KYUNGPOOK Math. J. 56(2016), 83-94 http://dx.doi.org/10.5666/KMJ.2016.56.1.83 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Semi M-Projective and Semi N-Injective Modules

HAMZA HAKMI

Department of Mathematics, Faculty of Science, Damascus University, Damascus, Syria

e-mail: hhakmi-64@hotmail.com and h.hakmi@damasuniv.edu.sy

ABSTRACT. Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bimodule [M, N] is regular if and only if a module N is semi M-projective and $\operatorname{Im}(\alpha) \subseteq^{\oplus} N$ for all $\alpha \in [M, N]$, if and only if a module M is semi N-injective and $\operatorname{Ker}(\alpha) \subseteq^{\oplus} N$ for all $\alpha \in [M, N]$. Also, it is proved that the bi-module [M, N] is pi if and only if a module N is direct M-projective and for any $\alpha \in [M, N]$ there exists $\beta \in [N, M]$ such that $\operatorname{Im}(\alpha\beta) \subseteq^{\oplus} N$, if and only if a module M is direct N-injective and for any $\alpha \in [M, N]$ there exists $\beta \in [N, M]$ such that $\operatorname{Ker}(\beta\alpha) \subseteq^{\oplus} M$. The relationship between the Jacobson radical and the (co)singular ideal of [M, N] is described.

1. Introduction

In this paper rings R, are associative with identity unless otherwise indicated. All modules over a ring R are unitary right modules. The category of right R-modules is denoted by mod - R. Maps are written on the left. A submodule N of a module M is said to be *small* in M, if $N + K \neq M$ for any proper submodule K of M [1]. Also, a submodule Q of a module M is said to be *large* (essential) in M if $Q \cap K \neq 0$ for every nonzero submodule K of M [1]. For a submodule N of a module, we use $N \subseteq^{\oplus} M$ to mean that N is a direct summand of M, and write $N \leq_e M$ and $N \ll M$ to indicate that N is a large, respectively small, submodule of M. Also, we write J(R) and U(R) for the Jacobson radical and the group of units of a ring R respectively. If M_R and N_R are modules, We use the notation: $E_M = \text{End}_R(M)$, and $[M, N] = hom_R(M, N)$. Thus, [M, N] is an (E_N, E_M) -bimodule.

An important line of research in module theory is to investigate substructures

Received September 6, 2014; revised May 24, 2015; accepted November 3, 2015. 2010 Mathematics Subject Classification: Primary: 16E50, 16E70; Secondary: 16D40, 16D50.

Key words and phrases: Regular ring, Semi-potent ring, Radical Jacobson, Semi $M-{\rm injective}~(N-{\rm projective})$ modules, direct $M-{\rm injective}~(N-{\rm projective})$ modules, Endomorphism ring.

such as the radical, the singular and co-singular ideals, and (semi)regularity, semipotency or (pi) of [M, N] which are similar to ones in countered in the ring and module theory.

Our main concern is about when the endomorphism ring E_M of some module $M \in \mod -R$ is regular or pi-ring. In section 3, 4 it is proved that for any modules $M, N \in \mod -R$, [M, N] is regular if and only if N is semi M-projective and $\operatorname{Im}(\alpha) \subseteq^{\oplus} N$ for any $\alpha \in [M, N]$ if and only if M is semi N-injective and $\operatorname{Ker}(\alpha) \subseteq^{\oplus} M$ for any $\alpha \in [M, N]$. It is also proved that for a semi N-projective module $M, J[M, N] = \{\alpha : \alpha \in [M, N]; \operatorname{Im}(1_N - \alpha\beta) = N \text{ for all } \beta \in [N, M]\}$ and for a semi M-injective module $N, J[M, N] = \{\alpha : \alpha \in [M, N]; \operatorname{Im}(1_N - \alpha\beta) = N \text{ for all } \beta \in [N, M]\}$ and for a semi M-injective module $N, J[M, N] = \{\alpha : \alpha \in [M, N]; \operatorname{Ker}(1_M - \beta\alpha) = \{0\}$ for all $\beta \in [N, M]\}$. In section 5, it is proved that for any two modules $M, N \in \mod -R; [M, N]$ is pi if and only if N is direct M-projective and for any $\alpha \in [M, N]$ there exists $\beta \in [N, M]$ such that $\operatorname{Im}(\alpha\beta) \subseteq^{\oplus} N$ if and only if M is direct N-injective and for any $\alpha \in [M, N]$ there exists $\beta \in [N, M]$ such that $\operatorname{Ker}(\beta\alpha) \subseteq^{\oplus} M$.

2. Some Properties of [M,N]

Lemma 2.1.([4, Lemma 2.9]) Let M_R , N_R be modules and $\alpha \in [M, N]$, $\beta \in [N, M]$. The following statements hold:

- (1) $Im(\alpha) + Im(1_N \alpha\beta) = N.$
- (2) $Im(\alpha \alpha\beta\alpha) = Im(\alpha) \cap Im(1_N \alpha\beta).$
- (3) $Ker(\alpha) \cap Ker(1_M \beta \alpha) = \{0\}.$
- (4) $Ker(\alpha \alpha\beta\alpha) = Ker(\alpha) + Ker(1_M \beta\alpha).$

Proof. We have $\alpha\beta \in E_N$ and $\beta\alpha \in E_M$.

(1) It is clear that $N = \text{Im}(\alpha\beta) + \text{Im}(1_N - \alpha\beta) \subseteq \text{Im}(\alpha) + \text{Im}(1_N - \alpha\beta) \subseteq N$. Similarly (3) holds.

(2) It is obvious that $\alpha - \alpha\beta\alpha \in [M, N]$, $\operatorname{Im}(\alpha - \alpha\beta\alpha) = \operatorname{Im}((1_N - \alpha\beta)\alpha) \subseteq \operatorname{Im}(1_N - \alpha\beta)$ and $\operatorname{Im}(\alpha - \alpha\beta\alpha) = \operatorname{Im}(\alpha(1_M - \beta\alpha)) \subseteq \operatorname{Im}(\alpha)$. So $\operatorname{Im}(\alpha - \alpha\beta\alpha) \subseteq \operatorname{Im}(\alpha) \cap \operatorname{Im}(1_N - \alpha\beta)$.

