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ABSTRACT. Let M and N be modules over a ring R. The purpose of this paper is to study
modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bi-
module [M, N] is regular if and only if a module N is semi M —projective and Im(a)) C® N
for all « € [M, N], if and only if a module M is semi N—injective and Ker(a) C® N for
all @ € [M, N]. Also, it is proved that the bi-module [M, N] is pi if and only if a mod-
ule N is direct M —projective and for any a € [M, N] there exists 8 € [N, M] such that
Im(aB) C® N, if and only if a module M is direct N—injective and for any a € [M, N]
there exists 3 € [N, M] such that Ker(8a) C® M. The relationship between the Jacobson
radical and the (co)singular ideal of [M, N] is described.

1. Introduction

In this paper rings R, are associative with identity unless otherwise indicated.
All modules over a ring R are unitary right modules. The category of right
R—modules is denoted by mod — R. Maps are written on the left. A submod-
ule N of a module M is said to be small in M, if N + K # M for any proper
submodule K of M [1]. Also, a submodule @ of a module M is said to be large
(essential) in M if Q N K # 0 for every nonzero submodule K of M [1]. For a
submodule N of a module, we use N C® M to mean that NN is a direct summand
of M, and write N <, M and N < M to indicate that N is a large, respectively
small, submodule of M. Also, we write J(R) and U(R) for the Jacobson radical
and the group of units of a ring R respectively. If Mr and Ngi are modules, We
use the notation: Ej; = Endg(M), and [M, N] = homg(M, N). Thus, [M,N] is
an (Ey, Ejr)-bimodule.

An important line of research in module theory is to investigate substructures
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such as the radical, the singular and co-singular ideals, and (semi)regularity, semipo-
tency or (pi) of [M, N| which are similar to ones in countered in the ring and module
theory.

Our main concern is about when the endomorphism ring Fj; of some module
M € mod — R is regular or pi—ring. In section 3, 4 it is proved that for any
modules M, N € mod — R, [M, N] is regular if and only if N is semi M —projective
and Im(a) C® N for any o € [M, N] if and only if M is semi N—injective and
Ker(a) C% M for any o € [M, N]. It is also proved that for a semi N —projective
module M, JIM,N] = {a: o € [M,N]; Im(1y — af) = N for all § € [N,M]}
and for a semi M —injective module N, J[M,N] = {a : a € [M,N]; Ker(ly —
Ba) = {0} for all 8 € [N, M]}. In section 5, it is proved that for any two modules
M,N € mod — R; [M,N] is pi if and only if N is direct M —projective and for
any a € [M, N] there exists 3 € [N, M] such that Im(af) C® N if and only if M
is direct N—injective and for any a € [M, N] there exists 8 € [N, M] such that
Ker(Ba) C® M.

2. Some Properties of [M,N]

Lemma 2.1.([4, Lemma 2.9]) Let Mg, Ngr be modules and o« € [M, N], 3 € [N, M].
The following statements hold:
1) Im(a) + Im(1xy — af8) = N.
2) Im(a — afa) = Im(a) N Im(1y — af).
3) Ker(a) N Ker(1p — fa) = {0}.

(4) Ker(a — afa) = Ker(a) + Ker(1y — Ba).
Proof. We have aff € En and fa € E);.
(1) It is clear that N = Im(af) + Im(1y — a8) C Im(a) + Im(1y — af) C N.
Similarly (3) holds.
(2) Tt is obvious that @ — afa € [M,N], Im(a — afa) = Im((1y — af)a) C
Im(1y — of) and Im(a — afa) = Im(a(lpy — fa)) C Im(a). So Im(a — afa) C
Im(a) NIm(1xy — af).
Let € Im(a) NIm(1xy —af); z € N and z = a(y) = (1y — af)(z) where y € M,
z€N. Sox =z—af(z), z=1z+af(z) = aly) + af(z) = aly + 5(z)). Let
Yo =y + B(z) € M. Then z = a(yg) and z = (1y — af)(2) = Iy — af)a(y) =
(a—afa)(yo) € Im(a—afa). Thus, Im(a)NIm(1y —af) C Im(a—afa). Similarly
(4) holds. (5) and (7) are clear.
(6) It is clear that Ker(a) C Ker(a — afa) and Ker(1;; — fa) C Ker(a — afa), so
Ker(a) + Ker(1p — Ba) C Ker(a — afa). Let « € Ker(a — afa). Then x € M and
a(z) = afa(z). Since z = fa(x)+(1p — Ba)(x) and fa(z) € Ker(1y —pa), (1a—
Ba)(x) € Ker(a), hence (1 —Ba)(Ba(x)) = fa(r)—Pafo(z) = fa(r)—La(z) = 0,
a(ly —pa)(z) = a(z) —afal(z) = a(z) —a(z) = 0. So z € Ker(1py — fa) +Ker(a).
Thus, Ker(a — afa) C Ker(a) 4+ Ker(1p; — far). Similarly (8) holds. O

