THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

Tacksun Jung* and Q-Heung Choi **

Abstract. We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions

$$
\begin{gathered}
u_{t t}-u_{x x}+a v^{+}=s \phi_{00}+f \\
v_{t t}-v_{x x}+b u^{+}=t \phi_{00}+g \\
u\left(\pm \frac{\pi}{2}, t\right)=v\left(\pm \frac{\pi}{2}, t\right)=0
\end{gathered}
$$

where $u_{+}=\max \{u, 0\}, s, t \in R, \phi_{00}$ is the eigenfunction corresponding to the positive eigenvalue $\lambda_{00}=1$ of the eigenvalue problem $u_{t t}-u_{x x}=\lambda_{m n} u$ with $u\left(\pm \frac{\pi}{2}, t\right)=0, u(x, t+\pi)=$ $u(x, t)=u(-x, t)=u(x,-t)$ and f, g are π-periodic, even in x and t and bounded functions in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f \phi_{00}=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g \phi_{00}=0$.

1. Introduction and statement of main result

In this paper we show the existence of the positive solution of the system of the following nonlinear wave equations with Dirichlet boundary conditions

$$
\begin{cases}u_{t t}-u_{x x}+a v^{+} & =s \phi_{00}+f \tag{1.1}\\ v_{t t}-v_{x x}+b u^{+} & =t \phi_{00}+g \\ u\left(\pm \frac{\pi}{2}, t\right) & =v\left(\pm \frac{\pi}{2}, t\right)=0 \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t) \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t)\end{cases}
$$

Received July 16, 2007.
2000 Mathematics Subject Classification: Primary 35B10, 35L05, 35L20.
Key words and phrases: system of nonlinear wave equations, positive solution, Dirichlet boundary condition.
**Research supported in part by Inha University Research Grant.
eigenfunction corresponding to the positive eigenvalue $\lambda_{00}=1$ of the eigenvalue problem $u_{t t}-u_{x x}=\lambda_{m n} u$ with $u\left(\pm \frac{\pi}{2}, t\right)=0, u(x, t+\pi)=$ $u(x, t)=u(-x, t)=u(x,-t)$. We assume that f, g are π-periodic, even in x and t and bounded functions in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f \phi_{00}=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g \phi_{00}=0$. The system can be rewritten by

$$
\begin{cases}U_{t t}-U_{x x}+A U^{+} & =\binom{s \phi_{00}}{t \phi_{00}} \tag{1.2}\\ U\left(\pm \frac{\pi}{2}, t\right) & =0, \\ U(x, t+\pi) & =U(x, t)=U(-x, t)=U(x,-t)\end{cases}
$$

where $U=\binom{u}{v}, U^{+}=\binom{u^{+}}{v^{+}}, U_{t t}-U_{x x}=\binom{u_{t t}-u_{x x}}{v_{t t}-v_{x x}}, A=\left(\begin{array}{cc}0 & a \\ b & 0\end{array}\right) \in$ $M_{2 \times 2}(R)$. Let us define the Hilbert space spanned by eigenfunctions as follows:
The eigenvalue problem for $u(x, t)$,

$$
\begin{gathered}
u_{t t}-u_{x x}=\lambda u \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R \\
u\left(\pm \frac{\pi}{2}, t\right)=0, \quad u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t)
\end{gathered}
$$

has infinitely many eigenvalues

$$
\lambda_{m n}=(2 n+1)^{2}-4 m^{2} \quad(m, n=0,1,2, \ldots)
$$

and corresponding normalized eigenfunctions $\phi_{m n}(m, n \geq 0)$ given by

$$
\begin{array}{cl}
\phi_{0 n}=\frac{\sqrt{2}}{\pi} \cos (2 n+1) x & \text { for } n \geq 0, \\
\phi_{m n}=\frac{2}{\pi} \cos 2 m t \cdot \cos (2 n+1) x & \text { for } m>0, n \geq 0 .
\end{array}
$$

Let n be a fixed integer and define

$$
\begin{gathered}
\lambda_{n}^{+}=\inf _{m}\left\{\lambda_{m n}: \lambda_{m n}>0\right\}=4 n+1 \\
\lambda_{n}^{-}=\sup _{m}\left\{\lambda_{m n}: \lambda_{m n}<0\right\}=-4 n-3
\end{gathered}
$$

