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THE STUDY OF THE SYSTEM OF NONLINEAR WAVE
EQUATIONS

TACKSUN JUNG* AND Q-HEUNG CHOI **

ABSTRACT. We show the existence of the positive solution for the
system of the following nonlinear wave equations with Dirichlet
boundary conditions
Uty — Ugz + G/U+ = 8¢00 + fa
Vet — Vaw + bu’ = tdhoo + g,
™ ™
2 =vEEZ,t)=0
u(E D, 1) = v(£ 3, =0,
where uy = max{u,0}, s, t € R, ¢oo is the eigenfunction cor-
responding to the positive eigenvalue Agp = 1 of the eigenvalue
problem ui — Uzz = Amnu with u(:l:g,t) = 0, u(z,t + m) =
u(z,t) = u(—=z,t) = u(z,—t) and f, g are m-periodic, even in z
and t and bounded functions in [-%, 5] x [ 5, 2] with f_fg fdoo =

f,%% géoo = 0.

1. Introduction and statement of main result

In this paper we show the existence of the positive solution of the sys-
tem of the following nonlinear wave equations with Dirichlet boundary
conditions

Ut — Ugy + av™ s¢o0 + f,
Vit — Vgz +bUT = tdoo + g,

(1.1) u(£%,1) =v(£%,t) =0,
u(z,t+m) =u(x,t) = u(—=x,t) = u(x, —1),
v(x,t+m) =v(z,t) =v(—x,t) = v(z, 1),
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eigenfunction corresponding to the positive eigenvalue Ag9p = 1 of the
eigenvalue problem uy — Uzz = Appu With u(£3,t) = 0, u(z,t +7) =
u(z,t) = u(—=z,t) = u(z, —t). We assume that f, g are m-periodic, even
in z and ¢ and bounded functions in [-75, 7] x [-F, 7] with ffg fooo =
f_il gooo = 0. The system can be rewritten by
2
Uy — Ups + AUT = (3920,
U(z,t+m) =U(z,t) =U(—=z,t) =U(z, 1),

where U = (2), U = (21), Ui~ e = (2 4 = () § ) €

Msyo(R). Let us define the Hilbert space spanned by eigenfunctions as
follows:
The eigenvalue problem for u(x,t),

Ut — Upge = AU in (fg, g) X R,

u(ig, t) =0, u(z,t +7) =u(x,t) = u(—x,t) = u(x, —t)
has infinitely many eigenvalues
A = (20 4 1)% — 4m? (m,n=0,1,2,...)

and corresponding normalized eigenfunctions ¢y, (m,n > 0) given by

2
bon = £ cos(2n+ 1)z for n >0,
T

2
Gmn = — cos2mt - cos(2n + 1)z for m > 0,n>0.
T
Let n be a fixed integer and define
A =inf{\nn : A > 0} =4n + 1,
m
A, = sup{Amn : A < 0} = —4n — 3.
m
Letting n — oo, we obtain that A} — 400 and )\, — —oo. We can
check easily that the eigenvalues in the interval (-15,9) are given by
)\322—11<)\21=—7<)\10=—3<)\00=1<)\11=5.

Let @Q be the square [—7, 5] x [~F, 5] and Hy the Hilbert space defined
by
Hy = {u € L*(Q)| u is even in = and t}.
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The set of functions {¢;,, } is an orthonormal basis in Hy. Let us denote
an element u, in Hy, by

We define a Hilbert space H as follows
H={ucHo: Y |[Amn|h, <oo}.

Then this space is a Banach space with norm

||UH2 Z |)‘mnh2

Let us set £ = H x H. We endow the Hilbert E with the norm

M\H

(e, 0) 17 = flul® + o).

We are looking for the weak solutions of (1.1) in H, that is, (u,v) satis-
fying the equation

(VB
(ME]

/_72r (Utt—uxm)Z‘l‘/_g(Utt—Uxx)w—{—/ (A(u™, o), (z,w))—/g (sdo0-+f1z

_

Wl

(ME]
[V

—/2 [tdoo + glw =0 V(z,w) € E,

_T

[

where u = Z Cmn¢mn7 v = Z dmn¢mn with Utt —Ugyx = E /\mncmngbmn S
H, v~ = Y Apn@imn@mn € Hie., with > 2, A2, < o0, Y d?, )2, <
0o, which implies v, v € H. Now we state the main result:

THEOREM 1.1. (Existence of a positive solution)
Assume that

(1.3) N —ab #0, for all m,n with (m,n) # (0,0),

(1.4) a<0, b<0.

Then for each f, g € H such that fandg are - -periodic, even in x and
t and bounded functions with f2 fooo = f2 gdoo = 0 if M3y — ab < 0,

then there exists (sg,tg) with sg < 0 and tg < 0 such that the system
(1.1) has a positive solution for each s < sg andt < tg, and if \3y—ab > 0,
then there exists (s1,t1) with s; > 0 and t; > 0 such that the system
(1.1) has a positive solution for each s > s; and t > t;.
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2. Proof of Theorem 1.1

We have some properties. Since |Ap,,| > 1 for all m, n, we have that

LeMMA 2.1. (i) [|ull > ||ull12(q), where ||ul|12(q) denotes the L* norm
of u.
(ii) |lul| = 0 if and only if ||u||z2(g) = 0.
(iii) wy — uze € H implies u € H.