(
(
(

Lemma 2.2. Let Mg, Nr be modules and o € [M, N], 8 € [N, M]. The following
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statements hold:

(1) Im(1y — af) = N if and only if Im(1p — Ba) = M

(2) Ker(1n — af3) = {0} if and only if Ker(1p — Ba) = {0}.

(3) Iy —af € U(EN) if and only if 1py — P € U(Eyy).
Proof. (1)(=) Assume that Im(1y — o) = N. Then by Lemma 2.1(4) Im(5) N
Im(1p —Ba) = Im(B8—paB) = f(Im(1y —af)) = Im(B), which shows that Im(3) C
Im(1p—pBa). Lemma 2.1(3) implies that M = Im(8)+Im(15—Ba) = Im(1p —fa).
Similarly (<) holds.
(2)(=) Assume that Ker(1y — af) = {0}. Let 2 € Ker(1ly; — fa). Then (o —
afa)(z) = (Iy —af)(a(x)) =0, so a(z) € Ker(1y —af) = {0}, thus a(z) = 0 and
that = € Ker(a), which shows that Ker(1y; — fa) C Ker(«). Lemma 2.1(5) implies
that {0} = Ker(a) N Ker(1p — fa) = Ker(1p — fa). Similarly (<) holds.
3)(=) If Iy —af € U(EN). Then u(ly — af) = 1y for some p € En. So,
(Iar+Bua)(1p —pa) = (1ps — Ba) + Bua(ly — Ba) = (1y — o)+ Bu(ly —af)a =
1as- The proof for right inverses is similar. Similarly, (<) holds. o

Lemma 2.3. Let Mg, Nr be modules and o € [M, N|, B € [N, M]. The following
statements hold

(1) EN = a[N M] + ( N — O[,@)EN

2) En = [M,N|B+ En(1n —ap).

3) Ex = BIM, N]+ (1y — fa)Ey.

4) EM—[N M]Oé+E1V[(1M ﬂoz)

5) (o — afa)[N,M] = a[N,M]N (1y — aB)EN.

6) [N, M](a — afa) = [N, M]lan Ey(1py — Ba).

7) (B = BapB)[M, N] = B[M,N] N (1y — fo) Enr.

8) [M,N|(8 — faf) = [M,N]BN En(1y — aff).

9) [M,N] =aEy + (1ny — af)[M, N].

(10) [M,N] = Eya+ [M,N](1p — Ba).

Proof. (1) Since 1y = af + (1y —af), for any A € En, A =afA+ (1y —afB)) €
alN, M)+ (1xy — af)EN, so Ey C o[N,M]+ (1y — af)Ex C Ey. Similarly (2),
(3) and (4) hold.

(5) Since (o — afa)[N,M] = (Iy — af)a[N,M] C (1y — af)Ex and («
aBa)[N,M] = a(ly — Ba)[N,M] C «[N,M], we have (o« — afia)[N, M]
Oé[N,M]ﬂ(lN—Oéﬁ)EN.