Let $x \in \operatorname{Im}(\alpha) \cap \operatorname{Im}(1_N - \alpha\beta)$; $x \in N$ and $x = \alpha(y) = (1_N - \alpha\beta)(z)$ where $y \in M$, $z \in N$. So $x = z - \alpha\beta(z)$, $z = x + \alpha\beta(z) = \alpha(y) + \alpha\beta(z) = \alpha(y + \beta(z))$. Let $y_0 = y + \beta(z) \in M$. Then $z = \alpha(y_0)$ and $x = (1_N - \alpha\beta)(z) = (1_N - \alpha\beta)\alpha(y_0) = (\alpha - \alpha\beta\alpha)(y_0) \in \operatorname{Im}(\alpha - \alpha\beta\alpha)$. Thus, $\operatorname{Im}(\alpha) \cap \operatorname{Im}(1_N - \alpha\beta) \subseteq \operatorname{Im}(\alpha - \alpha\beta\alpha)$. Similarly (4) holds. (5) and (7) are clear.

(6) It is clear that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\alpha - \alpha\beta\alpha)$ and $\operatorname{Ker}(1_M - \beta\alpha) \subseteq \operatorname{Ker}(\alpha - \alpha\beta\alpha)$, so $\operatorname{Ker}(\alpha) + \operatorname{Ker}(1_M - \beta\alpha) \subseteq \operatorname{Ker}(\alpha - \alpha\beta\alpha)$. Let $x \in \operatorname{Ker}(\alpha - \alpha\beta\alpha)$. Then $x \in M$ and $\alpha(x) = \alpha\beta\alpha(x)$. Since $x = \beta\alpha(x) + (1_M - \beta\alpha)(x)$ and $\beta\alpha(x) \in \operatorname{Ker}(1_M - \beta\alpha), (1_M - \beta\alpha)(x) \in \operatorname{Ker}(\alpha)$, hence $(1_M - \beta\alpha)(\beta\alpha(x)) = \beta\alpha(x) - \beta\alpha\beta\alpha(x) = \beta\alpha(x) - \beta\alpha(x) = 0$, $\alpha(1_M - \beta\alpha)(x) = \alpha(x) - \alpha\beta\alpha(x) = \alpha(x) - \alpha(x) = 0$. So $x \in \operatorname{Ker}(1_M - \beta\alpha) + \operatorname{Ker}(\alpha)$. Thus, $\operatorname{Ker}(\alpha - \alpha\beta\alpha) \subseteq \operatorname{Ker}(\alpha) + \operatorname{Ker}(1_M - \beta\alpha)$. Similarly (8) holds. \Box

Lemma 2.2. Let M_R , N_R be modules and $\alpha \in [M, N]$, $\beta \in [N, M]$. The following

statements hold:

- (1) $Im(1_N \alpha\beta) = N$ if and only if $Im(1_M \beta\alpha) = M$.
- (2) $Ker(1_N \alpha\beta) = \{0\}$ if and only if $Ker(1_M \beta\alpha) = \{0\}$.
- (3) $1_N \alpha \beta \in U(E_N)$ if and only if $1_M \beta \alpha \in U(E_M)$.

Proof. (1)(\Rightarrow) Assume that Im($1_N - \alpha\beta$) = N. Then by Lemma 2.1(4) Im(β) \cap Im($1_M - \beta\alpha$) = Im($\beta - \beta\alpha\beta$) = β (Im($1_N - \alpha\beta$)) = Im(β), which shows that Im(β) \subseteq Im($1_M - \beta\alpha$). Lemma 2.1(3) implies that $M = \text{Im}(\beta) + \text{Im}(1_M - \beta\alpha) = \text{Im}(1_M - \beta\alpha)$. Similarly (\Leftarrow) holds.

(2)(\Rightarrow) Assume that Ker $(1_N - \alpha\beta) = \{0\}$. Let $x \in \text{Ker}(1_M - \beta\alpha)$. Then $(\alpha - \alpha\beta\alpha)(x) = (1_N - \alpha\beta)(\alpha(x)) = 0$, so $\alpha(x) \in \text{Ker}(1_N - \alpha\beta) = \{0\}$, thus $\alpha(x) = 0$ and that $x \in \text{Ker}(\alpha)$, which shows that Ker $(1_M - \beta\alpha) \subseteq \text{Ker}(\alpha)$. Lemma 2.1(5) implies that $\{0\} = \text{Ker}(\alpha) \cap \text{Ker}(1_M - \beta\alpha) = \text{Ker}(1_M - \beta\alpha)$. Similarly (\Leftarrow) holds.

(3)(\Rightarrow) If $1_N - \alpha\beta \in U(E_N)$. Then $\mu(1_N - \alpha\beta) = 1_N$ for some $\mu \in E_N$. So, $(1_M + \beta\mu\alpha)(1_M - \beta\alpha) = (1_M - \beta\alpha) + \beta\mu\alpha(1_M - \beta\alpha) = (1_M - \beta\alpha) + \beta\mu(1_N - \alpha\beta)\alpha = 1_M$. The proof for right inverses is similar. Similarly, (\Leftarrow) holds. \Box

Lemma 2.3. Let M_R , N_R be modules and $\alpha \in [M, N]$, $\beta \in [N, M]$. The following statements hold

- (1) $E_N = \alpha[N, M] + (1_N \alpha\beta)E_N.$
- (2) $E_N = [M, N]\beta + E_N(1_N \alpha\beta).$
- (3) $E_M = \beta[M, N] + (1_M \beta \alpha) E_M.$
- (4) $E_M = [N, M]\alpha + E_M(1_M \beta\alpha).$
- (5) $(\alpha \alpha\beta\alpha)[N, M] = \alpha[N, M] \cap (1_N \alpha\beta)E_N.$
- (6) $[N, M](\alpha \alpha\beta\alpha) = [N, M]\alpha \cap E_M(1_M \beta\alpha).$
- (7) $(\beta \beta \alpha \beta)[M, N] = \beta[M, N] \cap (1_M \beta \alpha) E_M.$
- (8) $[M, N](\beta \beta \alpha \beta) = [M, N]\beta \cap E_N(1_N \alpha \beta).$
- (9) $[M, N] = \alpha E_M + (1_N \alpha \beta)[M, N].$
- (10) $[M, N] = E_N \alpha + [M, N](1_M \beta \alpha).$

Proof. (1) Since $1_N = \alpha\beta + (1_N - \alpha\beta)$, for any $\lambda \in E_N$, $\lambda = \alpha\beta\lambda + (1_N - \alpha\beta)\lambda \in \alpha[N, M] + (1_N - \alpha\beta)E_N$, so $E_N \subseteq \alpha[N, M] + (1_N - \alpha\beta)E_N \subseteq E_N$. Similarly (2), (3) and (4) hold.

(5) Since $(\alpha - \alpha\beta\alpha)[N, M] = (1_N - \alpha\beta)\alpha[N, M] \subseteq (1_N - \alpha\beta)E_N$ and $(\alpha - \alpha\beta\alpha)[N, M] = \alpha(1_M - \beta\alpha)[N, M] \subseteq \alpha[N, M]$, we have $(\alpha - \alpha\beta\alpha)[N, M] \subseteq \alpha[N, M] \cap (1_N - \alpha\beta)E_N$.

