DOI QR코드

DOI QR Code

MULTIPLICITY RESULTS OF CRITICAL LOCAL EQUATION RELATED TO THE GENUS THEORY

  • Mohsen Alimohammady (Department of Mathematics Faculty of Mathematical Sciences University of Mazandarn) ;
  • Asieh Rezvani (Department of Mathematics Qaemshahr Branch, Islamic Azad University) ;
  • Cemil Tunc (Department of Mathematics Faculty of sciences Van Yuzuncu Yil university)
  • Received : 2022.10.12
  • Accepted : 2023.04.26
  • Published : 2023.10.31

Abstract

Using variational methods, Krasnoselskii's genus theory and symmetric mountain pass theorem, we introduce the existence and multiplicity of solutions of a parameteric local equation. At first, we consider the following equation $$\{-div[a(x,{\mid}{\nabla}u{\mid}){\nabla}u]\,=\,{\mu}(b(x){\mid}u{\mid}^{s(x)-2}-{\mid}u{\mid}^{r(x)-2})u\;in\;{\Omega},\\u\,=0\,on\;{\partial}{\Omega},$$ where Ω⊆ ℝN is a bounded domain, µ is a positive real parameter, p, r and s are continuous real functions on ${\bar{\Omega}}$ and a(x, ξ) is of type |ξ|p(x)-2. Next, we study boundedness and simplicity of eigenfunction for the case a(x, |∇u|)∇u = g(x)|∇u|p(x)-2∇u, where g ∈ L(Ω) and g(x) ≥ 0 and the case $a(x,\,{\mid}{\nabla}u{\mid}){{\nabla}u}\,=\,(1\,+\,{\nabla}u{\mid}^2)^{\frac{p(x)-2}{2}}{\nabla}u$ such that p(x) ≡ p.

Keywords

Acknowledgement

This work was financially supported by KRF 2003-041-C20009.

References

  1. L. H. An, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057-1099. https://doi.org/10.1016/j.na.2005.05.056 
  2. M. Avci, B. C ekic, and R. A. Ayazoglu, Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory, Math. Methods Appl. Sci. 34 (2011), no. 14, 1751-1759. https://doi.org/10.1002/mma.1485 
  3. F. J. S. A. Correa and G. M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), no. 6, 819-822. https://doi.org/10.1016/j.aml.2008.06.042 
  4. L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8 
  5. Z. El Allali and S. Taarabti, Existence and multiplicity of the solutions for the p(x)-Kirchhoff equation via genus theory, Commun. Appl. Anal. 23 (2019), no. 1, 79-95. 
  6. X. L. Fan and D. Zhao, On the spaces Lp(x) (Ω) and Wm,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617 
  7. M. K. Hamdani, A. Harrabi, F. Mtiri, and D. D. Repovs, Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal. 190 (2020), 111598, 15 pp. https://doi.org/10.1016/j.na.2019.111598 
  8. M. K. Hamdani, T. C. Nguyen, and M. Bayrami-Aminlouee, Infinitely many solutions for a new class of Schrodinger-Kirchhof type equations in ℝN involving the fractional p-Laplacian, J. Elliptic Parabol. Equ. 7 (2021), no. 1, 243-267. https://doi.org/10.1007/s41808-020-00093-7 
  9. M. K. Hamdani, T. C. Nguyen, and D. Repovs, New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. 10 (2021), no. 1, 1117-1131. https://doi.org/10.1515/anona-2020-0172 
  10. K. Ho and I. Sim, On degenerate p(x)-Laplace equations involving critical growth with two parameters, Nonlinear Anal. 132 (2016), 95-114. https://doi.org/10.1016/j.na.2015.11.003 
  11. I. H. Kim and Y.-H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math. 147 (2015), no. 1-2, 169-191. https://doi.org/10.1007/s00229-014-0718-2 
  12. M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal. 67 (2007), no. 5, 1419-1425. https://doi.org/10.1016/j.na.2006.07.027 
  13. A. Mokhtari, T. Moussaoui, and D. O'Regan, Existence and multiplicity of solutions for a p(x)-Kirchhoff type problem via variational techniques, Arch. Math. (Brno) 51 (2015), no. 3, 163-173. https://doi.org/10.5817/AM2015-3-163 
  14. V. Radulescu and D. Repovs, Partial differential equations with variable exponents, Monographs and Research Notes in Mathematics, CRC, Boca Raton, FL, 2015. https://doi.org/10.1201/b18601 
  15. I. D. Stircu, An existence result for quasilinear elliptic equations with variable exponents, An. Univ. Craiova Ser. Mat. Inform. 44 (2017), no. 2, 299-315. 
  16. N. Tsouli, O. Chakrone, O. Darhouche, and M. Rahmani, Nonlinear eigenvalue problem for the p-Laplacian, Commun. Math. Anal. 20 (2017), no. 1, 69-82. 
  17. V. F. Ut˘a, Ground state solutions and concentration phenomena in nonlinear eigenvalue problems with variable exponents, An. Univ. Craiova Ser. Mat. Inform. 45 (2018), no. 1, 122-136. 
  18. J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Anal. 68 (2008), no. 5, 1271-1283. https://doi.org/10.1016/j.na.2006.12.020