Let A € a[N,M]N(1y —af)EN. Then A = ay = (1y — af)p where v € [N, M],
w€ En,sou=Atabu=ay+afu=aly+Lu) € a[N, M]. Suppose that u = ab
where = v+ fu € [N, M]. Then A = (1y —af)u = Iy —af)abd = (a — afa)b €
(o — afa)[N, M], which shows that o[N, M| N (1xy — aB)En C (o — afa)[N, M].
Similarly (6), (7), (8), (9) and (10) hold. O
Lemma 2.4. Let Mg, Ng be modules and o € [M,N], 5 € [N, M]. The following
are equivalent:

(
(
(
(
(
(
(
(
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(1) Im(1n —aB) =
(2) Im(1p — Ba) =
(3) Im(a — afa) = Im( ).
(4) Im(B — BaB) = Im(3).

Proof. (1) < (2) By Lemma 2.2(1) and (1) = (4) by Lemma 2.1(2).

(4) = (1) Assume (4) hold. Then Im(8) = Im(8 — faf) = Im(B) NIm(1y — Sa),
which shows that Im(5) C Im(1y — fa), so M = Im(8) +Im(1p — fa) = Im(1p —
Ba), proving (1). Similarly, the equivalence (2) < (3) holds. O

Lemma 2.5. Let Mg, Ng be modules and o € [M, N], 8 € [N, M]. The following
are equivalent:

(1) Ker(1y — af) = {0}.
{0}

(2) Ker(1py — Ba) =
(3) Ker(a — afa) = Ker(a).
(4) Ker( — Baff) = Ker(B).

Proof. (1) < (2) By Lemma 2.2(2) and (1) = (4) by Lemma 2.1(8).

(4) = (1) Assume (4) hold. Then Ker(8) = Ker(3—Baf) = Ker(8)+Ker(1x —af),
which shows that Ker(1y — a8) C Ker(3), so Ker(1y — af) = Ker(8) NKer(1y —
af) = {0}, proving (1). Similarly, the equivalence (2) < (3) holds. O

Let M and Nr be modules. Write:
VIM,N]={a:aec[M,N]);Im(1y — af) = N for all 8 € [N, M]}.

It is clear that V[M, N] is a non empty subset in [M, N], (0 € V[M, N]). By
using Lemma 2.2(1) it is easy to see that

VIM,N]={a:a€c[M,N];Im(1y —af) = N for all 3 € [N, M]}.
={a:a € [M,N];Im(ly — Ba) = M for all g € [N, M]}.

In addition to, V[M, N] is an ideal in mod — R, which means that it is closed
under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.6. For arbitrary M, N, X,Y € mod — R the following statements hold:
(1) VM, NJ[X, M] € VX, N].
(2) [N, Y]V[M, N] € V[M,Y].
(3) [NV, Y]V[M, N][X, M] C V[X,Y].
(M

Proof. (1)Let o € V[M,N] and A € [X,M]. Then a) € [X,N] and for all 8 €
[N, X], Im(1y — (a)\)ﬁ) Im(l1y — a(AB)) = N, hence A3 € [N,M]. Thus,
aX € V[X, N]. (2) is analogous. (3) by (1) and (2). O
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Again, let Mr and N be modules. Write:

~

A[M,N] ={a:a € [M,N];Ker(ly — af) = {0} for all 8 € [N, M|}.

It is clear that A[M, N] is a non empty subset in [M, N], (0 € A[M,N]). By
using Lemma 2.2(2) it is easy to see that

o~

A[M,N] ={a:«a € [M,N];Ker(ly — af) = {0} for all 5 € [N, M]}.
={a:a € [M,N];Ker(ly — fa) = {0} for all g € [N, M]}.

In addition to, E[M ,N] is an ideal in mod — R, which means that it is closed
under arbitrary multiplication from either side, by the following Lemma:

Lemma 2.7. For arbitrary M, N, X,Y € mod — R the following statements hold:
(1) A[M, N][X, M] € A[X,N].
(2) [N, Y]A[M, N] C A[M,Y].
(3) [N, Y]A[M, N][X, M] C A[X,Y].

Proof. As in Lemma 2.6. a

Following [2, 7], the Jacobson radical of the bimodule [M, N] defined by Kasch
as follows:

JIM,N]={a:a€[M,N];(Iy —apf) e U(EN) for all § € [N, M]}.

={a:a€[M,N];(1y — fa) € U(Ep) for all § € [N, M]}.

