CYCLIC CODES OVER SOME SPECIAL RINGS

Cristina Flaut

Abstract. In this paper we will study cyclic codes over some special rings: $\mathbb{F}_{q}[u] /\left(u^{i}\right), \mathbb{F}_{q}\left[u_{1}, \ldots, u_{i}\right] /\left(u_{1}^{2}, u_{2}^{2}, \ldots, u_{i}^{2}, u_{1} u_{2}-u_{2} u_{1}, \ldots, u_{k} u_{j}-\right.$ $\left.u_{j} u_{k}, \ldots\right)$, and $\mathbb{F}_{q}[u, v] /\left(u^{i}, v^{j}, u v-v u\right)$, where \mathbb{F}_{q} is a field with q elements $q=p^{r}$ for some prime number p and $r \in \mathbb{N}-\{0\}$.

0. Introduction

Codes over finite rings have been intensively studied in the last time, some of the earliest results of them are in [5], [18]. Ones of the most important finite rings in the coding theory are: the finite field \mathbb{F}_{q} and the ring \mathbb{Z}_{q}, where $q=p^{r}$ for some prime number p and $r \in \mathbb{N}-\{0\}$. For example, in the paper [10] some codes over \mathbb{Z}_{4} are investigated. The class of cyclic codes is an important class of linear codes with a big interest in coding theory. Described as ideals in certain polynomial rings, they have a good algebraic structure and the cyclic codes over some special finite rings were recently described (see [2], [3], [6], [9], [14], [15], [19]). Two classes of these main rings are: Galois rings and rings of the form $\mathbb{F}_{q}[u] /\left(u^{i}\right)$ or generalization of these, where $q=p^{r}$ for some prime number p and $r \in \mathbb{N}-\{0\}$.

In this paper, we will investigate the structure of cyclic codes of arbitrary length over the rings:

$$
\begin{aligned}
& \mathbb{F}_{q}[u] /\left(u^{i}\right), \\
& \mathbb{F}_{q}\left[u_{1}, \ldots, u_{i}\right] /\left(u_{1}^{2}, u_{2}^{2}, \ldots, u_{i}^{2}, u_{1} u_{2}-u_{2} u_{1}, \ldots, u_{k} u_{j}-u_{j} u_{k}, \ldots\right), \\
& \mathbb{F}_{q}[u, v] /\left(u^{i}, v^{j}, u v-v u\right) .
\end{aligned}
$$

1. Preliminaries

The Galois ring $G R(q, n)$ is the residue class ring $\mathbb{Z} / p^{r} \mathbb{Z}[x] /(f(x))$, where $f(x)$ is a monic irreducible polynomial of degree n in $\mathbb{Z}_{p^{r}}[x]$ such that $f(x) \bmod$ p is a monic irreducible polynomial in $\mathbb{Z}_{p}[x]$. The existence of the polynomial $f(x)$ is given by the Hensel lifting, which allows us to "lift" a root ρ of a

Received April 17, 2012; Revised November 15, 2012.
2010 Mathematics Subject Classification. 94B15, 94B05.
Key words and phrases. cyclic codes, codes over rings, Hamming distance.
polynomial $f \bmod p^{t}$ to a new root σ for the polynomial $f \bmod p^{t+1}, t \in \mathbb{N}-\{0\}$ (see [8], [13]). From here, it results that we can choose the polynomial f, monic and irreducible over \mathbb{Z}_{p}, as in the standard construction of the Galois field $\mathbb{F}_{p^{r}}$ from \mathbb{Z}_{p}, and we lift it to a polynomial over $\mathbb{Z} / p^{r} \mathbb{Z}$. We remark that $|G R(q, n)|=p^{r m}$. For example, $G R(q, 1)=\mathbb{Z}_{q}$ and $G R(p, r)=\mathbb{F}_{q}$. Let θ be a root of the polynomial $f(x)$. Since we can think at $G R(q, n)$ as a Galois extension $\mathbb{Z}_{p^{r}}[\theta]$ of $\mathbb{Z}_{p^{r}}$ by a root θ of $f(x)$, each element $v \in G R(q, n)$ has the form

$$
v=a_{0}+a_{1} \theta+a_{2} \theta^{2}+\cdots+a_{n-1} \theta^{n-1},
$$

where $a_{i} \in \mathbb{Z}_{p^{r}}, i \in\{0,1, \ldots, n-1\}$ (see [16] and [17]).
The Galois ring $G R(q, n)$ is a free module of rank n over \mathbb{Z}_{q} and the set

$$
\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}
$$

is a free basis for $G R(q, n)$. Since the ring $\mathbb{Z}_{p^{r}}$ satisfies the invariant dimension property, it results that all bases in $G R(q, n)$ have n elements.

