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Abstract. Let M and N be modules over a ring R. The purpose of this paper is to study

modules M, N for which the bi-module [M, N ] is regular or pi. It is proved that the bi-

module [M, N ] is regular if and only if a module N is semi M−projective and Im(α) ⊆⊕ N

for all α ∈ [M, N ], if and only if a module M is semi N−injective and Ker(α) ⊆⊕ N for

all α ∈ [M, N ]. Also, it is proved that the bi-module [M, N ] is pi if and only if a mod-

ule N is direct M−projective and for any α ∈ [M, N ] there exists β ∈ [N, M ] such that

Im(αβ) ⊆⊕ N , if and only if a module M is direct N−injective and for any α ∈ [M, N ]

there exists β ∈ [N, M ] such that Ker(βα) ⊆⊕ M . The relationship between the Jacobson

radical and the (co)singular ideal of [M, N ] is described.

1. Introduction

In this paper rings R, are associative with identity unless otherwise indicated.
All modules over a ring R are unitary right modules. The category of right
R−modules is denoted by mod − R. Maps are written on the left. A submod-
ule N of a module M is said to be small in M , if N + K 6= M for any proper
submodule K of M [1]. Also, a submodule Q of a module M is said to be large
(essential) in M if Q ∩ K 6= 0 for every nonzero submodule K of M [1]. For a
submodule N of a module, we use N ⊆⊕ M to mean that N is a direct summand
of M , and write N ≤e M and N ¿ M to indicate that N is a large, respectively
small, submodule of M . Also, we write J(R) and U(R) for the Jacobson radical
and the group of units of a ring R respectively. If MR and NR are modules, We
use the notation: EM = EndR(M), and [M,N ] = homR(M, N). Thus, [M,N ] is
an (EN , EM )-bimodule.

An important line of research in module theory is to investigate substructures
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such as the radical, the singular and co-singular ideals, and (semi)regularity, semipo-
tency or (pi) of [M,N ] which are similar to ones in countered in the ring and module
theory.

Our main concern is about when the endomorphism ring EM of some module
M ∈ mod − R is regular or pi−ring. In section 3, 4 it is proved that for any
modules M,N ∈ mod−R, [M, N ] is regular if and only if N is semi M−projective
and Im(α) ⊆⊕ N for any α ∈ [M, N ] if and only if M is semi N−injective and
Ker(α) ⊆⊕ M for any α ∈ [M,N ]. It is also proved that for a semi N−projective
module M , J [M, N ] = {α : α ∈ [M,N ]; Im(1N − αβ) = N for all β ∈ [N, M ]}
and for a semi M−injective module N , J [M, N ] = {α : α ∈ [M, N ]; Ker(1M −
βα) = {0} for all β ∈ [N, M ]}. In section 5, it is proved that for any two modules
M, N ∈ mod − R; [M, N ] is pi if and only if N is direct M−projective and for
any α ∈ [M, N ] there exists β ∈ [N, M ] such that Im(αβ) ⊆⊕ N if and only if M
is direct N−injective and for any α ∈ [M, N ] there exists β ∈ [N, M ] such that
Ker(βα) ⊆⊕ M .

2. Some Properties of [M,N]

Lemma 2.1.([4, Lemma 2.9]) Let MR, NR be modules and α ∈ [M, N ], β ∈ [N, M ].
The following statements hold:

(1) Im(α) + Im(1N − αβ) = N .

(2) Im(α− αβα) = Im(α) ∩ Im(1N − αβ).

(3) Ker(α) ∩Ker(1M − βα) = {0}.
(4) Ker(α− αβα) = Ker(α) + Ker(1M − βα).

Proof. We have αβ ∈ EN and βα ∈ EM .
(1) It is clear that N = Im(αβ) + Im(1N − αβ) ⊆ Im(α) + Im(1N − αβ) ⊆ N .
Similarly (3) holds.
(2) It is obvious that α − αβα ∈ [M, N ], Im(α − αβα) = Im((1N − αβ)α) ⊆
Im(1N − αβ) and Im(α − αβα) = Im(α(1M − βα)) ⊆ Im(α). So Im(α − αβα) ⊆
Im(α) ∩ Im(1N − αβ).
Let x ∈ Im(α) ∩ Im(1N − αβ); x ∈ N and x = α(y) = (1N − αβ)(z) where y ∈ M ,
z ∈ N . So x = z − αβ(z), z = x + αβ(z) = α(y) + αβ(z) = α(y + β(z)). Let
y0 = y + β(z) ∈ M . Then z = α(y0) and x = (1N − αβ)(z) = (1N − αβ)α(y0) =
(α−αβα)(y0) ∈ Im(α−αβα). Thus, Im(α)∩Im(1N−αβ) ⊆ Im(α−αβα). Similarly
(4) holds. (5) and (7) are clear.
(6) It is clear that Ker(α) ⊆ Ker(α− αβα) and Ker(1M − βα) ⊆ Ker(α− αβα), so
Ker(α) + Ker(1M − βα) ⊆ Ker(α−αβα). Let x ∈ Ker(α−αβα). Then x ∈ M and
α(x) = αβα(x). Since x = βα(x)+(1M−βα)(x) and βα(x) ∈ Ker(1M−βα), (1M−
βα)(x) ∈ Ker(α), hence (1M−βα)(βα(x)) = βα(x)−βαβα(x) = βα(x)−βα(x) = 0,
α(1M−βα)(x) = α(x)−αβα(x) = α(x)−α(x) = 0. So x ∈ Ker(1M−βα)+Ker(α).
Thus, Ker(α− αβα) ⊆ Ker(α) + Ker(1M − βα). Similarly (8) holds. 2