Lemma 2.8. Let M and Ni be modules. The following statements hold:

(1) J[M,N] € V[M,N].

(2) JM,N] € A[M, N].
Proof. This is obvious. o

Let Mg and Ng be modules. Recall that a morphism « € [M, N] is regular [2],
if there exists # € [N, M] such that a = afa. Also, [M, N] is called regular if and
only if every « € [M, N] is regular.
Lemma 2.9.([7]) Let Mr and Ng be modules. The following are equivalent:

(1) [M, N] is regular.

(2) For every a € [M, N], Im(a) C® N and Ker(a) C® M.
In particular, for a module M, Ey is reqular if and only if Im(a) C® M and
Ker(a) C% M for all a € Epy, [5, Lemma 3.1].
Proposition 2.10. Let M and N be modules and o, € [M,N]. If [M,N] is
reqular. Then the following statements hold:

(1) Im(cw) C Im(B) if and only if a[N, M| C B[N, M].
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Im(a) = Im(B) if and only if a[N, M| = B[N, M].
o[N, M| = {ji: € Ex: Tm(ys) € Tm(a)}.
Ker(a) C Ker(B) if and only if [N, M]3 C [N, M.
Ker(a) = Ker(0) if and only if [N, M]3 = [N, M|c.
[N,Mlaa = {p: p € Epr; Ker(a) C Ker(p)}.

1) (=) Suppose that Im(a) C Im(3). Since [M, N] is regular, there exists
u € [N, M] such that 3 = BufB. For e = Bu; €2 = e € Exy and Im(e) = Im(f3), so
Im(a) C Im(e). Thus, for all z € M, e(a(x)) = a(z), so a = ea = fua € BE).
Therefore, a[N, M| C BEyN[N, M] C BIN, M].
(<) Suppose that a[N, M| C B[N, M]. Since [M, N] is regular, @ = oA« for some
A € [N, M]. Since a\ € a[N, M| C B[N, M], ax = 36 for some ¢ € [N, M]. Thus,
Im(a) = Im(ara) = Im(Bdar) C Im(5).
(2) and (3) are clear by (1).
(4) (=) Suppose that Ker(a) C Ker(5). Then f(Ker(a)) = 0. Since [M,N]
is regular, there exists u € [N, M] such that @ = apa. For e = pa € Ey;
e? = e and Ker(a) = Ker(e), so f(Ker(a)) = ﬁ(Ker( ) = B(Im(ly —e) =
Im(B(1p — €)) = 0. Thus, (1 —e) = 0 and that § = fe = Bua € (Ex)a. So
[N7M]ﬂ C [NaM](EN)a - [N7M] .
(<) Suppose that [N, M]3 C [N, M]a. Since [M, N] is regular, 8 = 563 for some
§ € [N, M] and 08 € [N, M]3 C [N, M]a. So 63 = Ao for some X € [N, M]. Thus,
B8 = BAa and Ker(a) C Ker(5).
(5) and (6) are clear by (4). O

3. Semi M-Projective Modules.

Theorem 3.1. Let Mgr and Ngr be modules. The following are equivalent:

(1) For every submodule K C N and every epimorphism «: M — K,

homomorphism A : N — K there exists 3 : N — M such that af = .

(2) For every a € [M, N], a[N, M] = [N, Im(«a)].

(3) For every a € [M,N], a[N,M] ={X: X € En; Im(\) C Im(a)}.
Proof. (1) = (2) Let o € [M,N]. It is clear that a[N,M] C [N,Im(a)]. Let
A € [N,Im(a)]. Then by assumption there exists § € [N, M] such that o = A, so
A € afN, M].
(2) = (1) Let K be a submodule of N, @ : M — K be an epimorphism and
A : N — K be a homomorphism. Since Im(A\) C K = Im(a), we have A €
[N, Im(a)] = a[N, M] by assumption. So there exists § € [N, M] such that o5 = A,
which proves (1). The equivalence (2) < (3) is clear. O

Let Mr and N be modules. Now a module N is called semi M —projective if
M, N are satisfy the conditions of Theorem 3.1.
We remark that a module Mg is semi projective [6], if and only if M is a semi
M —projective module.
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Theorem 3.2. Let Mi and Ngr be modules. The following are equivalent:

(1) [M, N] is regular.

