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STABILITY OF FUNCTIONAL EQUATIONS WITH
RESPECT TO BOUNDED DISTRIBUTIONS

Jae-Young Chung*

Abstract. We consider the Hyers-Ulam type stability of the Cauchy,
Jensen, Pexider, Pexider-Jensen differences:

C(u) :=u ◦A− u ◦ P1 − u ◦ P2,(0.1)

J(u) :=2u ◦ A

2
− u ◦ P1 − u ◦ P2,(0.2)

P (u, v, w) :=u ◦A− v ◦ P1 − w ◦ P2,(0.3)

JP (u, v, w) :=2u ◦ A

2
− v ◦ P1 − w ◦ P2,(0.4)

with respect to bounded distributions.

1. Introduction

The classical Hyers-Ulam stability theorem states that if f is a map
from a semi group G to a Banach space B satisfying the inequality

(1.1) |f(x+ y)− f(x)− f(y)| ≤ ε for all x, y ∈ G,
there exists an additive map A : G → B(i.e. A(x + y) = A(x) +
A(y), x, y ∈ G) such that

|f(x)−A(x)| ≤ ε for all x ∈ G.
The motivation of the above stability problems goes back to 1940 when
S. M. Ulam proposed the following problem[20]:

Let f be a mapping from a group G1 to a metric group G2 with metric
d(·, ·) such that

d(f(xy), f(x)f(y)) ≤ ε.

Then do there exist a group homomorphism h and δε > 0 such that

d(f(x), h(x)) ≤ δε
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for all x ∈ G1?
In 1978, Th. M. Rassias[18] firstly generalized the result of Hyers and

since then, stability problems of many other functional equations have
been investigated [12, 14, 15, 17, 18].

Recently, the above stability problem (1.1) and its related equations

|2f
(
x+ y

2

)
− f(x)− f(y)| ≤ ε,(1.2)

|f(x+ y)− g(x)− h(y)| ≤ ε,(1.3)

|2f
(
x+ y

2

)
− g(x)− h(y)| ≤ ε,(1.4)

have been considered in various spaces of generalized functions such as
the space S ′(Rn) of tempered distributions of L. Schwartz, the space
F ′(Rn) of Fourier hyperfunctions(see [3, 4, 5]). For example, a distribu-
tion version of the inequality (1.1) has been reformulated for generalized
functions u as

u ◦A− u ◦ P1 − u ◦ P2 ∈ L∞ε (R2n)

where u◦A is the pullback of u by A(x, y) = x+y, P1(x, y) = x, P2(x, y)
= y, x, y ∈ Rn and L∞ε (R2n) denotes the space of bounded measurable
functions φ on R2n such that ‖φ‖L∞ ≤ ε. Due to L. Schwartz [19] the
space L∞ of bounded measurable functions has been generalized to the
space D′L∞ of bounded distributions which is a subspace of tempered
distributions and later the space D′L∞ was further generalized to the
space A′L∞ of bounded hyperfunctions which is a subspace of Sato hy-
perfunctions.

In this paper, we generalize the stability problem (1.1)∼(1.4) to the
space of distributions and consider the stability problem when the differ-
ences (0.1)∼(0.4) belong to the space of bounded distributions, which is
a very natural generalization of the classical Hyers-Ulam stability prob-
lem to the spaces of distributions. In the space of bounded distributions,
however, the validity of the bound ε > 0 is deprived. Thus it is worth-
while to consider the stability problems

u ◦A− u ◦ P1 − u ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)],(1.5)

2u ◦ A
2
− u ◦ P1 − u ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)],(1.6)

u ◦A− v ◦ P1 − w ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)],(1.7)

2u ◦ A
2
− v ◦ P1 − w ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)].(1.8)
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As results we prove that all the solutions of the above stability problems
(1.5)∼(1.8) are additive functions up to bounded distributions.

2. The heat kernel method in distributions and hyperfunc-
tions

We first introduce the space F ′ of hyperfunctions which is a natural
generalization of the space S ′ of tempered distributions (see [10, 11] for
these spaces). We use the notations: |α| = α1+· · ·+αn, α! = α1! · · ·αn!,
xα = xα1

1 · · ·xαn
n and ∂α = ∂α1

1 · · · ∂αn
n , for x = (x1, · · · , xn) ∈ Rn,

α = (α1, · · · , αn) ∈ Nn
0 , where N0 is the set of non-negative integers and

∂j = ∂
∂xj

.

Definition 2.1. [10] We denote by F or F(Rn) the space of all
infinitely differentiable functions ϕ in Rn such that

‖ϕ‖h,k = sup
x∈Rn, α, β∈Nn

0

|xα∂βϕ(x)|
h|α|k|β|α!β!