Lemma 2.2. Let MR, NR be modules and α ∈ [M, N ], β ∈ [N, M ]. The following
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statements hold:
(1) Im(1N − αβ) = N if and only if Im(1M − βα) = M .
(2) Ker(1N − αβ) = {0} if and only if Ker(1M − βα) = {0}.
(3) 1N − αβ ∈ U(EN ) if and only if 1M − βα ∈ U(EM ).

Proof. (1)(⇒) Assume that Im(1N − αβ) = N . Then by Lemma 2.1(4) Im(β) ∩
Im(1M−βα) = Im(β−βαβ) = β(Im(1N−αβ)) = Im(β), which shows that Im(β) ⊆
Im(1M−βα). Lemma 2.1(3) implies that M = Im(β)+Im(1M−βα) = Im(1M−βα).
Similarly (⇐) holds.
(2)(⇒) Assume that Ker(1N − αβ) = {0}. Let x ∈ Ker(1M − βα). Then (α −
αβα)(x) = (1N −αβ)(α(x)) = 0, so α(x) ∈ Ker(1N −αβ) = {0}, thus α(x) = 0 and
that x ∈ Ker(α), which shows that Ker(1M − βα) ⊆ Ker(α). Lemma 2.1(5) implies
that {0} = Ker(α) ∩Ker(1M − βα) = Ker(1M − βα). Similarly (⇐) holds.
(3)(⇒) If 1N − αβ ∈ U(EN ). Then µ(1N − αβ) = 1N for some µ ∈ EN . So,
(1M +βµα)(1M−βα) = (1M−βα)+βµα(1M−βα) = (1M−βα)+βµ(1N−αβ)α =
1M . The proof for right inverses is similar. Similarly, (⇐) holds. 2

Lemma 2.3. Let MR, NR be modules and α ∈ [M, N ], β ∈ [N, M ]. The following
statements hold

(1) EN = α[N,M ] + (1N − αβ)EN .
(2) EN = [M,N ]β + EN (1N − αβ).
(3) EM = β[M, N ] + (1M − βα)EM .
(4) EM = [N, M ]α + EM (1M − βα).
(5) (α− αβα)[N,M ] = α[N,M ] ∩ (1N − αβ)EN .
(6) [N, M ](α− αβα) = [N,M ]α ∩ EM (1M − βα).
(7) (β − βαβ)[M,N ] = β[M, N ] ∩ (1M − βα)EM .
(8) [M, N ](β − βαβ) = [M, N ]β ∩ EN (1N − αβ).
(9) [M, N ] = αEM + (1N − αβ)[M, N ].
(10) [M, N ] = ENα + [M, N ](1M − βα).

Proof. (1) Since 1N = αβ + (1N − αβ), for any λ ∈ EN , λ = αβλ + (1N − αβ)λ ∈
α[N,M ] + (1N − αβ)EN , so EN ⊆ α[N, M ] + (1N − αβ)EN ⊆ EN . Similarly (2),
(3) and (4) hold.
(5) Since (α − αβα)[N,M ] = (1N − αβ)α[N,M ] ⊆ (1N − αβ)EN and (α −
αβα)[N, M ] = α(1M − βα)[N,M ] ⊆ α[N, M ], we have (α − αβα)[N,M ] ⊆
α[N,M ] ∩ (1N − αβ)EN .
Let λ ∈ α[N, M ] ∩ (1N − αβ)EN . Then λ = αγ = (1N − αβ)µ where γ ∈ [N, M ],
µ ∈ EN , so µ = λ+αβµ = αγ +αβµ = α(γ +βµ) ∈ α[N,M ]. Suppose that µ = αθ
where θ = γ + βµ ∈ [N, M ]. Then λ = (1N −αβ)µ = (1N −αβ)αθ = (α−αβα)θ ∈
(α− αβα)[N, M ], which shows that α[N, M ] ∩ (1N − αβ)EN ⊆ (α− αβα)[N,M ].
Similarly (6), (7), (8), (9) and (10) hold. 2

Lemma 2.4. Let MR, NR be modules and α ∈ [M, N ], β ∈ [N,M ]. The following
are equivalent:
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(1) Im(1N − αβ) = N .