(2) For every a € [M, N], Im(a) C® N, and N is a semi M —projective module.

(3) For every finite set {a1, aa,- -+ ,an} C [M,N], 2% Im(a;) C® N, and N

is a semi M —projective module.
Proof. (1) = (2) If & € [M,N]. Then Im(a) C® N by Lemma 2.9. On the other
hand, since [M, N] is regular, o[N, M] = {p : p € En; Im(u) C Im(a)} for every
a € [M,N] by Proposition 2.10(3). So Theorem 3.1(3) implies that N is semi
M —projective.
(2) = (3) We prove (3) by induction on n. The case n = 1 holds by (2). Assume
that n > 1 and 7' Im(c;) = Im(e), where e? = e € Ey, hence 7' Im(a;) C% N.
Since 1y —e € Ey and «, € [M, N], (1xy —e€)ay, € [M, N], so Im((1 —e)a,,) CF N
and by assumption Im((1 — €)a,,) = Im(f) where f2 = f € Ex. Then ef = 0,
and for f = e+ f — fe, we have u?> = p € Ey. Since fu = f and pe = e,
Im(p) = Im(e) +Im(f). Therefore Im(a) = Im(e)+Im(f) = Im(e) +Im((1 —e)a,).
Thus 7 Im(a;) = 27" Im(ey) + Im(ev,) = Im(e) + Im(av,) = Im(e) + Im((1 —
e)an) =Im(e) + Im(f) = Im(p) €€ N, proving (3).
(3) = (1) Let a € [M, N]. Then Im(a) C® N by assumption. Denote by 7 : N —
Im(a) the projection. Then 7 € Ey and Im(w) = Im(«a), so 7 € [N,Im(a)] =
a[N, M] by Theorem 3.1, hence N is semi M —projective. Thus 7 = a8 for some
B € [N,M]. Since a(z) € Im(a) = Im(n) for all x € M; ma(zx) = a(z) and
a(z) = afa(z), so « = afa, which shows that « is regular, proving (1). a

Following [4, Lemma 2.1], for any module M, Ker(«) C® M for every o € Epy
if and only if Im(«) is semi M —projective for every a € Ejs. From [4, Lemma 2.1]
and Theorem 3.2 in case N = M, we derive the following:
Corollary 3.3. Let Mg be a module. The following are equivalent:

(1) Epr is a regular rings.

(2) For every a € Epr; Im(a) €% M and M is a semi projective module.

(3) For every a € Eyr, Ker(a) €% and Im(«) is semi M —projective for every

ac Ey.

(4) For every finite set {a1,aa,- -+ ,an} C Epr; B0 Im(a;) €% M, and M is

a semi projective module.

Following [2], let Mg, Ng be modules, the co-singular ideal of [M, N] is
V[M,N]={a:a¢€[M,N]; In(a) < N}.

Corollary 3.4. Let M and Ni be modules. If N is semi M —projective, then:
(1) JM,N] = V[M, N].
(2) VIM,N] C JM,N].

Proof. (1) By Lemma 2.8 we have J[M, N] C V[M, N].
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Let o € V[M, N]. Then Im(1y — af) = N for all 8 € [N, M], by Lemma 2.1(2),
Im(a — afa) = Im(a). Since N is semi M—projective and that o, — afa €
[M, N], [N,Im(a — afa)] = (o — afBa) [N, M], [N, Im(«)] = a[N, M], so [N, M] =
(o — afa)[N,M] = o[N,M]N (1y — af)EN, by Lemma 2.3(5). This shows that
a[N, M] C (1y—apB)Ey, again by Lemma 2.3(1) it follows that Ex = (1y —a8)EN,
thus a € J[M, N].

(2) Let @ € V[M,N]. Then by Lemma 2.1(1), N = Im(a) + Im(1y — af) =
Im(ly — afB) for all B € [N, M], hence Im(a) < N. So a € V[M,N], by (1)
a € J[M,N]. O

4. Semi N-Injective Modules.

Theorem 4.1. Let M and Ni be modules. The following are equivalent:

(1) For every factor module K of M and every monomorphism o : K — N,

homomorphism A\ : K — M, there exists 3 : N — M such that fa = .