<∞

for some h, k > 0. We say that ϕj −→ 0 as j → ∞ if ||ϕj ||h,k −→ 0 as
j →∞
for some h, k, and denote by G′ the dual space of G and call its elements
Fourier hyperfunctions.

Following Schwartz[19] we introduce the space D′L∞ of bounded dis-
tributions.

Definition 2.2. We denote by DL1(Rn) the space of smooth func-
tions on Rn such that ∂αϕ ∈ L1(Rn) for all α ∈ Nn

0 equipped with the
topology defined by the countable family of seminorms

‖ϕ‖m =
∑
|α|≤m

‖∂αϕ‖L1 , m ∈ N0.

We denote by D′L∞ the dual space of DL1 and call its elements bounded
distributions.

Generalizing bounded distributions the space A′L∞ of bounded hy-
perfunctions has been introduced [7] as a subspace of hyperfunctions.

Definition 2.3. We denote by AL1 the space of smooth functions
on Rn satisfying

‖ϕ‖h = sup
α

‖∂αϕ‖L1

h|α|α!
<∞
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for some constant h > 0. We say that ϕj → 0 in AL∞ as j →∞ if there
is a positive constant h such that

sup
α

‖∂αϕj‖L1

h|α|α!
→ 0 as j →∞.

We denote by A′L∞ the dual space of AL1 .

It is well known that the following topological inclusions hold:

F ↪→ S ↪→ DL1 , D′
L∞ ↪→ S ′ ↪→ F ′

F ↪→ AL1 ↪→ DL1 , D′L∞ ↪→ A′L∞ ↪→ F ′.
It is easy to see that the n-dimensional heat kernel Et(x) given by

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0

belongs to the space F(Rn) for each t > 0.

3. Main theorems

The main tool of the proofs of the results is the heat kernel method
initiated by T. Matsuzawa [16] which represents the generalized func-
tions in some class as the initial values of solutions of the heat equation
with appropriate growth conditions [7, 16]. Making use of the heat kernel
method we can convert (1.5)∼(1.8) to the following classical Hyers-Ulam
type stability problems; there exist C > 0, N > 0 [ resp. for every ε > 0
there exists Cε > 0 ] such that

|f(x+ y, t+ s)− g(x, t)− h(y, s)| ≤ C

(
1
t

+
1
s

)N

[ resp. Cεe
ε(1/t+1/s) ]

for all x, y ∈ Rn, 0 < t, s < 1, where f, g, h : Rn × (0,∞) → C are the
corresponding solutions of the heat equation. Thus we first consider the
above stability problem in a more general setting: Let G be a group, S
an semigroup divisible by 2 and ψ : S × S → [0,∞).

Theorem 3.1. Let f, g, h : G× S → C satisfy

(3.1) |f(x+ y, t+ s)− g(x, t)− h(y, s)| ≤ ψ(t, s)

for all x, y ∈ G, t, s ∈ S. Then exists an additive function A : G → C
such that

|f(x, t)−A(x)− g(0,
t

2
)− h(0,

t

2
)| ≤ 3ψ(

t

2
,
t

2
),(3.2)

|g(x, t)−A(x)− g(0, t)| ≤ 4ψ(t, t),(3.3)

|h(x, t)−A(x)− h(0, t)| ≤ 4ψ(t, t),(3.4)
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for all (x, t) ∈ G× S.

Proof. It follows from (3.1) that

|f(x, 2t)− g(x, t)− h(0, t)| ≤ ψ(t, t),(3.5)

|f(y, 2s)− h(y, s)− g(0, s)| ≤ ψ(s, s)(3.6)

for all (x, t) ∈ G × S. Using triangle inequality with (3.1), (3.5) and
(3.6) we have

|f(x+ y, t+ s)− f(x, 2t)− f(y, 2s)− g(0, s)− h(0, t)|
≤ ψ(t, s) + ψ(t, t) + ψ(s, s),

(3.7)

for all x, y ∈ G, t, s ∈ S. Putting y = x, s = t in (3.7) we have

(3.8) |f(2x, 2t)− 2f(x, 2t)− g(0, t)− h(0, t)| ≤ 3ψ(t, t)

for all (x, t) ∈ G× S. Fixing t > 0 and using the well known induction
argument of Hyers-Ulam[13] with respect to x it is easy to see that the
mapping A(x, t) := limn→∞ 2−nf(2nx, t) satisfies

(3.9) A(x+ y, t+ s)−A(x, 2t)−A(y, 2s) = 0,

and

(3.10) |f(x, 2t)−A(x, 2t)− g(0, t)− h(0, t)| ≤ 3ψ(t, t).