Letting $n \rightarrow \infty$, we obtain that $\lambda_{n}^{+} \rightarrow+\infty$ and $\lambda_{n}^{-} \rightarrow-\infty$. We can check easily that the eigenvalues in the interval $(-15,9)$ are given by

$$
\lambda_{32}=-11<\lambda_{21}=-7<\lambda_{10}=-3<\lambda_{00}=1<\lambda_{11}=5
$$

Let Q be the square $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and H_{0} the Hilbert space defined by

$$
H_{0}=\left\{u \in L^{2}(Q) \mid u \text { is even in } x \text { and } t\right\}
$$

The set of functions $\left\{\phi_{m n}\right\}$ is an orthonormal basis in H_{0}. Let us denote an element u, in H_{0}, by

$$
u=\sum h_{m n} \phi_{m n} .
$$

We define a Hilbert space H as follows

$$
H=\left\{u \in H_{0}: \quad \sum\left|\lambda_{m n}\right| h_{m n}^{2}<\infty\right\}
$$

Then this space is a Banach space with norm

$$
\|u\|^{2}=\left[\sum\left|\lambda_{m n} h_{m n}^{2}\right|\right]^{\frac{1}{2}} .
$$

Let us set $E=H \times H$. We endow the Hilbert E with the norm

$$
\|(u, v)\|_{E}^{2}=\|u\|^{2}+\|v\|^{2} .
$$

We are looking for the weak solutions of (1.1) in H, that is, (u, v) satisfying the equation

$$
\begin{aligned}
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(u_{t t}-u_{x x}\right) z+ & \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(v_{t t}-v_{x x}\right) w+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(A\left(u^{+}, v^{+}\right),(z, w)\right)-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[s \phi_{00}+f\right] z \\
& -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[t \phi_{00}+g\right] w=0 \quad \forall(z, w) \in E,
\end{aligned}
$$

where $u=\sum c_{m n} \phi_{m n}, v=\sum d_{m n} \phi_{m n}$ with $u_{t t}-u_{x x}=\sum \lambda_{m n} c_{m n} \phi_{m n} \in$ $H, v_{t t}-v_{x x}=\sum \lambda_{m n} d_{m n} \phi_{m n} \in H$ i.e., with $\sum c_{m n}^{2} \lambda_{m n}^{2}<\infty, \sum d_{m n}^{2} \lambda_{m n}^{2}<$ ∞, which implies $u, v \in H$. Now we state the main result:

Theorem 1.1. (Existence of a positive solution)
Assume that

$$
\begin{align*}
& \lambda_{m n}^{2}-a b \neq 0, \quad \text { for all } m, n \text { with }(m, n) \neq(0,0) \tag{1.3}\\
& \qquad a<0, \quad b<0 \tag{1.4}
\end{align*}
$$

Then for each $f, g \in H$ such that f and g are π-periodic, even in x and t and bounded functions with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f \phi_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g \phi_{00}=0$ if $\lambda_{00}^{2}-a b<0$, then there exists $\left(s_{0}, t_{0}\right)$ with $s_{0}<0$ and $t_{0}<0$ such that the system (1.1) has a positive solution for each $s<s_{0}$ and $t<t_{0}$, and if $\lambda_{00}^{2}-a b>0$, then there exists $\left(s_{1}, t_{1}\right)$ with $s_{1}>0$ and $t_{1}>0$ such that the system (1.1) has a positive solution for each $s>s_{1}$ and $t>t_{1}$.

2. Proof of Theorem 1.1

We have some properties. Since $\left|\lambda_{m n}\right| \geq 1$ for all m, n, we have that
Lemma 2.1. (i) $\|u\| \geq\|u\|_{L^{2}(Q)}$, where $\|u\|_{L^{2}(Q)}$ denotes the L^{2} norm of u.
(ii) $\|u\|=0$ if and only if $\|u\|_{L^{2}(Q)}=0$.
(iii) $u_{t t}-u_{x x} \in H$ implies $u \in H$.

Lemma 2.2. Suppose that c is not an eigenvalue of $L, L u=u_{t t}-u_{x x}$, and let $f \in H_{0}$. Then we have $(L-c)^{-1} f \in H$.