(2) For every a € [M,N]; [N,M]a={8: 0 € En; Ker(a) C Ker(8)}

={B: 8 € En; f(Ker(a)) = 0}.
Proof. (1) = (2) Let a € [M, N]. It is clear that [N, M]a C {5 : 8 € Ep; Ker(a) C
Ker(5)}.
Let 8 € Ej; such that Ker(a) C Ker(3). Then the map o : M/Ker(a) — N
defined by o/ (Z) = «a(z) for all T € M/Ker(«) is a monomorphism. Also, since
Ker(a) C Ker(f), the map ' : M/Ker(o) — M defined by §'(Z) = B(z) for all
T € M/Ker(«) is a homomorphism. By assumption, there exists A : N — M such
that Ao’ = 3’. Thus, Aa(z) = A/ (T) = §/(T) = B(z) for all z € M, so Aa = and
B € [N, M]a, proving (2).
(2) = (1) Let K be a factor module of M, a : K — N be a monomorphism
and A : K — M be a homomorphism. Denote by # : M — K the canonical
homomorphism of a module M onto factor module K. Then Aw € FEy;, ar €
[M, N] and Ker(ar) C Ker(Ar). By assumption Aw € [N, M](an), so there exists
B3 € [N, M] such that Ar = B(an). Let y € K. Then y = w(x) for some x € M and
AMy) = Mn(z) = Par(x) = Ba(y). Thus, A = Ba, this proves (1). O

Let M and Ni be modules. Now a module M is called semi N —injective if
M, N are satisfy the conditions of Theorem 4.1.
We remark that a module N is semi injective [6], if and only if N is a semi
N —injective module.
Theorem 4.2. Let Mgi and Ngr be modules. The following are equivalent:
(1) [M, N] is regular.
(2) For every o € [M, N], Ker(a) C® M, and M is a semi N —injective module.
(3) For every finite set {a1,a, -+ ,an} C [M, N]; N"_; Ker(oi;) €% M, and M
is a semi N —injective module.
Proof. (1) = (2) If & € [M,N]. Then Ker(a) C® M by Lemma 2.9. On the
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other hand, since [M, N] is regular, [N, M]a = {u : u € Epn; Ker(a) C Ker(p)}
for all @« € [M, N] by Proposition 2.10(6). So Theorem 4.1 implies that M is semi
N —injective.

(2) = (3) We prove (3) by induction on n. The case n = 1 holds by (2). Assume
n > 1 and that X = N}~ 'Ker(a;) C® M, say M = X @Y where Y is a submodule
of M. Denote by 7 : M — X the projection. Then ay, 7 € [M, N] and Ker(a,7) =
[X NKer(ay,)] @Y. Since Ker(a,m) €% M by assumption, [X N Ker(ay,)] €% M.
Thus, N, Ker(a;) = X NKer(a,) €% M which proves (3).

(3) = (1) Let @ € [M, N]. Then Ker(«) C® M by assumption, say M = Ker(a)® P
for some submodule P of M. Denote by w : M — P the projection. Then 7 € E),
and Ker(m) = Ker(a). Also, since a(Ker(7)) = a(Im(l — 7)) =0, @« = ar. On
the other hand, since Ker(«a) C Ker(w) and M is semi N—injective, by assumption
7 € [N, M]a by Theorem 4.1, so m = Ba for some 8 € [N, M], which gives a = afa,
proving (1). a

Taking N = M in Theorem 4.2 gives

Corollary 4.3. Let My be a module. The following are equivalent:
(1) Epf is a regular ring.
(2) For every a € Eyy, Ker(a) C% M and M is a semi injective module.

(3) For every finite set {ay,aa,- -+ ,an} C Epr; NPy Ker(ay) €Y M, and M s
a sems injective module.

Following [2], let Mg, N be modules, the singular ideal of [M, N] is
A[M,N] ={a:«a € [M,N]; Ker(a) <. M}.

Corollary 4.4. Let M and Ng be modules. If M is semi N —injective, then:
(1) For any o, 0 € [M, N] such that Ker(c) = Ker(0), then [N, M]a = [N, M]6.