(2) Im(1M − βα) = M .

(3) Im(α− αβα) = Im(α).

(4) Im(β − βαβ) = Im(β).

Proof. (1) ⇔ (2) By Lemma 2.2(1) and (1) ⇒ (4) by Lemma 2.1(2).
(4) ⇒ (1) Assume (4) hold. Then Im(β) = Im(β − βαβ) = Im(β) ∩ Im(1M − βα),
which shows that Im(β) ⊆ Im(1M −βα), so M = Im(β)+ Im(1M −βα) = Im(1M −
βα), proving (1). Similarly, the equivalence (2) ⇔ (3) holds. 2

Lemma 2.5. Let MR, NR be modules and α ∈ [M, N ], β ∈ [N, M ]. The following
are equivalent:

(1) Ker(1N − αβ) = {0}.
(2) Ker(1M − βα) = {0}.
(3) Ker(α− αβα) = Ker(α).

(4) Ker(β − βαβ) = Ker(β).

Proof. (1) ⇔ (2) By Lemma 2.2(2) and (1) ⇒ (4) by Lemma 2.1(8).
(4)⇒ (1) Assume (4) hold. Then Ker(β) = Ker(β−βαβ) = Ker(β)+Ker(1N−αβ),
which shows that Ker(1N − αβ) ⊆ Ker(β), so Ker(1N − αβ) = Ker(β) ∩Ker(1N −
αβ) = {0}, proving (1). Similarly, the equivalence (2) ⇔ (3) holds. 2

Let MR and NR be modules. Write:

∇̂[M, N ] = {α : α ∈ [M, N ]; Im(1N − αβ) = N for all β ∈ [N, M ]}.

It is clear that ∇̂[M, N ] is a non empty subset in [M, N ], (0 ∈ ∇̂[M,N ]). By
using Lemma 2.2(1) it is easy to see that

∇̂[M, N ] = {α : α ∈ [M, N ]; Im(1N − αβ) = N for all β ∈ [N, M ]}.

= {α : α ∈ [M,N ]; Im(1M − βα) = M for all β ∈ [N, M ]}.
In addition to, ∇̂[M, N ] is an ideal in mod − R, which means that it is closed

under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.6. For arbitrary M, N,X, Y ∈ mod−R the following statements hold:

(1) ∇̂[M,N ][X,M ] ⊆ ∇̂[X, N ].

(2) [N,Y ]∇̂[M, N ] ⊆ ∇̂[M, Y ].

(3) [N,Y ]∇̂[M, N ][X,M ] ⊆ ∇̂[X, Y ].

Proof. (1)Let α ∈ ∇̂[M,N ] and λ ∈ [X, M ]. Then αλ ∈ [X, N ] and for all β ∈
[N,X], Im(1N − (αλ)β) = Im(1N − α(λβ)) = N , hence λβ ∈ [N, M ]. Thus,
αλ ∈ ∇̂[X, N ]. (2) is analogous. (3) by (1) and (2). 2
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Again, let MR and NR be modules. Write:

∆̂[M, N ] = {α : α ∈ [M, N ]; Ker(1N − αβ) = {0} for all β ∈ [N, M ]}.

It is clear that ∆̂[M, N ] is a non empty subset in [M,N ], (0 ∈ ∆̂[M, N ]). By
using Lemma 2.2(2) it is easy to see that

∆̂[M, N ] = {α : α ∈ [M, N ]; Ker(1N − αβ) = {0} for all β ∈ [N, M ]}.

= {α : α ∈ [M,N ]; Ker(1M − βα) = {0} for all β ∈ [N,M ]}.
In addition to, ∆̂[M,N ] is an ideal in mod − R, which means that it is closed

under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.7. For arbitrary M,N, X, Y ∈ mod−R the following statements hold:
(1) ∆̂[M, N ][X, M ] ⊆ ∆̂[X,N ].

(2) [N, Y ]∆̂[M, N ] ⊆ ∆̂[M,Y ].

(3) [N, Y ]∆̂[M, N ][X, M ] ⊆ ∆̂[X,Y ].

Proof. As in Lemma 2.6. 2

Following [2, 7], the Jacobson radical of the bimodule [M,N ] defined by Kasch
as follows:

J [M, N ] = {α : α ∈ [M, N ]; (1N − αβ) ∈ U(EN ) for all β ∈ [N, M ]}.

= {α : α ∈ [M, N ]; (1M − βα) ∈ U(EM ) for all β ∈ [N, M ]}.
Lemma 2.8. Let MR and NR be modules. The following statements hold:

(1) J [M, N ] ⊆ ∇̂[M,N ].

