• Title/Summary/Keyword: $u_2$

Search Result 15,544, Processing Time 0.041 seconds

The Explicit Expression of the Atomic Thermal Parameters (원자의 온도 매개변수의 정확한 표현)

  • William P. Jensen;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.9 no.2
    • /
    • pp.149-152
    • /
    • 1998
  • The accurate expression of the anisotropic thermal parameters is either exp (-2$π^{2}$ < $h^{2}$ $\frac{$u_x^2$}{$a^{2}$}$ + $k^{2}$ $\frac{$u_y^2$}{$b^{2}$}$ + $l^{2}$ $\frac{$u_z^2$}{$c^{2}$}$ + 2hk $\frac{$u_{x}}{a}$ $\frac{$u_{y}}{b}$ 2hl $\frac{$u_{x}}{a}$ $\frac{$u_{z}}{c}$ 2kl $\frac{$u_{y}}{b}$ $\frac{$u_{z}}{c}$ > ) with the small displacements Ux, Uy, uz, in absolute measure or exp (-2$π^{2}$ < $h^{2}$ $u_x^2$ + $k^{2}$ $u_y^{2}$ + $l^{2}$ $u_z^{2}$ + 2hk$u_{x}$ $u_{y}$ + 2hl$u_{x}$$u_{z}$ + 2kl$u_{y}$ $u_{z}$ > ) with the small displacements Ux, Uy, Uz in fractional measure.

  • PDF

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

MI2U CONTROL FLIGHT SOFTWARE DESIGN AND DEVELOPMENT IN COMS

  • Kang, Seo-Yeon;Park, Su-Hyun;Koo, Cheol-Hae;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.271-273
    • /
    • 2006
  • In this paper, we describe the MI2U ORB function which is a part of the flight software executed on SCU and controls MI2U/MI which is one of three payloads on COMS. The MI2U ORB function manages MI2U/MI redundancy and reconfiguration, monitors MI2U/MI equipment, performs FDIR, and provides the routing service of commands from Ground/IP (Interpreted Program) through the current used 1553 channel. The MI2U hardware achieves the interface between the SCU and the MI. The MI2U is connected to SCU through MIL-STD-1553B system bus. The MI2U has the internal redundancy but is used in cold redundancy. The MI2U ORB function considers that they are not expected to be simultaneously switched on. The connection combination between MI2U and MI is electrically cross-strapped. However the MI2U ORB function considers only two combinations (MI2U A + MI 1, MI2U B + MI 2). Other combinations can be manually achieved by ground in case of the emergency case.

  • PDF

MULTIPLICITY RESULTS OF CRITICAL LOCAL EQUATION RELATED TO THE GENUS THEORY

  • Mohsen Alimohammady;Asieh Rezvani;Cemil Tunc
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1045-1061
    • /
    • 2023
  • Using variational methods, Krasnoselskii's genus theory and symmetric mountain pass theorem, we introduce the existence and multiplicity of solutions of a parameteric local equation. At first, we consider the following equation $$\{-div[a(x,{\mid}{\nabla}u{\mid}){\nabla}u]\,=\,{\mu}(b(x){\mid}u{\mid}^{s(x)-2}-{\mid}u{\mid}^{r(x)-2})u\;in\;{\Omega},\\u\,=0\,on\;{\partial}{\Omega},$$ where Ω⊆ ℝN is a bounded domain, µ is a positive real parameter, p, r and s are continuous real functions on ${\bar{\Omega}}$ and a(x, ξ) is of type |ξ|p(x)-2. Next, we study boundedness and simplicity of eigenfunction for the case a(x, |∇u|)∇u = g(x)|∇u|p(x)-2∇u, where g ∈ L(Ω) and g(x) ≥ 0 and the case $a(x,\,{\mid}{\nabla}u{\mid}){{\nabla}u}\,=\,(1\,+\,{\nabla}u{\mid}^2)^{\frac{p(x)-2}{2}}{\nabla}u$ such that p(x) ≡ p.

