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THE STUDY OF THE SYSTEM OF NONLINEAR WAVE
EQUATIONS

Tacksun Jung* and Q-Heung Choi **

Abstract. We show the existence of the positive solution for the
system of the following nonlinear wave equations with Dirichlet
boundary conditions

utt − uxx + av+ = sφ00 + f,

vtt − vxx + bu+ = tφ00 + g,

u(±π

2
, t) = v(±π

2
, t) = 0,

where u+ = max{u, 0}, s, t ∈ R, φ00 is the eigenfunction cor-
responding to the positive eigenvalue λ00 = 1 of the eigenvalue
problem utt − uxx = λmnu with u(±π

2
, t) = 0, u(x, t + π) =

u(x, t) = u(−x, t) = u(x,−t) and f , g are π-periodic, even in x

and t and bounded functions in [−π
2
, π

2
]× [−π

2
, π

2
] with

∫ π
2
−π

2
fφ00 =

∫ π
2
−π

2
gφ00 = 0.

1. Introduction and statement of main result

In this paper we show the existence of the positive solution of the sys-
tem of the following nonlinear wave equations with Dirichlet boundary
conditions

(1.1)





utt − uxx + av+ = sφ00 + f,
vtt − vxx + bu+ = tφ00 + g,
u(±π

2 , t) = v(±π
2 , t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),
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eigenfunction corresponding to the positive eigenvalue λ00 = 1 of the
eigenvalue problem utt − uxx = λmnu with u(±π

2 , t) = 0, u(x, t + π) =
u(x, t) = u(−x, t) = u(x,−t). We assume that f , g are π-periodic, even
in x and t and bounded functions in [−π

2 , π
2 ]× [−π

2 , π
2 ] with

∫ π
2

−π
2

fφ00 =
∫ π

2

−π
2

gφ00 = 0. The system can be rewritten by

(1.2)





Utt − Uxx + AU+ =
(
sφ00

tφ00

)
,

U(±π
2 , t) = 0,

U(x, t + π) = U(x, t) = U(−x, t) = U(x,−t),

where U =
(
u
v

)
, U+ =

(
u+

v+

)
, Utt − Uxx =

(
utt−uxx

vtt−vxx

)
, A =

(
0 a
b 0

)
∈

M2×2(R). Let us define the Hilbert space spanned by eigenfunctions as
follows:
The eigenvalue problem for u(x, t),

utt − uxx = λu in (−π

2
,
π

2
)×R,

u(±π

2
, t) = 0, u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t)

has infinitely many eigenvalues

λmn = (2n + 1)2 − 4m2 (m,n = 0, 1, 2, . . .)

and corresponding normalized eigenfunctions φmn (m, n ≥ 0) given by

φ0n =
√

2
π

cos(2n + 1)x for n ≥ 0,

φmn =
2
π

cos 2mt · cos(2n + 1)x for m > 0, n ≥ 0.

Let n be a fixed integer and define

λ+
n = inf

m
{λmn : λmn > 0} = 4n + 1,

λ−n = sup
m
{λmn : λmn < 0} = −4n− 3.

Letting n → ∞, we obtain that λ+
n → +∞ and λ−n → −∞. We can

check easily that the eigenvalues in the interval (-15,9) are given by

λ32 = −11 < λ21 = −7 < λ10 = −3 < λ00 = 1 < λ11 = 5.

Let Q be the square [−π
2 , π

2 ]× [−π
2 , π

2 ] and H0 the Hilbert space defined
by

H0 = {u ∈ L2(Q)| u is even in x and t}.



The study of the system of nonlinear wave equations 263

The set of functions {φmn} is an orthonormal basis in H0. Let us denote
an element u, in H0, by

u =
∑

hmnφmn.

We define a Hilbert space H as follows

H = {u ∈ H0 :
∑

|λmn|h2
mn < ∞}.

Then this space is a Banach space with norm

‖u‖2 = [
∑

|λmnh2
mn|]

1
2 .

Let us set E = H ×H. We endow the Hilbert E with the norm

‖(u, v)‖2
E = ‖u‖2 + ‖v‖2.

We are looking for the weak solutions of (1.1) in H, that is, (u, v) satis-
fying the equation
∫ π

2

−π
2

(utt−uxx)z+
∫ π

2

−π
2

(vtt−vxx)w+
∫ π

2

−π
2

(A(u+, v+), (z, w))−
∫ π

2

−π
2

[sφ00+f ]z

−
∫ π

2

−π
2

[tφ00 + g]w = 0 ∀(z, w) ∈ E,

where u =
∑

cmnφmn, v =
∑

dmnφmn with utt−uxx =
∑

λmncmnφmn ∈
H, vtt−vxx =

∑
λmndmnφmn ∈ H i.e., with

∑
c2
mnλ2

mn < ∞,
∑

d2
mnλ2

mn <
∞, which implies u, v ∈ H. Now we state the main result:

Theorem 1.1. (Existence of a positive solution)
Assume that

(1.3) λ2
mn − ab 6= 0, for all m,n with (m, n) 6= (0, 0),

(1.4) a < 0, b < 0.