Let $\lambda \in \alpha[N, M] \cap (1_N - \alpha\beta)E_N$. Then $\lambda = \alpha\gamma = (1_N - \alpha\beta)\mu$ where $\gamma \in [N, M]$, $\mu \in E_N$, so $\mu = \lambda + \alpha\beta\mu = \alpha\gamma + \alpha\beta\mu = \alpha(\gamma + \beta\mu) \in \alpha[N, M]$. Suppose that $\mu = \alpha\theta$ where $\theta = \gamma + \beta\mu \in [N, M]$. Then $\lambda = (1_N - \alpha\beta)\mu = (1_N - \alpha\beta)\alpha\theta = (\alpha - \alpha\beta\alpha)\theta \in (\alpha - \alpha\beta\alpha)[N, M]$, which shows that $\alpha[N, M] \cap (1_N - \alpha\beta)E_N \subseteq (\alpha - \alpha\beta\alpha)[N, M]$. Similarly (6), (7), (8), (9) and (10) hold. \Box

Lemma 2.4. Let M_R, N_R be modules and $\alpha \in [M, N]$, $\beta \in [N, M]$. The following are equivalent:

Hamza Hakmi

- (1) $Im(1_N \alpha\beta) = N.$
- (2) $Im(1_M \beta \alpha) = M.$
- (3) $Im(\alpha \alpha\beta\alpha) = Im(\alpha).$
- (4) $Im(\beta \beta \alpha \beta) = Im(\beta).$

Proof. (1) \Leftrightarrow (2) By Lemma 2.2(1) and (1) \Rightarrow (4) by Lemma 2.1(2). (4) \Rightarrow (1) Assume (4) hold. Then $\operatorname{Im}(\beta) = \operatorname{Im}(\beta - \beta\alpha\beta) = \operatorname{Im}(\beta) \cap \operatorname{Im}(1_M - \beta\alpha)$, which shows that $\operatorname{Im}(\beta) \subseteq \operatorname{Im}(1_M - \beta\alpha)$, so $M = \operatorname{Im}(\beta) + \operatorname{Im}(1_M - \beta\alpha) = \operatorname{Im}(1_M - \beta\alpha)$, proving (1). Similarly, the equivalence (2) \Leftrightarrow (3) holds.

Lemma 2.5. Let M_R, N_R be modules and $\alpha \in [M, N]$, $\beta \in [N, M]$. The following are equivalent:

- (1) $Ker(1_N \alpha\beta) = \{0\}.$
- (2) $Ker(1_M \beta \alpha) = \{0\}.$
- (3) $Ker(\alpha \alpha\beta\alpha) = Ker(\alpha).$
- (4) $Ker(\beta \beta \alpha \beta) = Ker(\beta).$

Proof. (1) \Leftrightarrow (2) By Lemma 2.2(2) and (1) \Rightarrow (4) by Lemma 2.1(8). (4) \Rightarrow (1) Assume (4) hold. Then $\operatorname{Ker}(\beta) = \operatorname{Ker}(\beta - \beta\alpha\beta) = \operatorname{Ker}(\beta) + \operatorname{Ker}(1_N - \alpha\beta)$, which shows that $\operatorname{Ker}(1_N - \alpha\beta) \subseteq \operatorname{Ker}(\beta)$, so $\operatorname{Ker}(1_N - \alpha\beta) = \operatorname{Ker}(\beta) \cap \operatorname{Ker}(1_N - \alpha\beta) = \{0\}$, proving (1). Similarly, the equivalence (2) \Leftrightarrow (3) holds. \Box

Let M_R and N_R be modules. Write:

$$\widehat{\nabla}[M,N] = \{ \alpha : \alpha \in [M,N]; \operatorname{Im}(1_N - \alpha\beta) = N \text{ for all } \beta \in [N,M] \}.$$

It is clear that $\widehat{\nabla}[M, N]$ is a non empty subset in [M, N], $(0 \in \widehat{\nabla}[M, N])$. By using Lemma 2.2(1) it is easy to see that

$$\widehat{\nabla}[M,N] = \{\alpha : \alpha \in [M,N]; \operatorname{Im}(1_N - \alpha\beta) = N \text{ for all } \beta \in [N,M] \}.$$
$$= \{\alpha : \alpha \in [M,N]; \operatorname{Im}(1_M - \beta\alpha) = M \text{ for all } \beta \in [N,M] \}.$$

In addition to, $\widehat{\nabla}[M, N]$ is an ideal in mod - R, which means that it is closed under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.6. For arbitrary $M, N, X, Y \in mod - R$ the following statements hold: (1) $\widehat{\nabla}[M, N][X, M] \subseteq \widehat{\nabla}[X, N].$

- (2) $[N, Y]\widehat{\nabla}[M, N] \subseteq \widehat{\nabla}[M, Y].$
- (3) $[N, Y]\widehat{\nabla}[M, N][X, M] \subseteq \widehat{\nabla}[X, Y].$

Proof. (1)Let $\alpha \in \widehat{\nabla}[M, N]$ and $\lambda \in [X, M]$. Then $\alpha \lambda \in [X, N]$ and for all $\beta \in [N, X]$, $\operatorname{Im}(1_N - (\alpha \lambda)\beta) = \operatorname{Im}(1_N - \alpha(\lambda\beta)) = N$, hence $\lambda \beta \in [N, M]$. Thus, $\alpha \lambda \in \widehat{\nabla}[X, N]$. (2) is analogous. (3) by (1) and (2).

Again, let M_R and N_R be modules. Write:

$$\widehat{\Delta}[M,N] = \{ \alpha : \alpha \in [M,N]; \operatorname{Ker}(1_N - \alpha\beta) = \{0\} \text{ for all } \beta \in [N,M] \}.$$

It is clear that $\widehat{\Delta}[M, N]$ is a non empty subset in [M, N], $(0 \in \widehat{\Delta}[M, N])$. By using Lemma 2.2(2) it is easy to see that

$$\widehat{\Delta}[M,N] = \{ \alpha : \alpha \in [M,N]; \operatorname{Ker}(1_N - \alpha\beta) = \{0\} \text{ for all } \beta \in [N,M] \}.$$

 $= \{ \alpha : \alpha \in [M, N]; \operatorname{Ker}(1_M - \beta \alpha) = \{ 0 \} \text{ for all } \beta \in [N, M] \}.$

In addition to, $\widehat{\Delta}[M, N]$ is an ideal in mod - R, which means that it is closed under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.7. For arbitrary $M, N, X, Y \in mod - R$ the following statements hold:

- (1) $\widehat{\Delta}[M, N][X, M] \subseteq \widehat{\Delta}[X, N].$
- (2) $[N, Y]\widehat{\Delta}[M, N] \subseteq \widehat{\Delta}[M, Y].$
- (3) $[N, Y]\widehat{\Delta}[M, N][X, M] \subseteq \widehat{\Delta}[X, Y].$

Proof. As in Lemma 2.6.