It follows from (3.9) that A(0, 2t) = 0, A(x, t + s) = A(x, s + t) and
A(x, 2t) = A(x, t + s) = A(x, s + t) = A(x, 2s) for all x ∈ G, t, s ∈ S.
Since S is divisible by 2, A(x, t) is independent of t ∈ S. If we denote
A(x, t) by A(x), A is an additive function on G. Thus the inequality
(3.2) follows. Now (3.3) follows from (3.5) and (3.10), and (3.4) follows
from (3.6), (3.10). This completes the proof.

The following structure theorem for bounded distributions and bounded
hyperfunctions will be useful.

Lemma 3.2. [7, 19] (i) Every u ∈ D′L∞(Rn) can be expressed as

(3.11) u =
∑
|α|≤m

∂αfα

for some m ∈ N0 where fα are bounded continuous functions on Rn.
(ii) Every u ∈ A′L∞(Rn) can be expressed by

(3.12) u =

( ∞∑
k=0

ak ∆k

)
g + h
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where ∆ denotes the Laplacian, g, h are bounded continuous functions
on Rn and ak, k = 0, 1, 2, . . . satisfy the estimates; for every L > 0 there
exists C > 0 such that

|ak| ≤ CLk/k!2

for all k = 0, 1, 2, . . ..

Lemma 3.3. (i) Let u := u(ξ, η) ∈ D′L∞(R2n). Then we have the
estimate; there exist positive constants C,N and d such that
(3.13)
|[u∗(Et(ξ)Es(η))](x, y)| ≤ C (1/t+ 1/s)N , for all x ∈ Rn, 0 < t, s < 1.

(ii) Let u = u(ξ, η) ∈ A′L∞(R2n). Then we have the estimate; for every
ε > 0 there exists Cε > 0 such that
(3.14)
|[u ∗ (Et(ξ)Es(η))](x, y)| ≤ Cε e

ε(1/t+1/s), for all x ∈ Rn, 0 < t, s < 1.

Lemma 3.4. [7, 16] The Gauss transform U(x, t) = (u ∗ E)(x, t) of
u ∈ F ′(Rn) is a smooth solution of the heat equation (∆− ∂/∂t)U = 0
satisfying :

(i)For every ε > 0 there exists a positive constant Cε such that

(3.15) |U(x, t)| ≤ Cε exp(ε(1/t+ |x|)) for all x ∈ Rn, t ∈ (0, δ).

(ii) U(x, t) → u as t→ 0+ in the sense that for every ϕ ∈ DL1 ,

〈u, ϕ〉 = lim
t→0+

∫
U(x, t)ϕ(x) dx.

Conversely, every smooth solution U(x, t) of the heat equation satisfying
the estimate (3.15) can be uniquely expressed as U(x, t) = (u ∗ E)(x, t)
for some u ∈ F ′(Rn).

Similarly we can represent bounded distributions and bounded hy-
perfunctions as initial values of solutions of the heat equation. In these
cases only the estimate (3.15) is replaced by the followings, respectively;

There exist constants C > 0 and N ≥ 0 such that

(3.16) |U(x, t)| ≤ Ct−N for all x ∈ Rn, t ∈ (0, δ);

For every ε > 0 there exists a positive constant Cε such that

(3.17) |U(x, t)| ≤ Cε exp(ε/t) for all x ∈ Rn, t ∈ (0, δ).

Now we state and prove the main theorems.
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Theorem 3.5. Let u, v, w ∈ F ′(Rn). Then

(3.18) u ◦A− v ◦ P1 − w ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)]

if and only if

u = c · x+ u0, v = c · x+ v0, w = c · x+ w0,(3.19)

where c ∈ Cn and u0, v0, w0 ∈ D′L∞(Rn) [resp. A′L∞(Rn)].

Proof. Convolving in (3.18) the tensor product Et(x)Es(y) of n- di-
mensional heat kernels we have

[(u ◦A) ∗ (Et(ξ)Es(η))](x, y) = 〈uξ,

∫
Et(x− ξ + η)Es(y − η) dη〉

= 〈uξ, (Et ∗ Es)(x+ y − ξ)〉
= 〈uξ, (Et+s)(x+ y − ξ)〉
= U(x+ y, t+ s).

Similarly we have

[(v ◦ P1) ∗ (Et(ξ)Es(η))](x, y) = V (x, t),

[(w ◦ P1) ∗ (Et(ξ)Es(η))](x, y) = W (x, t),

where U(x, t), V (x, t) are the Gauss transforms of u, v, respectively.
Thus by Lemma 3.3 we have the following stability problem

(3.20) |U(x+ y, t+ s)− V (x, t)−W (y, s)| ≤ ψ(t, s),

for all x, y ∈ Rn, t, s > 0, where ψ(t, s) = C(1/t+1/s)N [resp. Cεe
ε(1/t+1/s)].