(2) J [M, N ] ⊆ ∆̂[M,N ].

Proof. This is obvious. 2

Let MR and NR be modules. Recall that a morphism α ∈ [M,N ] is regular [2],
if there exists β ∈ [N, M ] such that α = αβα. Also, [M,N ] is called regular if and
only if every α ∈ [M, N ] is regular.

Lemma 2.9.([7]) Let MR and NR be modules. The following are equivalent:
(1) [M, N ] is regular.
(2) For every α ∈ [M, N ], Im(α) ⊆⊕ N and Ker(α) ⊆⊕ M .

In particular, for a module M , EM is regular if and only if Im(α) ⊆⊕ M and
Ker(α) ⊆⊕ M for all α ∈ EM , [5, Lemma 3.1].

Proposition 2.10. Let M and N be modules and α, β ∈ [M, N ]. If [M, N ] is
regular. Then the following statements hold:

(1) Im(α) ⊆ Im(β) if and only if α[N,M ] ⊆ β[N, M ].
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(2) Im(α) = Im(β) if and only if α[N, M ] = β[N,M ].

(3) α[N,M ] = {µ : µ ∈ EN ; Im(µ) ⊆ Im(α)}.
(4) Ker(α) ⊆ Ker(β) if and only if [N, M ]β ⊆ [N,M ]α.

(5) Ker(α) = Ker(β) if and only if [N, M ]β = [N,M ]α.

(6) [N,M ]α = {µ : µ ∈ EM ; Ker(α) ⊆ Ker(µ)}.
Proof. (1) (⇒) Suppose that Im(α) ⊆ Im(β). Since [M, N ] is regular, there exists
µ ∈ [N, M ] such that β = βµβ. For e = βµ; e2 = e ∈ EN and Im(e) = Im(β), so
Im(α) ⊆ Im(e). Thus, for all x ∈ M , e(α(x)) = α(x), so α = eα = βµα ∈ βEM .
Therefore, α[N, M ] ⊆ βEM [N,M ] ⊆ β[N, M ].
(⇐) Suppose that α[N,M ] ⊆ β[N, M ]. Since [M,N ] is regular, α = αλα for some
λ ∈ [N,M ]. Since αλ ∈ α[N, M ] ⊆ β[N, M ], αλ = βδ for some δ ∈ [N, M ]. Thus,
Im(α) = Im(αλα) = Im(βδα) ⊆ Im(β).
(2) and (3) are clear by (1).
(4) (⇒) Suppose that Ker(α) ⊆ Ker(β). Then β(Ker(α)) = 0. Since [M, N ]
is regular, there exists µ ∈ [N, M ] such that α = αµα. For e = µα ∈ EM ;
e2 = e and Ker(α) = Ker(e), so β(Ker(α)) = β(Ker(e)) = β(Im(1M − e)) =
Im(β(1M − e)) = 0. Thus, β(1M − e) = 0 and that β = βe = βµα ∈ (EN )α. So
[N,M ]β ⊆ [N, M ](EN )α ⊆ [N, M ]α.
(⇐) Suppose that [N,M ]β ⊆ [N, M ]α. Since [M, N ] is regular, β = βδβ for some
δ ∈ [N, M ] and δβ ∈ [N, M ]β ⊆ [N, M ]α. So δβ = λα for some λ ∈ [N, M ]. Thus,
β = βλα and Ker(α) ⊆ Ker(β).
(5) and (6) are clear by (4). 2

3. Semi M-Projective Modules.

Theorem 3.1. Let MR and NR be modules. The following are equivalent:

(1) For every submodule K ⊆ N and every epimorphism α : M → K,
homomorphism λ : N → K there exists β : N → M such that αβ = λ.

(2) For every α ∈ [M, N ], α[N, M ] = [N, Im(α)].

(3) For every α ∈ [M, N ], α[N, M ] = {λ : λ ∈ EN ; Im(λ) ⊆ Im(α)}.
Proof. (1) ⇒ (2) Let α ∈ [M,N ]. It is clear that α[N,M ] ⊆ [N, Im(α)]. Let
λ ∈ [N, Im(α)]. Then by assumption there exists β ∈ [N, M ] such that αβ = λ, so
λ ∈ α[N,M ].
(2) ⇒ (1) Let K be a submodule of N , α : M → K be an epimorphism and
λ : N → K be a homomorphism. Since Im(λ) ⊆ K = Im(α), we have λ ∈
[N, Im(α)] = α[N, M ] by assumption. So there exists β ∈ [N, M ] such that αβ = λ,
which proves (1). The equivalence (2) ⇔ (3) is clear. 2

Let MR and NR be modules. Now a module N is called semi M−projective if
M, N are satisfy the conditions of Theorem 3.1.
We remark that a module MR is semi projective [6], if and only if M is a semi
M−projective module.
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Theorem 3.2. Let MR and NR be modules. The following are equivalent:
(1) [M, N ] is regular.
(2) For every α ∈ [M, N ], Im(α) ⊆⊕ N , and N is a semi M−projective module.
(3) For every finite set {α1, α2, · · · , αn} ⊆ [M, N ], Σn

i=1Im(αi) ⊆⊕ N , and N
is a semi M−projective module.