~

(2) J[M,N] = A[M, N].

(3) A[M, N] C J[M, N].
Proof. (1) Assume «, 6 € [M,N] with Ker(a) = Ker(f). Let 8 € [N, M]a.
Then § € Ej and by Theorem 4.1, f(Ker(a)) = {0}, so f(Ker(6)) = {0}, thus
8 € [N, M]0, therefore [N, M]a C [N, M]6. The converse is analogous.
(2) By Lemma 2.8 we have J[M, N] C A[M, N].
Let o € A[M,N]. Then for all # € [N, M]; Ker(1p; — Ba) = {0}, so by Lemma
2.1(6) Ker(a — afa) = Ker(a) and by (1), [V, M](a — afa) = [N, M]a, hence
a — afa,a € [M,N]. Thus by Lemma 2.3(6), [V, M]a = [N, M](e — afa) =
[N, M]a N Ep(1p — Ba), which shows that [N, M]a C En (1 — fa). By Lemma
23(4), EM = [N, M]Oé+ EM(l]\/[ — ﬁa) = EM(lM — Ba), S0 v € J[M,N]
(3) Let o« € A[M,N]. Then Ker(a) <. M. Since for all g € [N, M], Ker(a) N
Ker(13; — o) = {0} implies that Ker(1y, — Ba) = {0}, so o € A[M,N], by (2)
a € J[M,N]. O
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5. Direct M-Projective (N-Injective) Modules.

Lemma 5.1.([6]) Let Mp and N be modules. The following are equivalent:

(1) For any submodule K of M and any direct summand P of N such that
M/K = P we have K C® M.

(2) For any direct summand P of N, every epimorphism « : M — P splits.

(3) For every direct summand K of N and every epimorphism o : M — K,
there exists 3 : N — M such that a8 = m where m : N — K is the projection.

Let Mg and Ni be modules. Recall a module N is direct M —projective if M, N
are satisfy the conditions of Lemma 5.1. From Lemma 5.1 we derive the following:
Corollary 5.2. Let Mgp and Nr be modules. The following are equivalent:

(1) A module N is direct M —projective.

(2) For every direct summand K of N and every epimorphism o : M — K,

a[N,M] = [N, K].

(3) For every direct summand K of N and every epimorphism o : M — K,

[N, M] = {8: 8 € Ey; Im(3) C K}.

Proof. (1) = (2) Let K be a direct summand of N and @ : M — K be an
epimorphism. It is clear that a[N, M| C [N, K]. Let A € [N, K]. Since N is direct
M —projective, there exists 3 € [N, M| such that o8 = 7. Since Im(\) C K =
Im(n), for every z € N, ANz) € K, 7(A(x)) = A(z), so A = 1A = afA € a[N, M],
proving (2).

(2) = (1) Let K be a direct summand of N and o : M — K be an epimorphism.
Denote by m : N — K the projection. Since 7 € [N, K] = «[M, N], by assumption,
there exists 8 € [N, M] such that a8 = =, proving (1). The equivalence (2) < (3)
is clear. O

Let Mpr and N be modules. Recall that [M, N] is semi-potent [7], if for any
a € [M,N], a ¢ J[M, N] there exists 3 € [N, M] such that 0 # (a3)? = a3 € En,
[6]. In particular, a ring R is called semi-potent (or Iy—ring [3]), if every principal
right ideal not contained in J(R) contains a nonzero idempotent. [M, N] is called
partial invertible or pi [2], if 8 = Baf for some 0 # § € [N, M| which is equivalent
to that [M, N] is semi-potent and J[M, N] = 0.

Lemma 5.3. Let M and N be a modules, o € [M, N]. The following are equiva-
lent:

(1) An element « is partial invertible.

(2) There exists 0 # 8 € [N, M] such that Im(af) and Ker(af) are direct
summands of N.

(3) There exists 0 # B € [N, M] such that Im(Ba) and Ker(Sa) are direct
summands of M.

Proof. Is obvious. O

Proposition 5.4. Let Mr and N be a modules. The following are equivalent:
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(1) For every o € [M, N, « is partial invertible.