Now we apply Theorem 3.1. Since U, V, W are continuous functions we
have A(x) = c · x for some c ∈ Cn. Thus we have

|U(x, t)− c · x| ≤ Ψ1(t),(3.21)

|V (x, t)− c · x| ≤ Ψ2(t),(3.22)

|W (x, t)− c · x| ≤ Ψ3(t),(3.23)

for all (x, t) ∈ G× S, where

Ψ1(t) = 3ψ(
t

2
,
t

2
) + |V (0,

t

2
)|+ |W (0,

t

2
)|,

Ψ2(t) = 4ψ(t, t) + |V (0, t)|,
Ψ3(t) = 4ψ(t, t) + |W (0, t)|.

Now we consider the growth of Ψj(t), j = 1, 2, 3, as t → 0+. Letting
x = y = 0, s = 1 in (3.20) and using the triangle inequality we have for
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0 < t < 1,

|V (0, t)| ≤ ψ(t, 1) + |U(0, t+ 1)|+W (0, 1)|,
≤ ψ(t, 1) +M1.

for some M1 > 0, since U is continuous. Similarly we have

|W (0, t)| ≤ ψ(1, t) + |U(0, t+ 1)|+ V (0, 1)|,
≤ ψ(1, t) +M2

for some M2 > 0.
Thus for the case when u ◦ A − v ◦ P1 − w ◦ P2 ∈ D′L∞(R2n); there

exist C, N > 0 such that

Ψj(t) ≤ Ct−N , for all 0 < t < 1, j = 1, 2, 3,

and for the case when u ◦ A − v ◦ P1 − w ◦ P2 ∈ A′L∞(R2n); for every
ε > 0 there exists Cε > 0 such that

Ψj(t) ≤ Cε exp(ε/t) for all 0 < t < 1, j = 1, 2, 3.

Note that U(x, t) − c · x, V (x, t) − c · x, W (x, t) − c · x are the Gauss
transforms of u− c · x, v − c · x, w − c · x, respectively. Now applying
Lemma 3.4 for the inequalities (3.21), (3.22) and (3.23) we have u− c ·
x, v− c ·x, w− c ·x ∈ D′L∞(R2n) [resp. A′L∞(R2n)]. This completes the
proof.

As a direct consequence of Theorem 3.5 we have the following.

Corollary 3.6. Let u ∈ F ′(Rn). Then

(3.24) u ◦A− u ◦ P1 − u ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)]

if and only if

u = c · x+ u0,(3.25)

where c ∈ Cn and u0 ∈ D′L∞(Rn) [resp. A′L∞(Rn)].

Theorem 3.7. Let u, v, w ∈ F ′(Rn). Then

(3.26) 2u ◦ A
2
− v ◦ P1 − w ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)]

if and only if

u = c · x+ u0, v = c · x+ v0, w = c · x+ w0,(3.27)

where c ∈ Cn and u0, v0, w0 ∈ D′L∞(Rn) [resp. A′L∞(Rn)].
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Proof. Convolving in (3.26) the tensor product Et(x)Es(y) of n- di-
mensional heat kernels we have following stability problem

(3.28)
∣∣∣∣2U (x+ y

2
,
t+ s

4

)
− V (x, t)−W (y, s)

∣∣∣∣ ≤ ψ(t, s),

for all x, y ∈ Rn, t, s > 0, where U, V, W are the Gauss transforms of
u, v, w, respectively. Letting U1(x, t) = U(x/2, t/4) and applying the
proof of Theorem 3.5 we have

|U(x, t)− c · x| ≤ 1
2
Ψ1(4t),(3.29)

|V (x, t)− c · x| ≤ Ψ2(t),(3.30)

|W (x, t)− c · x| ≤ Ψ3(t),(3.31)

for all (x, t) ∈ G × S, where Ψj(t), j = 1, 2, 3 are as in Theorem 3.5.
Following the same approach as in Theorem 3.5 we have the result.

As a direct consequence of Theorem 3.7 we have the following.

Corollary 3.8. Let u ∈ F ′(Rn). Then

(3.32) 2u ◦ A
2
− u ◦ P1 − u ◦ P2 ∈ D′L∞(R2n) [resp. A′L∞(R2n)]

if and only if

(3.33) u = c · x+ u0,

where c ∈ Cn and u0 ∈ D′L∞(Rn) [resp. A′L∞(Rn)].
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