Proof. (1) ⇒ (2) If α ∈ [M, N ]. Then Im(α) ⊆⊕ N by Lemma 2.9. On the other
hand, since [M,N ] is regular, α[N,M ] = {µ : µ ∈ EN ; Im(µ) ⊆ Im(α)} for every
α ∈ [M, N ] by Proposition 2.10(3). So Theorem 3.1(3) implies that N is semi
M−projective.
(2) ⇒ (3) We prove (3) by induction on n. The case n = 1 holds by (2). Assume
that n > 1 and Σn−1

i=1 Im(αi) = Im(e), where e2 = e ∈ EN , hence Σn−1
i=1 Im(αi) ⊆⊕ N .

Since 1N − e ∈ EN and αn ∈ [M, N ], (1N − e)αn ∈ [M, N ], so Im((1− e)αn) ⊆⊕ N
and by assumption Im((1 − e)αn) = Im(f) where f2 = f ∈ EN . Then ef = 0,
and for µ = e + f − fe, we have µ2 = µ ∈ EN . Since fµ = f and µe = e,
Im(µ) = Im(e)+Im(f). Therefore Im(α) = Im(e)+Im(f) = Im(e)+Im((1−e)αn).
Thus Σn

i=1Im(αi) = Σn−1
i=1 Im(αi) + Im(αn) = Im(e) + Im(αn) = Im(e) + Im((1 −

e)αn) = Im(e) + Im(f) = Im(µ) ⊆⊕ N , proving (3).
(3) ⇒ (1) Let α ∈ [M, N ]. Then Im(α) ⊆⊕ N by assumption. Denote by π : N →
Im(α) the projection. Then π ∈ EN and Im(π) = Im(α), so π ∈ [N, Im(α)] =
α[N,M ] by Theorem 3.1, hence N is semi M−projective. Thus π = αβ for some
β ∈ [N,M ]. Since α(x) ∈ Im(α) = Im(π) for all x ∈ M ; πα(x) = α(x) and
α(x) = αβα(x), so α = αβα, which shows that α is regular, proving (1). 2

Following [4, Lemma 2.1], for any module M , Ker(α) ⊆⊕ M for every α ∈ EM

if and only if Im(α) is semi M−projective for every α ∈ EM . From [4, Lemma 2.1]
and Theorem 3.2 in case N = M , we derive the following:

Corollary 3.3. Let MR be a module. The following are equivalent:
(1) EM is a regular rings.
(2) For every α ∈ EM ; Im(α) ⊆⊕ M and M is a semi projective module.
(3) For every α ∈ EM , Ker(α) ⊆⊕ and Im(α) is semi M−projective for every
α ∈ EM .
(4) For every finite set {α1, α2, · · · , αn} ⊆ EM ; Σn

i=1Im(αi) ⊆⊕ M , and M is
a semi projective module.

Following [2], let MR, NR be modules, the co-singular ideal of [M, N ] is

∇[M, N ] = {α : α ∈ [M, N ]; Im(α) ¿ N}.

Corollary 3.4. Let MR and NR be modules. If N is semi M−projective, then:
(1) J [M, N ] = ∇̂[M,N ].
(2) ∇[M, N ] ⊆ J [M,N ].

Proof. (1) By Lemma 2.8 we have J [M,N ] ⊆ ∇̂[M, N ].
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Let α ∈ ∇̂[M, N ]. Then Im(1N − αβ) = N for all β ∈ [N, M ], by Lemma 2.1(2),
Im(α − αβα) = Im(α). Since N is semi M−projective and that α, α − αβα ∈
[M,N ], [N, Im(α−αβα)] = (α−αβα)[N, M ], [N, Im(α)] = α[N,M ], so α[N, M ] =
(α − αβα)[N, M ] = α[N,M ] ∩ (1N − αβ)EN , by Lemma 2.3(5). This shows that
α[N, M ] ⊆ (1N−αβ)EN , again by Lemma 2.3(1) it follows that EN = (1N−αβ)EN ,
thus α ∈ J [M, N ].
(2) Let α ∈ ∇[M, N ]. Then by Lemma 2.1(1), N = Im(α) + Im(1N − αβ) =
Im(1N − αβ) for all β ∈ [N, M ], hence Im(α) ¿ N . So α ∈ ∇̂[M,N ], by (1)
α ∈ J [M, N ]. 2

4. Semi N-Injective Modules.

Theorem 4.1. Let MR and NR be modules. The following are equivalent:

(1) For every factor module K of M and every monomorphism α : K → N ,
homomorphism λ : K → M , there exists β : N → M such that βα = λ.