CYCLIC CODES OVER SOME SPECIAL RINGS

  • Flaut, Cristina
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1513-1521
    • /
    • 2013
  • In this paper we will study cyclic codes over some special rings: $\mathbb{F}_q[u]/(u^i)$, $\mathbb{F}_q[u_1,{\ldots},u_i]/(u^2_1,u^2_2,{\ldots},u^2_i,u_1u_2-u_2u_1,{\ldots},u_ku_j-u_ju_k,{\ldots})$, and $\mathbb{F}_q[u,v]/(u^i,v^j,uv-vu)$, where $\mathbb{F}_q$ is a field with $q$ elements $q=p^r$ for some prime number $p$ and $r{\in}\mathbb{N}-\{0\}$.

Three-dimensional evaluation of maxillary anterior alveolar bone for optimal placement of miniscrew implants

  • Choi, Jin Hwan;Yu, Hyung Seog;Lee, Kee Joon;Park, Young Chel
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.54-61
    • /
    • 2014
  • Objective: This study aimed to propose clinical guidelines for placing miniscrew implants using the results obtained from 3-dimensional analysis of maxillary anterior interdental alveolar bone by cone-beam computed tomography (CBCT). Methods: By using CBCT data from 52 adult patients (17 men and 35 women; mean age, 27.9 years), alveolar bone were measured in 3 regions: between the maxillary central incisors (U1-U1), between the maxillary central incisor and maxillary lateral incisor (U1-U2), and between the maxillary lateral incisor and the canine (U2-U3). Cortical bone thickness, labio-palatal thickness, and interdental root distance were measured at 4 mm, 6 mm, and 8 mm apical to the interdental cementoenamel junction (ICEJ). Results: The cortical bone thickness significantly increased from the U1-U1 region to the U2-U3 region (p < 0.05). The labio-palatal thickness was significantly less in the U1-U1 region (p < 0.05), and the interdental root distance was significantly less in the U1-U2 region (p < 0.05). Conclusions: The results of this study suggest that the interdental root regions U2-U3 and U1-U1 are the best sites for placing miniscrew implants into maxillary anterior alveolar bone.

SR-ADDITIVE CODES

  • Mahmoudi, Saadoun;Samei, Karim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1235-1255
    • /
    • 2019
  • In this paper, we introduce SR-additive codes as a generalization of the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of $S^{\alpha}{\times}R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic ${\mathbb{Z}}_2{\mathbb{Z}}_4$, ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$, ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$ and $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$-additive codes are presented.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • LEE, MIN-YOUNG;CHANG, SE-KYUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x). Let $Y_n=max\{X_1,\;X_2,\;{\cdots},\;X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of $\{X_n,\;n{\geq}1\}$, if $Y_j>Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, $n{\geq}1$, where u(n)=min\{j{\mid}j>u(n-1),\;X_j>X_{u(n-1)},\;n{\geq}2\} and u(1) = 1. Suppose $X{\in}Exp(1)$. Then $\Large{E\;\left.{\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}}\right)=\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n)}}}\right)}$ and $\Large{E\;\left.{\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}}\right)=\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m-1)}}{X^s_{u(n-1)}}}\right)}$.

  • PDF

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.127-131
    • /
    • 2003
  • Let X$_1$, X$_2$,... be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X$_j$ is an upper record value of this sequence if X$_j$ > max {X$_1$,X$_2$,...,X$_{j-1}$}. We define u(n)=min{j$\mid$j> u(n-1), X$_j$ > X$_{u(n-1)}$, n $\geq$ 2} with u(1)=1. Then F(x) = 1-x$^{\theta}$, x > 1, ${\theta}$ < -1 if and only if (${\theta}$+1)E[X$_{u(n+1)}$$\mid$X$_{u(m)}$=y] = ${\theta}E[X_{u(n)}$\mid$X_{u(m)}=y], (\theta+1)^2E[X_{u(n+2)}$\mid$X_{u(m)}=y] = \theta^2E[X_{u(n)}$\mid$X_{u(m)}=y], or (\theta+1)^3E[X_{u(n+3)}$\mid$X_{u(m)}=y] = \theta^3E[X_{u(n)}$\mid$X_{u(m)}=y], n $\geq$ M+1$.