Following [2, 7], the Jacobson radical of the bimodule [M, N] defined by Kasch as follows:

$$J[M, N] = \{ \alpha : \alpha \in [M, N]; (1_N - \alpha\beta) \in U(E_N) \text{ for all } \beta \in [N, M] \}.$$
$$= \{ \alpha : \alpha \in [M, N]; (1_M - \beta\alpha) \in U(E_M) \text{ for all } \beta \in [N, M] \}.$$

Lemma 2.8. Let M_R and N_R be modules. The following statements hold:

- (1) $J[M,N] \subseteq \widehat{\nabla}[M,N]$.
- (2) $J[M, N] \subseteq \widehat{\Delta}[M, N].$

Proof. This is obvious.

Let M_R and N_R be modules. Recall that a morphism $\alpha \in [M, N]$ is regular [2], if there exists $\beta \in [N, M]$ such that $\alpha = \alpha \beta \alpha$. Also, [M, N] is called regular if and only if every $\alpha \in [M, N]$ is regular.

Lemma 2.9.([7]) Let M_R and N_R be modules. The following are equivalent:

(1) [M, N] is regular.

(2) For every $\alpha \in [M, N]$, $Im(\alpha) \subseteq^{\oplus} N$ and $Ker(\alpha) \subseteq^{\oplus} M$.

In particular, for a module M, E_M is regular if and only if $Im(\alpha) \subseteq^{\oplus} M$ and $Ker(\alpha) \subseteq^{\oplus} M$ for all $\alpha \in E_M$, [5, Lemma 3.1].

Proposition 2.10. Let M and N be modules and $\alpha, \beta \in [M, N]$. If [M, N] is regular. Then the following statements hold:

(1) $Im(\alpha) \subseteq Im(\beta)$ if and only if $\alpha[N, M] \subseteq \beta[N, M]$.

Hamza Hakmi

(2) $Im(\alpha) = Im(\beta)$ if and only if $\alpha[N, M] = \beta[N, M]$.

- (3) $\alpha[N, M] = \{\mu : \mu \in E_N; Im(\mu) \subseteq Im(\alpha)\}.$
- (4) $Ker(\alpha) \subseteq Ker(\beta)$ if and only if $[N, M]\beta \subseteq [N, M]\alpha$.
- (5) $Ker(\alpha) = Ker(\beta)$ if and only if $[N, M]\beta = [N, M]\alpha$.
- (6) $[N, M]\alpha = \{\mu : \mu \in E_M; Ker(\alpha) \subseteq Ker(\mu)\}.$

Proof. (1) (\Rightarrow) Suppose that Im(α) \subseteq Im(β). Since [M, N] is regular, there exists $\mu \in [N, M]$ such that $\beta = \beta \mu \beta$. For $e = \beta \mu$; $e^2 = e \in E_N$ and $\operatorname{Im}(e) = \operatorname{Im}(\beta)$, so $\operatorname{Im}(\alpha) \subseteq \operatorname{Im}(e)$. Thus, for all $x \in M$, $e(\alpha(x)) = \alpha(x)$, so $\alpha = e\alpha = \beta \mu \alpha \in \beta E_M$. Therefore, $\alpha[N, M] \subseteq \beta E_M[N, M] \subseteq \beta[N, M].$

 (\Leftarrow) Suppose that $\alpha[N, M] \subseteq \beta[N, M]$. Since [M, N] is regular, $\alpha = \alpha \lambda \alpha$ for some $\lambda \in [N, M]$. Since $\alpha \lambda \in \alpha[N, M] \subseteq \beta[N, M], \alpha \lambda = \beta \delta$ for some $\delta \in [N, M]$. Thus, $\operatorname{Im}(\alpha) = \operatorname{Im}(\alpha \lambda \alpha) = \operatorname{Im}(\beta \delta \alpha) \subset \operatorname{Im}(\beta).$

(2) and (3) are clear by (1).

(4) (\Rightarrow) Suppose that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$. Then $\beta(\operatorname{Ker}(\alpha)) = 0$. Since [M, N]is regular, there exists $\mu \in [N, M]$ such that $\alpha = \alpha \mu \alpha$. For $e = \mu \alpha \in E_M$; $e^2 = e$ and $\operatorname{Ker}(\alpha) = \operatorname{Ker}(e)$, so $\beta(\operatorname{Ker}(\alpha)) = \beta(\operatorname{Ker}(e)) = \beta(\operatorname{Im}(1_M - e)) =$ $\operatorname{Im}(\beta(1_M - e)) = 0$. Thus, $\beta(1_M - e) = 0$ and that $\beta = \beta e = \beta \mu \alpha \in (E_N)\alpha$. So $[N, M]\beta \subseteq [N, M](E_N)\alpha \subseteq [N, M]\alpha.$

(⇐) Suppose that $[N, M]\beta \subseteq [N, M]\alpha$. Since [M, N] is regular, $\beta = \beta \delta \beta$ for some $\delta \in [N, M]$ and $\delta \beta \in [N, M] \beta \subseteq [N, M] \alpha$. So $\delta \beta = \lambda \alpha$ for some $\lambda \in [N, M]$. Thus, $\beta = \beta \lambda \alpha$ and $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$. (5) and (6) are clear by (4).

3. Semi M-Projective Modules.

Theorem 3.1. Let M_R and N_R be modules. The following are equivalent:

(1) For every submodule $K \subseteq N$ and every epimorphism $\alpha : M \to K$, homomorphism $\lambda : N \to K$ there exists $\beta : N \to M$ such that $\alpha \beta = \lambda$.

(2) For every $\alpha \in [M, N]$, $\alpha[N, M] = [N, Im(\alpha)]$.

(3) For every $\alpha \in [M, N]$, $\alpha[N, M] = \{\lambda : \lambda \in E_N; Im(\lambda) \subseteq Im(\alpha)\}$.

Proof. (1) \Rightarrow (2) Let $\alpha \in [M, N]$. It is clear that $\alpha[N, M] \subseteq [N, \operatorname{Im}(\alpha)]$. Let $\lambda \in [N, \operatorname{Im}(\alpha)]$. Then by assumption there exists $\beta \in [N, M]$ such that $\alpha \beta = \lambda$, so $\lambda \in \alpha[N, M].$

(2) \Rightarrow (1) Let K be a submodule of N, $\alpha : M \to K$ be an epimorphism and $\lambda : N \to K$ be a homomorphism. Since $\operatorname{Im}(\lambda) \subseteq K = \operatorname{Im}(\alpha)$, we have $\lambda \in$ $[N, \operatorname{Im}(\alpha)] = \alpha[N, M]$ by assumption. So there exists $\beta \in [N, M]$ such that $\alpha\beta = \lambda$, which proves (1). The equivalence (2) \Leftrightarrow (3) is clear.