(2) For every α ∈ [M, N ]; [N,M ]α = {β : β ∈ EM ;Ker(α) ⊆ Ker(β)}
= {β : β ∈ EM ; β(Ker(α)) = 0}.

Proof. (1) ⇒ (2) Let α ∈ [M, N ]. It is clear that [N, M ]α ⊆ {β : β ∈ EM ; Ker(α) ⊆
Ker(β)}.
Let β ∈ EM such that Ker(α) ⊆ Ker(β). Then the map α′ : M/Ker(α) → N
defined by α′(x) = α(x) for all x ∈ M/Ker(α) is a monomorphism. Also, since
Ker(α) ⊆ Ker(β), the map β′ : M/Ker(α) → M defined by β′(x) = β(x) for all
x ∈ M/Ker(α) is a homomorphism. By assumption, there exists λ : N → M such
that λα′ = β′. Thus, λα(x) = λα′(x) = β′(x) = β(x) for all x ∈ M , so λα = β and
β ∈ [N, M ]α, proving (2).
(2) ⇒ (1) Let K be a factor module of M , α : K → N be a monomorphism
and λ : K → M be a homomorphism. Denote by π : M → K the canonical
homomorphism of a module M onto factor module K. Then λπ ∈ EM , απ ∈
[M,N ] and Ker(απ) ⊆ Ker(λπ). By assumption λπ ∈ [N,M ](απ), so there exists
β ∈ [N, M ] such that λπ = β(απ). Let y ∈ K. Then y = π(x) for some x ∈ M and
λ(y) = λπ(x) = βαπ(x) = βα(y). Thus, λ = βα, this proves (1). 2

Let MR and NR be modules. Now a module M is called semi N−injective if
M, N are satisfy the conditions of Theorem 4.1.
We remark that a module NR is semi injective [6], if and only if N is a semi
N−injective module.

Theorem 4.2. Let MR and NR be modules. The following are equivalent:

(1) [M,N ] is regular.

(2) For every α ∈ [M,N ], Ker(α) ⊆⊕ M , and M is a semi N−injective module.

(3) For every finite set {α1, α2, · · · , αn} ⊆ [M, N ]; ∩n
i=1Ker(αi) ⊆⊕ M , and M

is a semi N−injective module.

Proof. (1) ⇒ (2) If α ∈ [M, N ]. Then Ker(α) ⊆⊕ M by Lemma 2.9. On the
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other hand, since [M,N ] is regular, [N,M ]α = {µ : µ ∈ EM ; Ker(α) ⊆ Ker(µ)}
for all α ∈ [M, N ] by Proposition 2.10(6). So Theorem 4.1 implies that M is semi
N−injective.
(2) ⇒ (3) We prove (3) by induction on n. The case n = 1 holds by (2). Assume
n > 1 and that X = ∩n−1

i=1 Ker(αi) ⊆⊕ M , say M = X ⊕ Y where Y is a submodule
of M . Denote by π : M → X the projection. Then αnπ ∈ [M, N ] and Ker(αnπ) =
[X ∩ Ker(αn)] ⊕ Y . Since Ker(αnπ) ⊆⊕ M by assumption, [X ∩ Ker(αn)] ⊆⊕ M .
Thus, ∩n

i=1Ker(αi) = X ∩Ker(αn) ⊆⊕ M which proves (3).
(3) ⇒ (1) Let α ∈ [M,N ]. Then Ker(α) ⊆⊕ M by assumption, say M = Ker(α)⊕P
for some submodule P of M . Denote by π : M → P the projection. Then π ∈ EM

and Ker(π) = Ker(α). Also, since α(Ker(π)) = α(Im(1 − π)) = 0, α = απ. On
the other hand, since Ker(α) ⊆ Ker(π) and M is semi N−injective, by assumption
π ∈ [N,M ]α by Theorem 4.1, so π = βα for some β ∈ [N,M ], which gives α = αβα,
proving (1). 2

Taking N = M in Theorem 4.2 gives

Corollary 4.3. Let MR be a module. The following are equivalent:

(1) EM is a regular ring.

(2) For every α ∈ EM , Ker(α) ⊆⊕ M and M is a semi injective module.

(3) For every finite set {α1, α2, · · · , αn} ⊆ EM ; ∩n
i=1Ker(αi) ⊆⊕ M , and M is

a semi injective module.