Then for each f , g ∈ H such that f and g are π-periodic, even in x and

t and bounded functions with
∫ π

2

−π
2

fφ00 =
∫ π

2

−π
2

gφ00 = 0 if λ2
00 − ab < 0,

then there exists (s0, t0) with s0 < 0 and t0 < 0 such that the system
(1.1) has a positive solution for each s < s0 and t < t0, and if λ2

00−ab > 0,
then there exists (s1, t1) with s1 > 0 and t1 > 0 such that the system
(1.1) has a positive solution for each s > s1 and t > t1.
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2. Proof of Theorem 1.1

We have some properties. Since |λmn| ≥ 1 for all m, n, we have that

Lemma 2.1. (i) ‖u‖ ≥ ‖u‖L2(Q), where ‖u‖L2(Q) denotes the L2 norm
of u.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Q) = 0.
(iii) utt − uxx ∈ H implies u ∈ H.

Lemma 2.2. Suppose that c is not an eigenvalue of L, Lu = utt−uxx,
and let f ∈ H0. Then we have (L− c)−1f ∈ H.

Proof. When n is fixed, λ+
n and λ−n were defined in section 1:

λ+
n = 4n + 1,

λ−n = −4n− 3.

We see that λ+
n → +∞ and λ−n → −∞ as n → ∞. Hence the number

of elements in the set {λmn : |λmn| < |c|} is finite, where λmn is an
eigenvalue of L. Let

f =
∑

hmnφmn.

Then
(L− c)−1f =

∑ 1
λmn + c

hmnφmn.

Hence we have the inequality

‖(L− c)−1f‖ =
∑

|λmn| 1
(λmn + c)2

h2
mn ≤ C

∑
h2

mn

for some C, which means that

‖(L− c)−1f‖ ≤ C1‖f‖L2(Q), C1 =
√

C.

Lemma 2.3. Assume that the conditions (1.3) and (1.4) hold. Then
the system

(2.1)





utt − uxx + av = sφ00,
vtt − vxx + bu = tφ00,
u(±π

2 , t) = v(±π
2 , t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t)

has a unique solution (u∗, v∗) ∈ E, which is of the form

u∗ = [
−a

λ00

−bs + t

λ2
00 − ab

+
s

λ00
]φ00,
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v∗ = [
−bs + tλ00

λ2
00 − ab

]φ00.

Proof. We note that (u∗, v∗) is a solution of the system (2.1).

Lemma 2.4. Assume that the conditions (1.3) and (1.4) hold. Then
the system

Utt − Uxx + AU = 0, U =
(

u

v

)
∈ E,

U(±π

2
, t) = 0,

U(x, t + π) = U(x, t) = U(−x, t) = U(x,−t)

has only a trivial solution U(x, t) =
(
0
0

)
.

Proof. We assume that there exists a nontrivial solution U = (u, v) ∈
E of (2.2) of the form u = φmn and v = φm′n′ . The equation

L

(
φmn

φm′n′

)
+ A

(
φmn

φm′n′

)
=

(
0
0

)

is equivalent to the equation
(

λmnφmn

λm′n′φm′n′

)
+

(
aφm′n′

bφmn

)
=

(
0
0

)
.

Thus when mn 6= m′n′, we have a contradiction since φmn and φm′n′

are linearly independent. When mn = m′n′, we have λmn + a = 0 and
λmn + b = 0, which means that λ2

mn − ab = 0. These contradicts the
assumption (1.3).

Lemma 2.5. Assume that the conditions (1.3)and (1.4) hold and f ,
g ∈ H are π-periodic, even in x and t and bounded functions with∫ π

2

−π
2

fφ00 =
∫ π

2

−π
2

gφ00 = 0. Then the system

(2.2)





utt − uxx + av = f,
vtt − vxx + bu = g,
u(±π

2 , t) = v(±π
2 , t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t)

has a unique solution (ǔ, v̌) ∈ E.
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Proof. Let δ > 0 and δ > max{a, b}. Let us consider the modified
system

(2.3)





utt − uxx +av + λ00u + δu = f,
vtt − vxx +bu + λ00v + δv = g,
u(±π

2 , t) = v(±π
2 , t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t).

Let us set

LδU = Utt + AU + λ00U + δU, U =
(

u

v

)
.

The system (2.3) is invertible. Thus there exists an inverse operator
L−1

δ : L2(Q)× L2(Q) → E which is a linear and compact operator such
that (u, v) = L−1

δ (f, g). Thus we have that if (u, v) is a solution of (2.2)
if and only if

(2.4) (u, v) = L−1
δ ((f, g) + λ00(u, v) + δ(u, v)).

Thus we have

(I − (λ00 + δ)L−1
δ )((f, g) + λ00(u, v) + δ(u, v)) = (f, g).

By the conditions (1.3) and (1.4), 1
λ00+δ /∈ σ(L−1

δ ). Since L−1
δ is a com-

pact operator, the system (2.4) has a unique solution, thus the system
(2.2) has a unique solution.

PROOF OF THEOREM 1.1 By Lemma 2.3 and Lemma 2.5, (u∗+
ǔ, v∗ + v̌) is a solution of the system

(2.5)





utt − uxx + av = sφ00 + f,
vtt − vxx + bu = tφ00 + g,
u(±π

2 , t) = v(±π
2 , t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),

where u∗ = [ −a
λ00

−bs+t
λ2
00−ab

+ s
λ00

]φ00 and v∗ = [−bs+tλ00

λ2
00−ab

]φ00. Therefore if

λ2
00 − ab < 0, then there exists (s0, t0) with s0 < 0 and t0 < 0 such that

u∗+ ǔ > 0 and v∗+ v̌ > 0 for each s < s0 and t < t0, and if λ2
00−ab > 0,

then there exists (s1, t1) with s1 > 0 and t1 > 0 such that u∗ + ǔ > 0
and v∗ + v̌ > 0 for each s > s1 and t > t1.
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