Let R be a commutative ring and I be an ideal of the ring R. The ideal I is called principal if it is generated by one element. The ring R is called principal if all its ideals are principal. The ring R is called a local ring if it has a unique maximal ideal. A ring R is called a chain ring if the set of all ideals of R is ordered by inclusion (is a chain under set inclusion). For a chain ring its unique maximal ideal contains the nilpotent elements.

All ideals in a finite chain ring R are principal. Indeed, if I is not a principal ideal, since R is finite, we have that I is finite generated and $I=\left\langle a_{1}, \ldots, a_{t}\right\rangle$, where $\left\{a_{1}, \ldots, a_{t}\right\}$ is a minimal set of generators. It results $\left\langle a_{i}\right\rangle \varsubsetneqq\left\langle a_{j}\right\rangle, i \neq$ $j, i, j \in\{1,2\}$, which is a contradiction, since R is a chain ring. We obtain that all ideals in a finite chain ring are principal and there is a unique maximal ideal. It results that a chain ring is a local ring. For details about the chain rings, the reader is referred to [12].

Let \boldsymbol{m} be the maximal ideal in a finite chain ring and let u be its generator, i.e., $\boldsymbol{m}=\langle u\rangle=R u$. Since R is finite, the chain $R=\left\langle u^{0}\right\rangle \supseteq\left\langle u^{1}\right\rangle \supseteq\left\langle u^{2}\right\rangle \supseteq$ $\cdots\left\langle u^{j}\right\rangle \supseteq \cdots$ is a finite chain. It results that there is an element j with the property $\left\langle u^{j}\right\rangle=0$. The smallest number t such that $\left\langle u^{t}\right\rangle=0$ is called the nilpotency index of u. The residue field $\mathbb{F}=R / \boldsymbol{m}$ has $q=p^{t}$ elements with p a prime number, char $\mathbb{F}=p$ and $\left|\mathbb{F}^{*}\right|=p^{t}-1$.

For details about the finite chain rings, the reader is referred to [12].
Galois rings or the rings of the form $\mathbb{F}_{q}[u] /\left(u^{i}\right)$ are principal ideal rings.
Galois ring $G R\left(p^{r}, n\right)$ is a finite chain ring (of length r).
Finite chain rings allow us to find good description for cyclic codes over these rings.

Let R be a unitary finite commutative ring. A code C of length n over R is a nonempty subset of $R^{n}=\underbrace{R \times R \times \cdots \times R}_{n \text {-times }}$. The elements of C are called codewords. A linear code C of length n over R is a R-submodule of R^{n}. We remark that such a submodule is not necessary a free module. A linear code
C of length n is a cyclic code if for each codeword $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$, the codeword ($c_{n-1}, c_{0}, \ldots, c_{n-2}$) belongs to C.

For the cyclic codes, we will write the codewords as polynomials. Let C be a cyclic code. For each $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$ we associate the polynomial $c(x)$ of degree less than $n, c(x)=c_{0}+c_{1} x+\cdots+c_{i} x^{i}+\cdots+c_{n-1} x^{n-1} \in R[x]$, called the associated polynomial. The codeword $\bar{c}=\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)$ has the associated polynomial $\bar{c}(x)=c_{n-1}+c_{0} x+\cdots+c_{i} x^{i+1}+\cdots+c_{n-2} x^{n-1}$ and we have $\bar{c}(x)=c(x) x-c_{n-1}\left(x^{n}-1\right)$, therefore $\bar{c}(x)=c(x) x \bmod \left(x^{n}-1\right)$. We remark that $c(x) \in C \bmod \left(x^{n}-1\right)$ if and only if $c(x) x \in C \bmod \left(x^{n}-1\right)$. Using induction steps, $c(x) x \in C \bmod \left(x^{n}-1\right)$ if and only if $c(x) x^{2} \in C \bmod$ $\left(x^{n}-1\right)$. Therefore we have $c(x) x^{i} \in C \bmod \left(x^{n}-1\right)$ for all $i \in \mathbb{N}-\{0\}$. From here, it results that C is a cyclic code of length n over R if and only if C is an ideal in the ring $R[x] /\left(x^{n}-1\right)$.

