proving (2).
$(2) \Rightarrow(1)$ Assume (2) hold. Let K be a direct summand of $M, \alpha: K \rightarrow M$ be a monomorphism and $\tau: K \rightarrow M$ be the inclusion. By assumption $\tau \in[K, M]=$ $[N, M] \alpha$, so there exists $\beta \in[N, M]$ such that $\beta \alpha=\tau$, proving (1).
Proposition 5.7. Let M_{R} and N be modules. The following are equivalent:
(1) For every $\alpha \in[M, N] ; \alpha$ is partial invertible.
(2) A module M is direct N-injective and for any $\alpha \in[M, N]$ there exists $0 \neq \beta \in[N, M]$ such that $\operatorname{Ker}(\beta \alpha) \subseteq{ }^{\oplus} M$.
Proof. (1) $\Rightarrow(2)$ Let $\psi \in[M, N]$. By assumption $\beta=\beta \psi \beta$ for some $0 \neq \beta \in[N, M]$. Since $(\beta \psi)^{2}=\beta \psi \in E_{M}, \operatorname{Ker}(\beta \psi) \subseteq{ }^{\oplus} M$.
Let K be a direct summand of M and $\alpha: K \rightarrow N$ be a monomorphism. Denote by $\pi: M \rightarrow K$ the projection. Then $\alpha \pi \in[M, N]$. By assumption $\mu=\mu \alpha \pi \mu$ for
some $0 \neq \mu \in[N, M]$ and $\pi \mu=\pi \mu \alpha \pi \mu$. Then for $e=\pi \mu \alpha \pi, 0 \neq e^{2}=e \in E_{M}$ and $\operatorname{Im}(e) \subseteq K$. Since for any $x \in M, x=e(x)+\left(1_{M}-e\right)(x)$ and $e(x) \in K$ we have that $\pi(x)=e(x)$. So for any $x \in K, x=\pi(x)=e(x)=\pi \mu \alpha(x)$. For $\beta=\pi \mu \in[N, M]$, $\beta \alpha=\tau$ where $\tau: K \rightarrow M$ the inclusion. By Lemma 5.4 it follows that a module M is direct N-injective.
$(2) \Rightarrow(1)$ Let $\alpha \in[M, N]$. By assumption there exists $0 \neq \lambda \in[N, M]$ such that $\operatorname{Ker}(\lambda \alpha) \subseteq \subseteq^{\oplus} M$. Then $M=\operatorname{Ker}(\lambda \alpha) \oplus K$ for some submodule K of M. Since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\lambda \alpha), \alpha: K \rightarrow M$ is a monomorphism. Hence M is direct N-injective and so there exists $\varphi \in[N, M]$ such that $\varphi \alpha=\tau$ where $\tau: K \rightarrow M$ is the inclusion. Let $\pi: M \rightarrow K$ the projection. Note for any $m \in M, \pi(m) \in K$ implies that $\varphi \alpha \pi=\pi$ and that $(\pi \varphi) \alpha(\pi \varphi)=\pi \varphi$. Then, for $\beta=\pi \varphi, \beta \alpha \beta=\beta$ where $0 \neq \beta \in[N, M]$. This shows that α is $p i$.

Acknowledgement. The author thank the referee for very careful reading of the manuscript and many valuable suggestions that improved the paper by much.

References

[1] F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.
[2] F. Kasch, A. Mader, Rings, Modules, and the Total, Front. Math., Birkhauser Verlag, Basel, 2004.
[3] W. K. Nicholson, $I-$ Rings, Trans. Amer. Math. Soc., 207 (1975), 361-373.
[4] T. C. Quynh, M. T. Kosan, and P. T. Hai, Note on regular morphisms, Annales Univ. Sci. Budapest., Sect. Comp., 41(2013), 249-260.
[5] R. Ware, Endomorphism Rings of Projective Modules, Trans. Amer. Math. Soc., 155(1971), 233-256.
[6] R. Wisbaure, Foundations of Module and Ring Theory, Philadelphia: Gordon and Breach, 1991.
[7] Y. Zhou, On (Semi)regularity and the total of rings and modules, Journal of Algebra, 322(2009), 562-578.