Following [2], let MR, NR be modules, the singular ideal of [M,N ] is

∆[M, N ] = {α : α ∈ [M, N ]; Ker(α) ≤e M}.

Corollary 4.4. Let MR and NR be modules. If M is semi N−injective, then:

(1) For any α, θ ∈ [M, N ] such that Ker(α) = Ker(θ), then [N, M ]α = [N, M ]θ.

(2) J [M, N ] = ∆̂[M,N ].

(3) ∆[M, N ] ⊆ J [M,N ].

Proof. (1) Assume α, θ ∈ [M, N ] with Ker(α) = Ker(θ). Let β ∈ [N, M ]α.
Then β ∈ EM and by Theorem 4.1, β(Ker(α)) = {0}, so β(Ker(θ)) = {0}, thus
β ∈ [N, M ]θ, therefore [N,M ]α ⊆ [N,M ]θ. The converse is analogous.
(2) By Lemma 2.8 we have J [M, N ] ⊆ ∆̂[M,N ].
Let α ∈ ∆̂[M, N ]. Then for all β ∈ [N,M ]; Ker(1M − βα) = {0}, so by Lemma
2.1(6) Ker(α − αβα) = Ker(α) and by (1), [N,M ](α − αβα) = [N, M ]α, hence
α − αβα, α ∈ [M, N ]. Thus by Lemma 2.3(6), [N, M ]α = [N, M ](α − αβα) =
[N, M ]α ∩EM (1M − βα), which shows that [N, M ]α ⊆ EM (1M − βα). By Lemma
2.3(4), EM = [N, M ]α + EM (1M − βα) = EM (1M − βα), so α ∈ J [M,N ].
(3) Let α ∈ ∆[M, N ]. Then Ker(α) ≤e M . Since for all β ∈ [N, M ], Ker(α) ∩
Ker(1M − βα) = {0} implies that Ker(1M − βα) = {0}, so α ∈ ∆̂[M, N ], by (2)
α ∈ J [M, N ]. 2
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5. Direct M-Projective (N-Injective) Modules.

Lemma 5.1.([6]) Let MR and NR be modules. The following are equivalent:
(1) For any submodule K of M and any direct summand P of N such that
M/K ∼= P we have K ⊆⊕ M .
(2) For any direct summand P of N , every epimorphism α : M → P splits.
(3) For every direct summand K of N and every epimorphism α : M → K,
there exists β : N → M such that αβ = π where π : N → K is the projection.

Let MR and NR be modules. Recall a module N is direct M−projective if M, N
are satisfy the conditions of Lemma 5.1. From Lemma 5.1 we derive the following:

Corollary 5.2. Let MR and NR be modules. The following are equivalent:
(1) A module N is direct M−projective.
(2) For every direct summand K of N and every epimorphism α : M → K,
α[N,M ] = [N, K].
(3) For every direct summand K of N and every epimorphism α : M → K,
α[N,M ] = {β : β ∈ EN ; Im(β) ⊆ K}.

Proof. (1) ⇒ (2) Let K be a direct summand of N and α : M → K be an
epimorphism. It is clear that α[N, M ] ⊆ [N, K]. Let λ ∈ [N,K]. Since N is direct
M−projective, there exists β ∈ [N,M ] such that αβ = π. Since Im(λ) ⊆ K =
Im(π), for every x ∈ N , λ(x) ∈ K, π(λ(x)) = λ(x), so λ = πλ = αβλ ∈ α[N,M ],
proving (2).
(2) ⇒ (1) Let K be a direct summand of N and α : M → K be an epimorphism.
Denote by π : N → K the projection. Since π ∈ [N, K] = α[M, N ], by assumption,
there exists β ∈ [N,M ] such that αβ = π, proving (1). The equivalence (2) ⇔ (3)
is clear. 2

Let MR and NR be modules. Recall that [M, N ] is semi-potent [7], if for any
α ∈ [M,N ], α 6∈ J [M,N ] there exists β ∈ [N, M ] such that 0 6= (αβ)2 = αβ ∈ EN ,
[6]. In particular, a ring R is called semi-potent (or I0−ring [3]), if every principal
right ideal not contained in J(R) contains a nonzero idempotent. [M, N ] is called
partial invertible or pi [2], if β = βαβ for some 0 6= β ∈ [N,M ] which is equivalent
to that [M, N ] is semi-potent and J [M,N ] = 0.

Lemma 5.3. Let MR and N be a modules, α ∈ [M, N ]. The following are equiva-
lent:

(1) An element α is partial invertible.
(2) There exists 0 6= β ∈ [N,M ] such that Im(αβ) and Ker(αβ) are direct
summands of N .
(3) There exists 0 6= β ∈ [N,M ] such that Im(βα) and Ker(βα) are direct
summands of M .