2. The rings

With the above notations, we consider the rings

$$
\begin{gathered}
R_{i} \simeq \mathbb{F}_{q}[u] /\left(u^{i}\right), \\
S_{i} \simeq \mathbb{F}_{q}\left[u_{1}, \ldots, u_{i}\right] /\left(u_{1}^{2}, u_{2}^{2}, \ldots, u_{i}^{2}, u_{1} u_{2}-u_{2} u_{1}, \ldots, u_{k} u_{j}-u_{j} u_{k}, \ldots\right), k \neq j, \\
T_{(i, j)}=\mathbb{F}_{q}[u, v] /\left(u^{i}, v^{j}, u v-v u\right), i, j \in \mathbb{N}-\{0\} .
\end{gathered}
$$

For example, the ring R_{i} is a commutative chain ring and $\langle u\rangle$ is a maximal ideal (see [7]).

For $R \in\left\{R_{i}, S_{i}, T_{(i, j)}\right\}, i, j, n \in \mathbb{N}-\{0\}$, we denote

$$
\begin{aligned}
R_{i, n} & =R_{i}[x] /\left(x^{n}-1\right), \\
S_{i, n} & =S_{i}[x] /\left(x^{n}-1\right), \\
T_{(i, j), n} & =T_{(i, j)}[x] /\left(x^{n}-1\right) .
\end{aligned}
$$

Remark 2.1. Since the rings $R_{i}, S_{i}, T_{(i, j)}$ are finite rings, the rings $R_{i, n}$, $S_{i, n}, T_{(i, j), n}$ are isomorphic with the group ring $R G$, where $G=\left(g / g^{n}-1=0\right)$ is the cyclic group of order n and $R \in\left\{R_{i, n}, S_{i, n}, T_{(i, j), n}\right\}$.
Remark 2.2. If the characteristic of the ring is not prime with the length n of the code, then the polynomial $x^{n}-1$ factors uniquely over \mathbb{F}_{q}, but does not factor uniquely over the rings $R_{i}, S_{i}, T_{(i, j)}$. Indeed, for example, for $p=2, r=$ $2, i=3, j=2, n=2$, we have $x^{2}-1=(x-1)^{2}=\left(x-\left(1-u^{2}\right)\right)^{2}$ over R_{3}, $x^{2}-1=(x-1)^{2}=\left(x-\left(1+u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)\right)^{2}$ over $S_{3}, x^{2}-1=(x-1)^{2}=$ $\left(x-\left(1+u^{2}+v\right)\right)^{2}$ over $T_{(3,2)}$.

In [15], if $\operatorname{gcd}(n, p)=1$, the authors proved that $R_{i, n}$ is a principal ideal ring. In the case of the rings $S_{i, n}$ and $T_{(i, j), n}$ situation is not the same.

Proposition 2.3. The rings $S_{i, n}$ and $T_{(i, j), n}$ are not principal ideal rings.

Proof. In the following, we will use some ideas given in [19], Lemma 2.4, when the authors proved the above result for $S_{i, n}$ in the case when $i=2, p=2, r=1$.

Let $R \in\left\{S_{i}, T_{(i, j)}\right\}$. From Remark 2.1, we define the ring morphism φ : $R G \rightarrow R, \varphi\left(c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}\right)=c_{0}+c_{1}+\cdots+c_{n-1}$, which is a surjective map, called the augmentation morphism. Let $I_{i}=\left(u_{1}, \ldots, u_{i}\right)$ be the ideal in S_{i} generated by the elements $\left\{u_{1}, \ldots, u_{i}\right\}$ and $I_{u, v}$ be the ideal in $T_{(i, j)}$ generated by the elements $\{u, v\}$. These ideals are not principal ideals. Let $I \in\left\{I_{i}, I_{u, v}\right\}$. We have that $\varphi^{-1}(I)=J$ is an ideal in $R G$. Since φ is surjective, therefore $\varphi(J)$ is an ideal in R and $\varphi(J)=\varphi\left(\varphi^{-1}(I)\right)=I$. From here, if J is a principal ideal, it results that I is a principal ideal, false.
Proposition 2.4. With the above notations, for $n=p^{l} k$, with $k>1, \operatorname{gcd}(p, k)$ $=1$, the rings $R_{i, n}, S_{i, n}$ and $T_{(i, j), n}$ are not local rings.