(2) A module N is direct M —projective and for any o € [M, N], there exists

0 # 3 € [N, M] such that Im(a3) C® N.
Proof. (1) = (2) Let € [M, N]. By assumption 5 = S/ for some 0 # § € [N, M].
Since (a3)? = afB € En, Im(a3) C® N.
Let K be a direct summand of N and « : M — K be an epimorphism. Denote by
7 : N — K the projection. By assumption 8 = Saf for some 0 # § € [N, N]. Then
for e = aB3; 0 # ¢? = e € Ey and Im(e) = Im(af3) C Im(a) = K. Since for any
x €N, z=ce(x)+ (1xy —e)(x) and e(z) € K implies that w(x) = e(x). This shows
that a8 = m, by Lemma 5.1 which implies that a module N is direct M —projective.
(2) = (1) Let @ € [M, N]. By assumption there exists 0 # 3 € [N, M] such that
Im(afB) C® N. Since N is direct M —projective, the epimorphism o8 : M —
Im(af3) splits, so Ker(a) C® N, by Lemma 5.2 which implies that « is pi. |

Lemma 5.5.([6]) Let Mr and N be modules. The following are equivalent:
(1) For any submodule K of N and any direct summand P of M such that
K = P, we have K C® N.
(2) For any direct summand P of M, every monomorphism « : P — N splits.

(3) For every direct summand K of M and every monomorphism a: K — N,
there exists 3 : N — M such that Ba = T where 7 : K — M the inclusion.

Let Mr and N be modules. Recall a module M is direct N —injective if M, N
are satisfy the conditions of Lemma 5.4. From Lemma 5.5 we derive the following:

Corollary 5.6. Let M and Ng be modules. The following are equivalent:

(1) A module M is direct N—injective.

(2) For every direct summand K of M and every monomorphism a: K — N,

[N, M)a = [K, M].
Proof. (1) = (2) Assume (1) holds. It is clear that [N, M]a C [K,M]. Let
A € [K,M]. By assumption there exists 3 € [N, M] such that Sa = 7 where
7: K — M is the inclusion, so A = A\t = ABa € [N, M]a, proving (2).
(2) = (1) Assume (2) hold. Let K be a direct summand of M, a: K — M be a
monomorphism and 7 : K — M be the inclusion. By assumption 7 € [K, M] =
[N, M, so there exists 8 € [N, M] such that Sa = 7, proving (1). o
Proposition 5.7. Let Mr and N be modules. The following are equivalent:

(1) For every a € [M, N]; « is partial invertible.

(2) A module M is direct N—injective and for any o € [M, N]| there exists

0 # 3 € [N, M] such that Ker(Ba) C% M.
Proof. (1) = (2) Let ¢ € [M, N]. By assumption § = 3 for some 0 # 3 € [N, M].
Since (14)2 = Bv € Ear, Ker(Ay) C® M.
Let K be a direct summand of M and a : K — N be a monomorphism. Denote
by 7 : M — K the projection. Then ar € [M, N]. By assumption yu = pamry for
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some 0 # p € [N, M] and mp = mparu. Then for e = muan, 0 # €2 = e € Epy and
Im(e) C K. Since for any x € M, x = e(z)+ (1 —e)(z) and e(x) € K we have that
m(x) = e(x). So for any z € K, x = n(x) = e(x) = mpa(z). For p =mp € [N, M],
Ba = 7 where 7 : K — M the inclusion. By Lemma 5.4 it follows that a module
M is direct N—injective.

(2) = (1) Let @ € [M,N]. By assumption there exists 0 # X € [N, M] such
that Ker(Aa) C® M. Then M = Ker(Aa) @ K for some submodule K of M.
Since Ker(a) C Ker(Aa), a : K — M is a monomorphism. Hence M is direct
N —injective and so there exists ¢ € [N, M] such that ¢a = 7 where 7 : K — M
is the inclusion. Let 7 : M — K the projection. Note for any m € M, n(m) € K
implies that pam = m and that (rp)a(re) = me. Then, for f = wp, faf = 3
where 0 # 3 € [N, M]. This shows that « is pi. O
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