Proof. Is obvious. 2

Proposition 5.4. Let MR and N be a modules. The following are equivalent:
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(1) For every α ∈ [M, N ], α is partial invertible.
(2) A module N is direct M−projective and for any α ∈ [M, N ], there exists
0 6= β ∈ [N, M ] such that Im(αβ) ⊆⊕ N .

Proof. (1)⇒ (2) Let α ∈ [M, N ]. By assumption β = βαβ for some 0 6= β ∈ [N, M ].
Since (αβ)2 = αβ ∈ EN , Im(αβ) ⊆⊕ N .
Let K be a direct summand of N and α : M → K be an epimorphism. Denote by
π : N → K the projection. By assumption β = βαβ for some 0 6= β ∈ [N,N ]. Then
for e = αβ; 0 6= e2 = e ∈ EN and Im(e) = Im(αβ) ⊆ Im(α) = K. Since for any
x ∈ N , x = e(x) + (1N − e)(x) and e(x) ∈ K implies that π(x) = e(x). This shows
that αβ = π, by Lemma 5.1 which implies that a module N is direct M−projective.
(2) ⇒ (1) Let α ∈ [M,N ]. By assumption there exists 0 6= β ∈ [N, M ] such that
Im(αβ) ⊆⊕ N . Since N is direct M−projective, the epimorphism αβ : M →
Im(αβ) splits, so Ker(αβ) ⊆⊕ N , by Lemma 5.2 which implies that α is pi. 2

Lemma 5.5.([6]) Let MR and NR be modules. The following are equivalent:
(1) For any submodule K of N and any direct summand P of M such that
K ∼= P , we have K ⊆⊕ N .
(2) For any direct summand P of M , every monomorphism α : P → N splits.
(3) For every direct summand K of M and every monomorphism α : K → N ,
there exists β : N → M such that βα = τ where τ : K → M the inclusion.

Let MR and NR be modules. Recall a module M is direct N−injective if M, N
are satisfy the conditions of Lemma 5.4. From Lemma 5.5 we derive the following:

Corollary 5.6. Let MR and NR be modules. The following are equivalent:
(1) A module M is direct N−injective.
(2) For every direct summand K of M and every monomorphism α : K → N ,
[N, M ]α = [K,M ].

Proof. (1) ⇒ (2) Assume (1) holds. It is clear that [N, M ]α ⊆ [K,M ]. Let
λ ∈ [K,M ]. By assumption there exists β ∈ [N, M ] such that βα = τ where
τ : K → M is the inclusion, so λ = λτ = λβα ∈ [N, M ]α, proving (2).
(2) ⇒ (1) Assume (2) hold. Let K be a direct summand of M , α : K → M be a
monomorphism and τ : K → M be the inclusion. By assumption τ ∈ [K,M ] =
[N, M ]α, so there exists β ∈ [N, M ] such that βα = τ , proving (1). 2

Proposition 5.7. Let MR and N be modules. The following are equivalent:
(1) For every α ∈ [M, N ]; α is partial invertible.
(2) A module M is direct N−injective and for any α ∈ [M, N ] there exists
0 6= β ∈ [N, M ] such that Ker(βα) ⊆⊕ M .

Proof. (1)⇒ (2) Let ψ ∈ [M, N ]. By assumption β = βψβ for some 0 6= β ∈ [N, M ].
Since (βψ)2 = βψ ∈ EM , Ker(βψ) ⊆⊕ M .
Let K be a direct summand of M and α : K → N be a monomorphism. Denote
by π : M → K the projection. Then απ ∈ [M, N ]. By assumption µ = µαπµ for
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some 0 6= µ ∈ [N,M ] and πµ = πµαπµ. Then for e = πµαπ, 0 6= e2 = e ∈ EM and
Im(e) ⊆ K. Since for any x ∈ M , x = e(x)+(1M−e)(x) and e(x) ∈ K we have that
π(x) = e(x). So for any x ∈ K, x = π(x) = e(x) = πµα(x). For β = πµ ∈ [N,M ],
βα = τ where τ : K → M the inclusion. By Lemma 5.4 it follows that a module
M is direct N−injective.
(2) ⇒ (1) Let α ∈ [M, N ]. By assumption there exists 0 6= λ ∈ [N, M ] such
that Ker(λα) ⊆⊕ M . Then M = Ker(λα) ⊕ K for some submodule K of M .
Since Ker(α) ⊆ Ker(λα), α : K → M is a monomorphism. Hence M is direct
N−injective and so there exists ϕ ∈ [N,M ] such that ϕα = τ where τ : K → M
is the inclusion. Let π : M → K the projection. Note for any m ∈ M , π(m) ∈ K
implies that ϕαπ = π and that (πϕ)α(πϕ) = πϕ. Then, for β = πϕ, βαβ = β
where 0 6= β ∈ [N, M ]. This shows that α is pi. 2
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