Proof. From [11], we know that a ring is local if and only if the non-units form a maximal ideal in the ring. Let $R \in\left\{R_{i, n}, S_{i, n}, T_{(i, j), n}\right\}$.

Case 1. $\operatorname{gcd}(p, k-1) \neq 1$. From the hypothesis, in R, we have

$$
0=x^{p^{l} k}-1=\left(x^{p^{l}}-1\right)\left(x^{p^{l}(k-1)}+x^{p^{l}(k-2)}+\cdots+1\right) .
$$

It results that $f(x)=x^{p^{l}(k-1)}+x^{p^{l}(k-2)}+\cdots+1$ is a zero divisor, so that it is not invertible in R. We obtain

$$
\varphi\left(x^{p^{l}(k-2)}+x^{p^{l}(k-2)}+\cdots+1\right)=\underbrace{1+1+\cdots+1}_{(k-1) \text {-times }}=0 .
$$

Then $g(x)=x^{p^{l}(k-2)}+x^{p^{l}(k-2)}+\cdots+1$ is a non-unit in R. Since $x^{p^{l}(k-1)} x^{p^{l}}=$ 1 , we have that $f(x)-g(x)=x^{p^{l}(k-1)}$ is a unit in R. Therefore non-invertible elements in R do not form an ideal, hence R is not a local ring.

Case 2. $\operatorname{gcd}(p, k-1)=1$. Let $g_{1}=u g, g_{1}$ be a non-unit element. Such an element is a nilpotent element. Denoting $h(x)=f(x)+g_{1}(x)$, we have $\varphi(h(x))=k+(k-1) u$. Since $\operatorname{gcd}(p, k-1)=1$, it results that $(k-1) u$ is a nonzero nilpotent element. From here, we obtain that $k+(k-1) u$ is a sum between an invertible element, k, and a nilpotent element, therefore it is an invertible element. It results that $\varphi(h(x))$ is a unit and $h(x)$ is also a unit, hence non-invertible elements do not form an ideal. We just proved that R is not a local ring.
Proposition 2.5. With the above notations, for $n=p^{l}$ the rings $R_{i, n}, S_{i, n}$, $T_{(i, j), n}$ are local rings.
Proof. Let $R_{n} \in\left\{R_{i, n}, S_{i, n}, T_{(i, j), n}\right\}, R \in\left\{R_{i}, S_{i}, T_{(i, j)}\right\}$. We will prove that the non-units form an ideal in the ring R_{n}. First of all, we remark that a non-unit element in R_{n} different from zero is a zero divisor. Indeed, if $\alpha \in R_{n}, \alpha \neq 0$, is a non-invertible element, then the ideal generated by α is different from R_{n}. Hence we can find the elements $\alpha_{1} \neq \alpha_{2}$ such that $\alpha_{1} \alpha=\alpha_{2} \alpha$. Therefore $\left(\alpha_{1}-\alpha_{2}\right) \alpha=0$ and α is a zero divisor. We remark that an element θ in R
has the form $\theta=\theta_{1}+\theta_{2}$, where $\theta_{1} \in \mathbb{F}_{q}$ and $\theta_{2} \in R-\mathbb{F}_{q}$. If θ is a unit in R, then $\theta_{1} \in \mathbb{F}_{q}^{*}$ Let $s=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1} \in R_{n}$ and $s_{k}=\left(s_{k}\right)_{1}+\left(s_{k}\right)_{2}$, where $\left(s_{k}\right)_{1} \in \mathbb{F}_{q}$ and $\left(s_{k}\right)_{2} \in R-\mathbb{F}_{q}, j \in\{1, \ldots, n-1\}$. Since $x^{p^{j}}=1$, it results that $s^{p^{j}}=s_{0}^{p^{j}}+s_{1}^{p^{j}}+\cdots+s_{n-1}^{p^{j}}$ and $s^{p^{j}}$ is a unit or a zero divisor. If $s^{p^{j}}$ is a zero divisor, then s is a zero divisor, hence a non-unit. If $s^{p^{j}}$ is a unit, it results that s is a unit, since $s \cdot s^{p^{j}-1}=s^{p^{j}}$. If $s^{p^{j}}$ is a zero divisor, then $\sum_{k=1}^{n-1}\left(s_{k}^{p^{j}}\right)_{1}=0$ and this characterize a zero-divisor, hence a non-unit in the ring R_{n}. Let $t=t_{0}+t_{1} x+\cdots+t_{n-1} x^{n-1} \in R_{n}$, with $\sum_{k=1}^{n-1}\left(t_{k}^{p^{j}}\right)_{1}=0$, be another non-unit. The element $r=s+t$ is also a non-unit. For prove this, we compute $\sum_{k=1}^{n-1}\left(r_{k}^{p^{j}}\right)_{1}$. It results $\sum_{k=1}^{n-1}\left(r_{k}^{p^{j}}\right)_{1}=\sum_{k=1}^{n-1}\left(s_{k}+t_{k}\right)_{1}^{p^{j}}=$ $\sum_{k=1}^{n-1}\left(s_{k}^{p^{j}}\right)_{1}+\sum_{k=1}^{n-1}\left(t_{k}^{p^{j}}\right)_{1}=0+0=0$, therefore r is a non-unit and non-units form an ideal. Hence R is a local ring.