LEMMA 2.2. Suppose that c is not an eigenvalue of L, Lu = uy —Ugy,
and let f € Hy. Then we have (L —c)~'f € H.

Proof. When n is fixed, A\ and \;; were defined in section 1:

A =dn +1,

A, = —4n — 3.
We see that A\ — +o00 and \;; — —oc as n — oco. Hence the number
of elements in the set {A\p, @ [Amn| < |c|} is finite, where A, is an
eigenvalue of L. Let

Then 1
L— = 7hmn mn -
oy Z Amn + € ¢

Hence we have the inequality

I =751 = X Pl gl < € Y2
for some C, which means that
I =)' fll < Cillfllz,  Ci=VC.
O

LEMMA 2.3. Assume that the conditions (1.3) and (1.4) hold. Then
the system

Ut — Ugz + AV = SPoo,
Vit — Vge +bu = tooo,
(2.1) U(ig:t) :’U(igat) =
u(z,t +m) =u(x,t) = u(—z,t) = u(z, —t),
v(x,t+m) =v(z,t) =v(—z,t) = v(z, —t)

has a unique solution (u,v.) € E, which is of the form

—a —bs+t s

[Toom + )\700]%0,

Uy =
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_—bs+1tAoo
Proof. We note that (u.,v.) is a solution of the system (2.1). O

LEMMA 2.4. Assume that the conditions (1.3) and (1.4) hold. Then
the system

Uy — U + AU =0, U= (“) cE,

[

Ux,t+7m)=U(z,t) =U(—x,t) = U(z, —t)

has only a trivial solution U(z,t) = (8).

Proof. We assume that there exists a nontrivial solution U = (u,v) €
E of (2.2) of the form u = ¢y, and v = ¢p,rr. The equation

Omn Gmn . 0
L <¢m’n’) A <¢m’n/> B <0>

is equivalent to the equation

( Amn®mn ) + (ad)m’n’) _ <0>
A’rn’n’(z)m’n’ bgbmn 0/
Thus when mn # m/n’, we have a contradiction since ¢, and @,
are linearly independent. When mn = m/n’/, we have A\, + a = 0 and
Amn + b = 0, which means that A2, — ab = 0. These contradicts the
assumption (1.3). O

LEMMA 2.5. Assume that the conditions (1.3)and (1.4) hold and f,
g € H are m-periodic, even in x and t and bounded functions with

f,%% J oo = ﬁg gooo = 0. Then the system

Ut — Ugy +av = f,
Vgt — Ugz +OU =g,
(2.2) u(£3,1) =v(£5,t) =0,
u(z,t +m) =u(z,t) = u(—=z,t) = u(z, —t),
v(xz,t+m) =v(x,t) = v(—x,t) = v(z, —t)

has a unique solution (u,v) € E.
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Proof. Let § > 0 and 0 > max{a,b}. Let us consider the modified
System

Ut — Upe a0 + Agou + du = f,
Vit — Vg +bu + Agov + v = g,
(2.3) u(£5,t) =wv(£5,t) =0,
u(z,t+7m) =u(z,t) =u(—=z,t) =u(z, —t),
v(z,t+m) =v(zr,t) =v(—x,t) =v(x,—t).

Let us set

LsU = Uy + AU + AU + 06U, U = (“)

v

The system (2.3) is invertible. Thus there exists an inverse operator
Li': L3(Q) x L*(Q) — E which is a linear and compact operator such
that (u,v) = L3 '(f,g). Thus we have that if (u,v) is a solution of (2.2)
if and only if

(2.4) (u,v) = L3 ((f, 9) + Aoo(u, v) + 5(u, v)).
Thus we have
(I — (Ao + 0) L5 )((f.9) + Aoo(u,v) + 6(u,v)) = (f, g).

By the conditions (1.3) and (1.4), m ¢ o(L;"). Since Ly is a com-
pact operator, the system (2.4) has a unique solution, thus the system
(2.2) has a unique solution. O

PROOF OF THEOREM 1.1 By Lemma 2.3 and Lemma 2.5, (u* +
U, vy + 0) is a solution of the system

Ut — Ugy + AV :5¢00+f7
Vit — Ve +bu = tdoo + g,

(2.5) u(£3,1) =v(£F,t) =0,
u(z,t+ ) =u(z,t) = u(—=x,t) = u(x, —t),
v(z,t+m) =v(z,t) = v(—=x,t) = v(x, —t),
where u, = [3¢ %ﬁs_:% + xo-]¢00 and v, = [%](ﬁoo. Therefore if

/\(2)0 — ab < 0, then there exists (sg, tg) with sg < 0 and ¢y < 0 such that
Uy +14 > 0 and v, +9 > 0 for each s < sg and t < tg, and if)\go—ab > 0,
then there exists (s1,¢1) with s; > 0 and ¢; > 0 such that u, +a@ > 0
and v, + 0 > 0 for each s > s1 and ¢t > 1.
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