Browse > Article
http://dx.doi.org/10.4134/CKMS.2006.21.1.037

INJECTIVE REPRESENTATIONS OF QUIVERS  

Park, Sang-Won (Department of Mathematics Dong-A University)
Shin, De-Ra (Department of Mathematics Dong-A University)
Publication Information
Communications of the Korean Mathematical Society / v.21, no.1, 2006 , pp. 37-43 More about this Journal
Abstract
We prove that $M_1\longrightarrow^f\;M_2$ is an injective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ if and only if $M_1\;and\;M_2$ are injective left R-modules, $M_1\longrightarrow^f\;M_2$ is isomorphic to a direct sum of representation of the types $E_l{\rightarrow}0$ and $M_1\longrightarrow^{id}\;M_2$ where $E_l\;and\;E_2$ are injective left R-modules. Then, we generalize the result so that a representation$M_1\longrightarrow^{f_1}\;M_2\; \longrightarrow^{f_2}\;\cdots\;\longrightarrow^{f_{n-1}}\;M_n$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\cdots}{\rightarrow}{\bullet}$ is an injective representation if and only if each $M_i$ is an injective left R-module and the representation is a direct sum of injective representations.
Keywords
module; quiver; representation of quiver; injective representation of quiver;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Enochs, I. Herzog, and S. Park, Cyclic quiver ring and polycyclic-by-finite groupring, Houston J. Math. 25 (1999), no. 1, 1-13
2 E. Enochs and I. Herzog, A homotopy of quiver morphism with applications to representations, Canad. J. Math. 51 (1999), no. 2, 294-308   DOI
3 E. Enochs, J. R. Rozas, L. Oyonarte, and S. Park, Noetherian quivers, Quaestiones Mathematicae 25 (2002), no. 4, 531-538   DOI
4 S. Park, Projective representations of quivers, Internart. J. Math. Math. Sci. 31 (2002), no. 2, 97-101   DOI   ScienceOn