Let M_R and N_R be modules. Now a module N is called semi M-projective if M, N are satisfy the conditions of Theorem 3.1.

We remark that a module M_R is semi projective [6], if and only if M is a semi M-projective module.

Theorem 3.2. Let M_R and N_R be modules. The following are equivalent:

- (1) [M, N] is regular.
- (2) For every $\alpha \in [M, N]$, $Im(\alpha) \subseteq^{\oplus} N$, and N is a semi M-projective module.
- (3) For every finite set $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \subseteq [M, N], \Sigma_{i=1}^n Im(\alpha_i) \subseteq^{\oplus} N$, and N is a semi M-projective module.

Proof. (1) \Rightarrow (2) If $\alpha \in [M, N]$. Then $\operatorname{Im}(\alpha) \subseteq^{\oplus} N$ by Lemma 2.9. On the other hand, since [M, N] is regular, $\alpha[N, M] = \{\mu : \mu \in E_N; \operatorname{Im}(\mu) \subseteq \operatorname{Im}(\alpha)\}$ for every $\alpha \in [M, N]$ by Proposition 2.10(3). So Theorem 3.1(3) implies that N is semi M-projective.

 $\begin{array}{l} (2) \Rightarrow (3) \text{ We prove } (3) \text{ by induction on } n. \text{ The case } n=1 \text{ holds by } (2). \text{ Assume that } n>1 \text{ and } \Sigma_{i=1}^{n-1} \text{Im}(\alpha_i) = \text{Im}(e), \text{ where } e^2 = e \in E_N, \text{ hence } \Sigma_{i=1}^{n-1} \text{Im}(\alpha_i) \subseteq^{\oplus} N. \\ \text{Since } 1_N - e \in E_N \text{ and } \alpha_n \in [M, N], (1_N - e)\alpha_n \in [M, N], \text{ so Im}((1 - e)\alpha_n) \subseteq^{\oplus} N \\ \text{ and by assumption Im}((1 - e)\alpha_n) = \text{Im}(f) \text{ where } f^2 = f \in E_N. \text{ Then } ef = 0, \\ \text{and for } \mu = e + f - fe, \text{ we have } \mu^2 = \mu \in E_N. \text{ Since } f\mu = f \text{ and } \mu e = e, \\ \text{Im}(\mu) = \text{Im}(e) + \text{Im}(f). \text{ Therefore Im}(\alpha) = \text{Im}(e) + \text{Im}(f) = \text{Im}(e) + \text{Im}((1 - e)\alpha_n). \\ \text{Thus } \Sigma_{i=1}^n \text{Im}(\alpha_i) = \Sigma_{i=1}^{n-1} \text{Im}(\alpha_i) + \text{Im}(\alpha_n) = \text{Im}(e) + \text{Im}(e) + \text{Im}((1 - e)\alpha_n). \\ \text{Im}(e) + \text{Im}(f) = \text{Im}(\mu) \subseteq^{\oplus} N, \text{ proving } (3). \end{array}$

(3) \Rightarrow (1) Let $\alpha \in [M, N]$. Then $\operatorname{Im}(\alpha) \subseteq^{\oplus} N$ by assumption. Denote by $\pi : N \to \operatorname{Im}(\alpha)$ the projection. Then $\pi \in E_N$ and $\operatorname{Im}(\pi) = \operatorname{Im}(\alpha)$, so $\pi \in [N, \operatorname{Im}(\alpha)] = \alpha[N, M]$ by Theorem 3.1, hence N is semi M-projective. Thus $\pi = \alpha\beta$ for some $\beta \in [N, M]$. Since $\alpha(x) \in \operatorname{Im}(\alpha) = \operatorname{Im}(\pi)$ for all $x \in M$; $\pi\alpha(x) = \alpha(x)$ and $\alpha(x) = \alpha\beta\alpha(x)$, so $\alpha = \alpha\beta\alpha$, which shows that α is regular, proving (1).

Following [4, Lemma 2.1], for any module M, $\operatorname{Ker}(\alpha) \subseteq^{\oplus} M$ for every $\alpha \in E_M$ if and only if $\operatorname{Im}(\alpha)$ is semi M-projective for every $\alpha \in E_M$. From [4, Lemma 2.1] and Theorem 3.2 in case N = M, we derive the following:

Corollary 3.3. Let M_R be a module. The following are equivalent:

(1) E_M is a regular rings.

(2) For every $\alpha \in E_M$; $Im(\alpha) \subseteq^{\oplus} M$ and M is a semi projective module.

(3) For every $\alpha \in E_M$, $Ker(\alpha) \subseteq^{\oplus}$ and $Im(\alpha)$ is semi M-projective for every $\alpha \in E_M$.

(4) For every finite set $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \subseteq E_M$; $\Sigma_{i=1}^n Im(\alpha_i) \subseteq^{\oplus} M$, and M is a semi projective module.

Following [2], let M_R, N_R be modules, the co-singular ideal of [M, N] is

$$\nabla[M, N] = \{ \alpha : \alpha \in [M, N]; \operatorname{Im}(\alpha) \ll N \}.$$

Corollary 3.4. Let M_R and N_R be modules. If N is semi M-projective, then:

(1) $J[M, N] = \widehat{\nabla}[M, N].$

$$(2) \ \nabla[M,N] \subseteq J[M,N].$$

Proof. (1) By Lemma 2.8 we have $J[M, N] \subseteq \widehat{\nabla}[M, N]$.

Let $\alpha \in \widehat{\nabla}[M, N]$. Then $\operatorname{Im}(1_N - \alpha\beta) = N$ for all $\beta \in [N, M]$, by Lemma 2.1(2), $\operatorname{Im}(\alpha - \alpha\beta\alpha) = \operatorname{Im}(\alpha)$. Since N is semi M-projective and that $\alpha, \alpha - \alpha\beta\alpha \in [M, N]$, $[N, \operatorname{Im}(\alpha - \alpha\beta\alpha)] = (\alpha - \alpha\beta\alpha)[N, M]$, $[N, \operatorname{Im}(\alpha)] = \alpha[N, M]$, so $\alpha[N, M] = (\alpha - \alpha\beta\alpha)[N, M] = \alpha[N, M] \cap (1_N - \alpha\beta)E_N$, by Lemma 2.3(5). This shows that $\alpha[N, M] \subseteq (1_N - \alpha\beta)E_N$, again by Lemma 2.3(1) it follows that $E_N = (1_N - \alpha\beta)E_N$, thus $\alpha \in J[M, N]$. (2) Let $\alpha \in \nabla[M, N]$. Then by Lemma 2.1(1), $N = \operatorname{Im}(\alpha) + \operatorname{Im}(1_N - \alpha\beta) = (1_N - \alpha\beta)E_N$.