Propositions 2.5 and 2.6 were proved for the ring $S_{i, n}$ in [19] in the particular case $i=2$ (see Theorem 2.5 and Theorem 2.7).

3. Ranks for the cyclic codes over the rings $R_{i}, S_{i}, T_{(i, j)}$

In [4], Proposition 1, the authors described cyclic codes of length n over the Galois ring $G R(q, l)=\mathbb{Z}_{p^{m}}[x] /(f), \operatorname{deg} f=l, q=p^{m},(n, q)=1$. Using some ideas given in this proof, we can describe cyclic codes over the rings $R_{i}, S_{i}, T_{(i, j)}$ in the general case.

Proposition 3.1. Let $R \in\left\{R_{i}, S_{i}, T_{(i, j)}\right\}$. A non-zero cyclic code C of length n over R is a free module over R if it is generated by a monic polynomial $h(x)$, where $h(x) \mid\left(x^{n}-1\right)$ over R. In this case, $\operatorname{rank} C=n-r$, $\operatorname{deg} h(x)=r$, and $\left\{h(x), x h(x), \ldots, x^{n-r-1} h(x)\right\}$ is a basis in C.

Proof. Let C be a non-zero cyclic code C of length n over R generated by the polynomial $h(x)$, where $h(x) \mid\left(x^{n}-1\right)$. Since $h(x) \mid\left(x^{n}-1\right)$, we can consider $h(x)$ a monic polynomial. Then there is a monic polynomial $q(x) \in R$ such that $h(x) q(x)=x^{n}-1$. From here, it results that $\operatorname{deg} q(x)=n-r$ and q has the form $q(x)=q_{0}+q_{1} x+\cdots+x^{n-r}$. Let $R_{n} \in\left\{R_{i, n}, S_{i, n}, T_{(i, j), n}\right\}$. In R_{n} we have $h(x) q(x)=h(x)\left(q_{0}+q_{1} x+\cdots+x^{n-r}\right)=0$. Therefore $x^{i} h(x)$, for $i \geq$ $n-r$, can be written as a linear combination of the elements $\{h(x), x h(x), \ldots$, $\left.x^{n-r} h(x)\right\}$, hence each element in C of the form $p(x) h(x), p(x) \in R_{n}$ is a linear combination of $\left\{h(x), x h(x), \ldots, x^{n-r-1} h(x)\right\}$. It results that the system $\left\{h(x), x h(x), \ldots, x^{n-r-1} h(x)\right\}$ spans C. For linearly independence over R, let $\alpha_{0}, \ldots, \alpha_{n-r-1} \in R$ such that $\alpha_{0} h(x)+\alpha_{1} x h(x)+\cdots+\alpha_{n-r-1} x^{n-r-1} h(x)=0$. We obtain $\left(\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-r-1} x^{n-r-1}\right) h(x)=0$ in R_{n}, hence $\left(x^{n}-1\right) \mid$ $\left(\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-r-1} x^{n-r-1}\right) h(x)$ in $R[x]$, with

$$
\operatorname{deg}\left(\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-r-1} x^{n-r-1}\right) h(x)=n-1<n .
$$

From here, we have $\left(\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-r-1} x^{n-r-1}\right) h(x)=0$ in $R[x]$. Since $h(x)$ is monic, it results $\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-r-1} x^{n-r-1}=0$, hence $\alpha_{0}=\alpha_{1}=$ $\cdots=\alpha_{n-r-1}=0$.