Proof. When n is fixed, λ_{n}^{+}and λ_{n}^{-}were defined in section 1:

$$
\begin{gathered}
\lambda_{n}^{+}=4 n+1 \\
\lambda_{n}^{-}=-4 n-3
\end{gathered}
$$

We see that $\lambda_{n}^{+} \rightarrow+\infty$ and $\lambda_{n}^{-} \rightarrow-\infty$ as $n \rightarrow \infty$. Hence the number of elements in the set $\left\{\lambda_{m n}:\left|\lambda_{m n}\right|<|c|\right\}$ is finite, where $\lambda_{m n}$ is an eigenvalue of L. Let

$$
f=\sum h_{m n} \phi_{m n}
$$

Then

$$
(L-c)^{-1} f=\sum \frac{1}{\lambda_{m n}+c} h_{m n} \phi_{m n}
$$

Hence we have the inequality

$$
\left\|(L-c)^{-1} f\right\|=\sum\left|\lambda_{m n}\right| \frac{1}{\left(\lambda_{m n}+c\right)^{2}} h_{m n}^{2} \leq C \sum h_{m n}^{2}
$$

for some C, which means that

$$
\left\|(L-c)^{-1} f\right\| \leq C_{1}\|f\|_{L^{2}(Q)}, \quad C_{1}=\sqrt{C}
$$

Lemma 2.3. Assume that the conditions (1.3) and (1.4) hold. Then the system

$$
\begin{cases}u_{t t}-u_{x x}+a v & =s \phi_{00} \tag{2.1}\\ v_{t t}-v_{x x}+b u & =t \phi_{00} \\ u\left(\pm \frac{\pi}{2}, t\right) & =v\left(\pm \frac{\pi}{2}, t\right)=0 \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t) \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t)\end{cases}
$$

has a unique solution $\left(u_{*}, v_{*}\right) \in E$, which is of the form

$$
u_{*}=\left[\frac{-a}{\lambda_{00}} \frac{-b s+t}{\lambda_{00}^{2}-a b}+\frac{s}{\lambda_{00}}\right] \phi_{00}
$$

$$
v_{*}=\left[\frac{-b s+t \lambda_{00}}{\lambda_{00}^{2}-a b}\right] \phi_{00}
$$

Proof. We note that $\left(u_{*}, v_{*}\right)$ is a solution of the system (2.1).
Lemma 2.4. Assume that the conditions (1.3) and (1.4) hold. Then the system

$$
\begin{gathered}
U_{t t}-U_{x x}+A U=0, \quad U=\binom{u}{v} \in E \\
U\left(\pm \frac{\pi}{2}, t\right)=0 \\
U(x, t+\pi)=U(x, t)=U(-x, t)=U(x,-t)
\end{gathered}
$$

has only a trivial solution $U(x, t)=\binom{0}{0}$.
Proof. We assume that there exists a nontrivial solution $U=(u, v) \in$ E of (2.2) of the form $u=\phi_{m n}$ and $v=\phi_{m^{\prime} n^{\prime}}$. The equation

$$
L\binom{\phi_{m n}}{\phi_{m^{\prime} n^{\prime}}}+A\binom{\phi_{m n}}{\phi_{m^{\prime} n^{\prime}}}=\binom{0}{0}
$$

is equivalent to the equation

$$
\binom{\lambda_{m n} \phi_{m n}}{\lambda_{m^{\prime} n^{\prime}} \phi_{m^{\prime} n^{\prime}}}+\binom{a \phi_{m^{\prime} n^{\prime}}}{b \phi_{m n}}=\binom{0}{0}
$$

Thus when $m n \neq m^{\prime} n^{\prime}$, we have a contradiction since $\phi_{m n}$ and $\phi_{m^{\prime} n^{\prime}}$ are linearly independent. When $m n=m^{\prime} n^{\prime}$, we have $\lambda_{m n}+a=0$ and $\lambda_{m n}+b=0$, which means that $\lambda_{m n}^{2}-a b=0$. These contradicts the assumption (1.3).

Lemma 2.5. Assume that the conditions (1.3)and (1.4) hold and f, $g \in H$ are π-periodic, even in x and t and bounded functions with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f \phi_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g \phi_{00}=0$. Then the system

$$
\begin{cases}u_{t t}-u_{x x}+a v & =f \tag{2.2}\\ v_{t t}-v_{x x}+b u & =g \\ u\left(\pm \frac{\pi}{2}, t\right) & =v\left(\pm \frac{\pi}{2}, t\right)=0 \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t) \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t)\end{cases}
$$

has a unique solution $(\check{u}, \check{v}) \in E$.