(2) Let $\alpha \in \nabla[M, N]$. Then by Lemma 2.1(1), $N = \operatorname{Im}(\alpha) + \operatorname{Im}(1_N - \alpha\beta) = \operatorname{Im}(1_N - \alpha\beta)$ for all $\beta \in [N, M]$, hence $\operatorname{Im}(\alpha) \ll N$. So $\alpha \in \widehat{\nabla}[M, N]$, by (1) $\alpha \in J[M, N]$.

4. Semi N-Injective Modules.

Theorem 4.1. Let M_R and N_R be modules. The following are equivalent:

(1) For every factor module K of M and every monomorphism $\alpha : K \to N$, homomorphism $\lambda : K \to M$, there exists $\beta : N \to M$ such that $\beta \alpha = \lambda$.

(2) For every $\alpha \in [M, N]$; $[N, M]\alpha = \{\beta : \beta \in E_M; Ker(\alpha) \subseteq Ker(\beta)\}$

 $= \{\beta : \beta \in E_M; \beta(Ker(\alpha)) = 0\}.$

Proof. (1) \Rightarrow (2) Let $\alpha \in [M, N]$. It is clear that $[N, M]\alpha \subseteq \{\beta : \beta \in E_M; \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)\}.$

Let $\beta \in E_M$ such that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$. Then the map $\alpha' : M/\operatorname{Ker}(\alpha) \to N$ defined by $\alpha'(\overline{x}) = \alpha(x)$ for all $\overline{x} \in M/\operatorname{Ker}(\alpha)$ is a monomorphism. Also, since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta)$, the map $\beta' : M/\operatorname{Ker}(\alpha) \to M$ defined by $\beta'(\overline{x}) = \beta(x)$ for all $\overline{x} \in M/\operatorname{Ker}(\alpha)$ is a homomorphism. By assumption, there exists $\lambda : N \to M$ such that $\lambda \alpha' = \beta'$. Thus, $\lambda \alpha(x) = \lambda \alpha'(\overline{x}) = \beta'(\overline{x}) = \beta(x)$ for all $x \in M$, so $\lambda \alpha = \beta$ and $\beta \in [N, M]\alpha$, proving (2).

(2) \Rightarrow (1) Let K be a factor module of M, $\alpha : K \to N$ be a monomorphism and $\lambda : K \to M$ be a homomorphism. Denote by $\pi : M \to K$ the canonical homomorphism of a module M onto factor module K. Then $\lambda \pi \in E_M$, $\alpha \pi \in$ [M, N] and Ker $(\alpha \pi) \subseteq$ Ker $(\lambda \pi)$. By assumption $\lambda \pi \in [N, M](\alpha \pi)$, so there exists $\beta \in [N, M]$ such that $\lambda \pi = \beta(\alpha \pi)$. Let $y \in K$. Then $y = \pi(x)$ for some $x \in M$ and $\lambda(y) = \lambda \pi(x) = \beta \alpha \pi(x) = \beta \alpha(y)$. Thus, $\lambda = \beta \alpha$, this proves (1).

Let M_R and N_R be modules. Now a module M is called semi N-injective if M, N are satisfy the conditions of Theorem 4.1.

We remark that a module N_R is semi-injective [6], if and only if N is a semi-N-injective module.

Theorem 4.2. Let M_R and N_R be modules. The following are equivalent:

- (1) [M, N] is regular.
- (2) For every $\alpha \in [M, N]$, $Ker(\alpha) \subseteq^{\oplus} M$, and M is a semi N-injective module.

(3) For every finite set $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \subseteq [M, N]; \cap_{i=1}^n Ker(\alpha_i) \subseteq^{\oplus} M$, and M is a semi N-injective module.

Proof. (1) \Rightarrow (2) If $\alpha \in [M, N]$. Then $\operatorname{Ker}(\alpha) \subseteq^{\oplus} M$ by Lemma 2.9. On the

other hand, since [M, N] is regular, $[N, M]\alpha = \{\mu : \mu \in E_M; \text{ Ker}(\alpha) \subseteq \text{Ker}(\mu)\}$ for all $\alpha \in [M, N]$ by Proposition 2.10(6). So Theorem 4.1 implies that M is semi N-injective.

(2) \Rightarrow (3) We prove (3) by induction on n. The case n = 1 holds by (2). Assume n > 1 and that $X = \bigcap_{i=1}^{n-1} \operatorname{Ker}(\alpha_i) \subseteq^{\oplus} M$, say $M = X \oplus Y$ where Y is a submodule of M. Denote by $\pi : M \to X$ the projection. Then $\alpha_n \pi \in [M, N]$ and $\operatorname{Ker}(\alpha_n \pi) = [X \cap \operatorname{Ker}(\alpha_n)] \oplus Y$. Since $\operatorname{Ker}(\alpha_n \pi) \subseteq^{\oplus} M$ by assumption, $[X \cap \operatorname{Ker}(\alpha_n)] \subseteq^{\oplus} M$. Thus, $\bigcap_{i=1}^{n} \operatorname{Ker}(\alpha_i) = X \cap \operatorname{Ker}(\alpha_n) \subseteq^{\oplus} M$ which proves (3).

 $\begin{array}{ll} (3) \Rightarrow (1) \text{ Let } \alpha \in [M, N]. \text{ Then Ker}(\alpha) \subseteq^{\oplus} M \text{ by assumption, say } M = \text{Ker}(\alpha) \oplus P \\ \text{for some submodule } P \text{ of } M. \text{ Denote by } \pi : M \to P \text{ the projection. Then } \pi \in E_M \\ \text{and Ker}(\pi) = \text{Ker}(\alpha). \text{ Also, since } \alpha(\text{Ker}(\pi)) = \alpha(\text{Im}(1-\pi)) = 0, \ \alpha = \alpha\pi. \text{ On the other hand, since Ker}(\alpha) \subseteq \text{Ker}(\pi) \text{ and } M \text{ is semi } N-\text{injective, by assumption} \\ \pi \in [N, M]\alpha \text{ by Theorem 4.1, so } \pi = \beta\alpha \text{ for some } \beta \in [N, M], \text{ which gives } \alpha = \alpha\beta\alpha, \\ \text{proving (1).} \end{array}$

Taking N = M in Theorem 4.2 gives

Corollary 4.3. Let M_R be a module. The following are equivalent:

- (1) E_M is a regular ring.
- (2) For every $\alpha \in E_M$, $Ker(\alpha) \subseteq^{\oplus} M$ and M is a semi-injective module.