We remark that another proof of the above results can be obtained using the main result from [9].

Corollary 3.2. With the notations used in Proposition 3.1, if C is a nonzerocyclic code of length n over R generated by a monic polynomial $h(x)$, where $h(x) \mid\left(x^{n}-1\right)$ over R, then $|C|=|R|^{n-r}$.

Proposition 3.3. Let C be a non-zero cyclic code of length n over $R \in$ $\left\{R_{i}, S_{i}, T_{(i, j)}\right\}$ generated by the polynomials $\left\{h_{1}, \ldots, h_{t}\right\}$. Therefore C is a vector space over \mathbb{F}_{q} and $|C| \leq|q|^{\text {sn }}$, where $s=\operatorname{dim}_{\mathbb{F}_{q}} R$.
Proof. We know that R is a vector space over \mathbb{F}_{q}. Let $s=\operatorname{dim}_{\mathbb{F}_{q}} R$ and $\left\{1, v_{1}, \ldots, v_{s-1}\right\}$ be a basis in R. We will prove that $B=\left\{1, x, \ldots, x^{n-1}, v_{1}, v_{1} x\right.$, $\left.\ldots, v_{1} x^{n-1}, \ldots, v_{s-1}, v_{s-1} x, \ldots, v_{s-1} x^{n-1}\right\}$ is a basis in the \mathbb{F}_{q}-vector space $R_{n}, R_{n} \in\left\{R_{i, n}, S_{i, n}, T_{(i, j), n}\right\}$.

First, we will show the linearly independence of the elements from B. If there are the elements $\alpha_{1, i_{1}}, \alpha_{2 i_{2}}, \ldots, \alpha_{s i_{s}} \in \mathbb{F}_{q}, i_{j} \in\{0,1,2, \ldots, n-1\}, j \in$ $\{1,2, \ldots, s\}$ such that $\alpha_{1,0} \cdot 1+\cdots+\alpha_{1, n-1} x^{n-1}+\cdots+\alpha_{s, 0} v_{s-1}+\cdots+$ $\alpha_{s, n-1} v_{s-1} x^{n-1}=0$, comparing the coefficients in this equation, we get

$$
\begin{equation*}
\alpha_{1,0} \cdot 1+\alpha_{2,0} v_{s-1}+\cdots+\alpha_{s, 0} v_{s-1}=0 \tag{3.1.}
\end{equation*}
$$

Since v_{1}, \ldots, v_{s-1} are nilpotent elements in R, if $\alpha_{1,0} \neq 0$, from relation (3.1), we obtain that a unit is equal with a nilpotent element, false. Hence $\alpha_{1,0}=0$ and $\alpha_{2,0} v_{s-1}+\cdots+\alpha_{s, 0} v_{s-1}=0$, therefore $\alpha_{2,0}=\cdots=\alpha_{s, 0}=0$. In the same way, comparing coefficients of $x, x^{2}, \ldots, x^{n-1}$ with zero, we have $\alpha_{1, i_{1}}=\alpha_{2, i_{2}}=\cdots=\alpha_{s, i_{s}}=0$ for all $i_{j} \in\{0,1,2, \ldots, n-1\}, j \in\{1,2, \ldots, s\}$.

We will prove that B generates R_{n}. Let $f(x) \in R_{n}$. By straightforward calculations, we obtain that $f(x)$ is a linear combination of elements in B with coefficients in \mathbb{F}_{q}. It results $\left|R_{n}\right|=|q|^{s n}$.

Now, let C be a nonzero cyclic code. Then C is a vector subspace of the \mathbb{F}_{q}-vector space R_{n}, therefore $|C| \leq|q|^{s n}$.

In [2], Theorem 3, and in [3], Theorem 4.2, the authors gave a basis or a minimal spanning set for the codes of even length over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, respectively $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+\cdots+u^{k-1} \mathbb{Z}_{2}$. The same description could be done, in general case, over the ring R_{i}. If we have supplementary relations between polynomials h_{1}, \ldots, h_{t}, we can compute $|C|$, as we can see in the following examples.