Proof. Let $\delta>0$ and $\delta>\max \{a, b\}$. Let us consider the modified system

$$
\begin{cases}u_{t t}-u_{x x} & +a v+\lambda_{00} u+\delta u=f, \tag{2.3}\\ v_{t t}-v_{x x} & +b u+\lambda_{00} v+\delta v=g \\ u\left(\pm \frac{\pi}{2}, t\right) & =v\left(\pm \frac{\pi}{2}, t\right)=0 \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t) \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t)\end{cases}
$$

Let us set

$$
L_{\delta} U=U_{t t}+A U+\lambda_{00} U+\delta U, \quad U=\binom{u}{v}
$$

The system (2.3) is invertible. Thus there exists an inverse operator $L_{\delta}^{-1}: L^{2}(Q) \times L^{2}(Q) \rightarrow E$ which is a linear and compact operator such that $(u, v)=L_{\delta}^{-1}(f, g)$. Thus we have that if (u, v) is a solution of (2.2) if and only if

$$
\begin{equation*}
(u, v)=L_{\delta}^{-1}\left((f, g)+\lambda_{00}(u, v)+\delta(u, v)\right) \tag{2.4}
\end{equation*}
$$

Thus we have

$$
\left(I-\left(\lambda_{00}+\delta\right) L_{\delta}^{-1}\right)\left((f, g)+\lambda_{00}(u, v)+\delta(u, v)\right)=(f, g)
$$

By the conditions (1.3) and (1.4), $\frac{1}{\lambda_{00}+\delta} \notin \sigma\left(L_{\delta}^{-1}\right)$. Since L_{δ}^{-1} is a compact operator, the system (2.4) has a unique solution, thus the system (2.2) has a unique solution.

PROOF OF THEOREM 1.1 By Lemma 2.3 and Lemma 2.5, $\left(u_{*}+\right.$ $\left.\check{u}, v_{*}+\check{v}\right)$ is a solution of the system

$$
\begin{cases}u_{t t}-u_{x x}+a v & =s \phi_{00}+f \tag{2.5}\\ v_{t t}-v_{x x}+b u & =t \phi_{00}+g \\ u\left(\pm \frac{\pi}{2}, t\right) & =v\left(\pm \frac{\pi}{2}, t\right)=0 \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t) \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t)\end{cases}
$$

where $u_{*}=\left[\frac{-a}{\lambda_{00}} \frac{-b s+t}{\lambda_{00}^{2}-a b}+\frac{s}{\lambda_{00}}\right] \phi_{00}$ and $v_{*}=\left[\frac{-b s+t \lambda_{00}}{\lambda_{00}^{2}-a b}\right] \phi_{00}$. Therefore if $\lambda_{00}^{2}-a b<0$, then there exists $\left(s_{0}, t_{0}\right)$ with $s_{0}<0$ and $t_{0}<0$ such that $u_{*}+\check{u}>0$ and $v_{*}+\check{v}>0$ for each $s<s_{0}$ and $t<t_{0}$, and if $\lambda_{00}^{2}-a b>0$, then there exists $\left(s_{1}, t_{1}\right)$ with $s_{1}>0$ and $t_{1}>0$ such that $u_{*}+\check{u}>0$ and $v_{*}+\check{v}>0$ for each $s>s_{1}$ and $t>t_{1}$.

References

[1] T. Bartsch and M. Klapp, Critical point theory for indefinite functionals with symmetries, J. Funct. Anal., 107-136 (1996).
[2] A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. 120, no. 4, 113-137 (1979).
[3] K. C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34, 693-712 (1981).
[4] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser (1993).
[5] Q. H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations, 117, 390-410 (1995).
[6] Q. H. Choi and T. Jung, Multiple periodic solutions of a semilinear wave equation at double external resonances, Communications in Applied Analysis 3, no. 1, 73-84 (1999).
[7] Q. H. Choi and T. Jung, Multiplicity results for nonlinear wave equations with nonlinearities crossing eigenvalues, Hokkaido Mathematical Journal 24, no. 1, 53-62 (1995).
[8] P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Archive for Rational Mechanics and Analysis 98, no. 2, 167-177 (1987).

*

Department of Mathematics
Kunsan National University
Kunsan 573-701, Republic of Korea
E-mail: tsjung@kunsan.ac.kr
**
Department of Mathematics Education Inha University
Incheon 402-751, Republic of Korea
E-mail: qheung@inha.ac.kr