(3) For every finite set $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \subseteq E_M$; $\cap_{i=1}^n Ker(\alpha_i) \subseteq \oplus M$, and M is a semi injective module.

Following [2], let M_R, N_R be modules, the singular ideal of [M, N] is

$$\Delta[M, N] = \{ \alpha : \alpha \in [M, N]; \text{ Ker}(\alpha) \leq_e M \}.$$

Corollary 4.4. Let M_R and N_R be modules. If M is semi N-injective, then:

- (1) For any $\alpha, \theta \in [M, N]$ such that $Ker(\alpha) = Ker(\theta)$, then $[N, M]\alpha = [N, M]\theta$.
- (2) $J[M, N] = \widehat{\Delta}[M, N].$
- (3) $\Delta[M, N] \subseteq J[M, N].$

Proof. (1) Assume α , $\theta \in [M, N]$ with $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\theta)$. Let $\beta \in [N, M]\alpha$. Then $\beta \in E_M$ and by Theorem 4.1, $\beta(\operatorname{Ker}(\alpha)) = \{0\}$, so $\beta(\operatorname{Ker}(\theta)) = \{0\}$, thus $\beta \in [N, M]\theta$, therefore $[N, M]\alpha \subseteq [N, M]\theta$. The converse is analogous.

(2) By Lemma 2.8 we have $J[M, N] \subseteq \overline{\Delta}[M, N]$.

Let $\alpha \in \widehat{\Delta}[M, N]$. Then for all $\beta \in [N, M]$; $\operatorname{Ker}(1_M - \beta \alpha) = \{0\}$, so by Lemma 2.1(6) $\operatorname{Ker}(\alpha - \alpha\beta\alpha) = \operatorname{Ker}(\alpha)$ and by (1), $[N, M](\alpha - \alpha\beta\alpha) = [N, M]\alpha$, hence $\alpha - \alpha\beta\alpha, \alpha \in [M, N]$. Thus by Lemma 2.3(6), $[N, M]\alpha = [N, M](\alpha - \alpha\beta\alpha) = [N, M]\alpha \cap E_M(1_M - \beta\alpha)$, which shows that $[N, M]\alpha \subseteq E_M(1_M - \beta\alpha)$. By Lemma 2.3(4), $E_M = [N, M]\alpha + E_M(1_M - \beta\alpha) = E_M(1_M - \beta\alpha)$, so $\alpha \in J[M, N]$.

(3) Let $\alpha \in \Delta[M, N]$. Then $\operatorname{Ker}(\alpha) \leq_e M$. Since for all $\beta \in [N, M]$, $\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(1_M - \beta \alpha) = \{0\}$ implies that $\operatorname{Ker}(1_M - \beta \alpha) = \{0\}$, so $\alpha \in \widehat{\Delta}[M, N]$, by (2) $\alpha \in J[M, N]$.

5. Direct M-Projective (N-Injective) Modules.

Lemma 5.1.([6]) Let M_R and N_R be modules. The following are equivalent:

- (1) For any submodule K of M and any direct summand P of N such that $M/K \cong P$ we have $K \subseteq^{\oplus} M$.
 - (2) For any direct summand P of N, every epimorphism $\alpha : M \to P$ splits.
 - (3) For every direct summand K of N and every epimorphism $\alpha : M \to K$, there exists $\beta : N \to M$ such that $\alpha \beta = \pi$ where $\pi : N \to K$ is the projection.

Let M_R and N_R be modules. Recall a module N is direct M-projective if M, N are satisfy the conditions of Lemma 5.1. From Lemma 5.1 we derive the following:

Corollary 5.2. Let M_R and N_R be modules. The following are equivalent:

(1) A module N is direct M-projective.

(2) For every direct summand K of N and every epimorphism $\alpha : M \to K$, $\alpha[N, M] = [N, K]$.

(3) For every direct summand K of N and every epimorphism $\alpha : M \to K$, $\alpha[N, M] = \{\beta : \beta \in E_N; Im(\beta) \subseteq K\}.$

Proof. (1) \Rightarrow (2) Let K be a direct summand of N and $\alpha : M \to K$ be an epimorphism. It is clear that $\alpha[N, M] \subseteq [N, K]$. Let $\lambda \in [N, K]$. Since N is direct M-projective, there exists $\beta \in [N, M]$ such that $\alpha\beta = \pi$. Since $\operatorname{Im}(\lambda) \subseteq K = \operatorname{Im}(\pi)$, for every $x \in N$, $\lambda(x) \in K$, $\pi(\lambda(x)) = \lambda(x)$, so $\lambda = \pi\lambda = \alpha\beta\lambda \in \alpha[N, M]$, proving (2).

(2) \Rightarrow (1) Let K be a direct summand of N and $\alpha : M \to K$ be an epimorphism. Denote by $\pi : N \to K$ the projection. Since $\pi \in [N, K] = \alpha[M, N]$, by assumption, there exists $\beta \in [N, M]$ such that $\alpha\beta = \pi$, proving (1). The equivalence (2) \Leftrightarrow (3) is clear.

Let M_R and N_R be modules. Recall that [M, N] is semi-potent [7], if for any $\alpha \in [M, N]$, $\alpha \notin J[M, N]$ there exists $\beta \in [N, M]$ such that $0 \neq (\alpha\beta)^2 = \alpha\beta \in E_N$, [6]. In particular, a ring R is called semi-potent (or I_0 -ring [3]), if every principal right ideal not contained in J(R) contains a nonzero idempotent. [M, N] is called *partial invertible* or pi [2], if $\beta = \beta\alpha\beta$ for some $0 \neq \beta \in [N, M]$ which is equivalent to that [M, N] is semi-potent and J[M, N] = 0.

Lemma 5.3. Let M_R and N be a modules, $\alpha \in [M, N]$. The following are equivalent:

(1) An element α is partial invertible.

(2) There exists $0 \neq \beta \in [N, M]$ such that $Im(\alpha\beta)$ and $Ker(\alpha\beta)$ are direct summands of N.

(3) There exists $0 \neq \beta \in [N, M]$ such that $Im(\beta \alpha)$ and $Ker(\beta \alpha)$ are direct summands of M.

Proof. Is obvious.

Proposition 5.4. Let M_R and N be a modules. The following are equivalent:

- (1) For every $\alpha \in [M, N]$, α is partial invertible.
- (2) A module N is direct M-projective and for any $\alpha \in [M, N]$, there exists
- $0 \neq \beta \in [N, M]$ such that $Im(\alpha\beta) \subseteq^{\oplus} N$.

Proof. (1) \Rightarrow (2) Let $\alpha \in [M, N]$. By assumption $\beta = \beta \alpha \beta$ for some $0 \neq \beta \in [N, M]$. Since $(\alpha \beta)^2 = \alpha \beta \in E_N$, Im $(\alpha \beta) \subseteq^{\oplus} N$.

Let K be a direct summand of N and $\alpha : M \to K$ be an epimorphism. Denote by $\pi : N \to K$ the projection. By assumption $\beta = \beta \alpha \beta$ for some $0 \neq \beta \in [N, N]$. Then for $e = \alpha \beta$; $0 \neq e^2 = e \in E_N$ and $\operatorname{Im}(e) = \operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha) = K$. Since for any $x \in N, x = e(x) + (1_N - e)(x)$ and $e(x) \in K$ implies that $\pi(x) = e(x)$. This shows that $\alpha \beta = \pi$, by Lemma 5.1 which implies that a module N is direct M-projective. (2) \Rightarrow (1) Let $\alpha \in [M, N]$. By assumption there exists $0 \neq \beta \in [N, M]$ such that $\operatorname{Im}(\alpha \beta) \subseteq^{\oplus} N$. Since N is direct M-projective, the epimorphism $\alpha \beta : M \to \operatorname{Im}(\alpha \beta)$ splits, so $\operatorname{Ker}(\alpha \beta) \subseteq^{\oplus} N$, by Lemma 5.2 which implies that α is pi.

Lemma 5.5.([6]) Let M_R and N_R be modules. The following are equivalent:

(1) For any submodule K of N and any direct summand P of M such that $K \cong P$, we have $K \subseteq^{\oplus} N$.

(2) For any direct summand P of M, every monomorphism $\alpha: P \to N$ splits.

(3) For every direct summand K of M and every monomorphism $\alpha : K \to N$, there exists $\beta : N \to M$ such that $\beta \alpha = \tau$ where $\tau : K \to M$ the inclusion.

Let M_R and N_R be modules. Recall a module M is direct N-injective if M, N are satisfy the conditions of Lemma 5.4. From Lemma 5.5 we derive the following:

Corollary 5.6. Let M_R and N_R be modules. The following are equivalent:

- (1) A module M is direct N-injective.
- (2) For every direct summand K of M and every monomorphism $\alpha : K \to N$, $[N, M]\alpha = [K, M]$.

Proof. (1) \Rightarrow (2) Assume (1) holds. It is clear that $[N, M]\alpha \subseteq [K, M]$. Let $\lambda \in [K, M]$. By assumption there exists $\beta \in [N, M]$ such that $\beta \alpha = \tau$ where $\tau : K \to M$ is the inclusion, so $\lambda = \lambda \tau = \lambda \beta \alpha \in [N, M]\alpha$, proving (2).

(2) \Rightarrow (1) Assume (2) hold. Let K be a direct summand of M, $\alpha : K \to M$ be a monomorphism and $\tau : K \to M$ be the inclusion. By assumption $\tau \in [K, M] = [N, M]\alpha$, so there exists $\beta \in [N, M]$ such that $\beta \alpha = \tau$, proving (1).

Proposition 5.7. Let M_R and N be modules. The following are equivalent:

- (1) For every $\alpha \in [M, N]$; α is partial invertible.
- (2) A module M is direct N-injective and for any $\alpha \in [M, N]$ there exists $0 \neq \beta \in [N, M]$ such that $Ker(\beta \alpha) \subseteq^{\oplus} M$.

Proof. (1) \Rightarrow (2) Let $\psi \in [M, N]$. By assumption $\beta = \beta \psi \beta$ for some $0 \neq \beta \in [N, M]$. Since $(\beta \psi)^2 = \beta \psi \in E_M$, Ker $(\beta \psi) \subseteq^{\oplus} M$.

Let K be a direct summand of M and $\alpha : K \to N$ be a monomorphism. Denote by $\pi : M \to K$ the projection. Then $\alpha \pi \in [M, N]$. By assumption $\mu = \mu \alpha \pi \mu$ for some $0 \neq \mu \in [N, M]$ and $\pi \mu = \pi \mu \alpha \pi \mu$. Then for $e = \pi \mu \alpha \pi, 0 \neq e^2 = e \in E_M$ and $\operatorname{Im}(e) \subseteq K$. Since for any $x \in M, x = e(x) + (1_M - e)(x)$ and $e(x) \in K$ we have that $\pi(x) = e(x)$. So for any $x \in K, x = \pi(x) = e(x) = \pi \mu \alpha(x)$. For $\beta = \pi \mu \in [N, M]$, $\beta \alpha = \tau$ where $\tau : K \to M$ the inclusion. By Lemma 5.4 it follows that a module M is direct N-injective.

(2) \Rightarrow (1) Let $\alpha \in [M, N]$. By assumption there exists $0 \neq \lambda \in [N, M]$ such that $\operatorname{Ker}(\lambda \alpha) \subseteq^{\oplus} M$. Then $M = \operatorname{Ker}(\lambda \alpha) \oplus K$ for some submodule K of M. Since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\lambda \alpha), \alpha : K \to M$ is a monomorphism. Hence M is direct N-injective and so there exists $\varphi \in [N, M]$ such that $\varphi \alpha = \tau$ where $\tau : K \to M$ is the inclusion. Let $\pi : M \to K$ the projection. Note for any $m \in M, \pi(m) \in K$ implies that $\varphi \alpha \pi = \pi$ and that $(\pi \varphi) \alpha(\pi \varphi) = \pi \varphi$. Then, for $\beta = \pi \varphi, \beta \alpha \beta = \beta$ where $0 \neq \beta \in [N, M]$. This shows that α is pi.

Acknowledgement. The author thank the referee for very careful reading of the manuscript and many valuable suggestions that improved the paper by much.

References

- [1] F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.
- [2] F. Kasch, A. Mader, *Rings, Modules, and the Total*, Front. Math., Birkhauser Verlag, Basel, 2004.
- [3] W. K. Nicholson, I- Rings, Trans. Amer. Math. Soc., 207(1975), 361-373.
- [4] T. C. Quynh, M. T. Kosan, and P. T. Hai, Note on regular morphisms, Annales Univ. Sci. Budapest., Sect. Comp., 41(2013), 249–260.
- [5] R. Ware, Endomorphism Rings of Projective Modules, Trans. Amer. Math. Soc., 155(1971), 233–256.
- [6] R. Wisbaure, Foundations of Module and Ring Theory, Philadelphia: Gordon and Breach, 1991.
- Y. Zhou, On (Semi)regularity and the total of rings and modules, Journal of Algebra, 322(2009), 562–578.