Example 3.4. Over R_{i}, for $i=2$, using Theorem 3 from [2], if C is a nonzero cyclic code of length $n,(n, p) \neq 1$, and $C=(g(x)+u p(x)$, ua(x)), $a(x)|g(x)|\left(x^{n}-1\right)$, with $\operatorname{deg} g(x)=r, \operatorname{deg} a(x)=t, r \geq t, \operatorname{deg} a(x)>$ $\operatorname{deg} p(x)$, then $|C|=(q)^{2 n-r-t}$. Indeed, C is a vector space over \mathbb{F}_{q} and let
$B=\left\{g(x)+u p(x), x(g(x)+u p(x)), \ldots, x^{n-r-1}(g(x)+u p(x)), u a(x), x u a(x), \ldots\right.$, $\left.x^{n-t-1} u a(x)\right\}$. We will prove that B is a basis in the \mathbb{F}_{q}-vector space C.

First, we will show that B spans C. Let $c(x) \in C$. Then

$$
c(x)=q_{1}(x)(g(x)+u p(x))+q_{2}(x) u a(x), q_{i}(x) \in R[x], i \in\{1,2\} .
$$

If $\operatorname{deg} q_{1}(x)<n-r$ and $\operatorname{deg} q_{2}(x)<n-t$, we have B spans C. If $\operatorname{deg} q_{1}(x) \geq$ $n-r$ or $\operatorname{deg} q_{2}(x) \geq n-t$, it suffices to show that $x^{n-r}(g(x)+u p(x))$, $u(g(x)+u p(x))$ and $x^{n-t} u a(x)$ are generated by B over \mathbb{F}_{q}.

We have $x^{n-r}(g(x)+u p(x))=x^{n}-1+q(x), \operatorname{deg} q(x) \leq n-1$. But $q(x) \in C$ and, by the division algorithm, we have $q(x)=(g(x)+u p(x)) h_{1}(x)+s_{1}(x)$, $\operatorname{deg} s_{1}(x)<r, \operatorname{deg} h_{1}(x) \leq n-1, s_{1}(x)=u a(x) h_{2}(x)+s_{2}(x), \operatorname{deg} s_{2}(x)<$ $\operatorname{deg} u a(x), \operatorname{deg} h_{2}(x) \leq r-t$. Since $\operatorname{deg} u a(x)=\operatorname{deg} a(x)$ and in C any polynomial must have degree greater or equal with $\operatorname{deg} a(x)$, it results $s_{2}(x)=0$. Since $a(x) \mid g(x)$, hence $g(x)=a(x) h(x)$ and we have $u g(x)=u(g(x)+u p(x))=$ $u a(x) h(x)$, with $\operatorname{deg} h(x) \leq r-t<n-t-1$. It results that $u(g(x)+u p(x))$ is generated by B over \mathbb{F}_{q}. To finish the proof, it is enough to show that the element $u x^{r-t} a(x)$ is generated by B over \mathbb{F}_{q}. We have $u x^{r-t} a(x)=$ $u(g(x)+u p(x))+u h_{3}(x)$, where $u h_{3}$ belongs to C and $t \leq \operatorname{deg} h_{3}(x)<r$. Therefore $u h_{3}(x)=\alpha_{0} u a(x)+\alpha_{1} x u a(x)+\cdots+\alpha_{r-t-1} x^{r-t-1} u a(x), \alpha_{i} \in \mathbb{F}_{q}, i \in$ $\{0, \ldots, r-t-1\}$.

We will prove that B is a linearly independent system. Indeed, if there are the elements $\alpha_{1, i_{1}}, \alpha_{2, i_{2}} \in \mathbb{F}_{q}, i_{j} \in\{0,1,2, \ldots, n-1\}, j \in\{1,2\}$ such that $\alpha_{1,0}(g(x)+u p(x))+\cdots+\alpha_{1, n-1} x^{n-r-1}(g(x)+u p(x))+\alpha_{2,0} u a(x)+\cdots+$ $\alpha_{2, n-1} x^{n-t-1} u a(x)=0$, comparing the coefficients in this equation, we get $\alpha_{1,0} g(0)+\alpha_{1,0} u p(0)+\alpha_{2,0} u a(0)=0$. If $\alpha_{1,0} \neq 0$, since $g(0)$ is a unit and u a nilpotent element, it results that a unit is equal with a nilpotent, false. Therefore $\alpha_{1,0}=0$. We obtain $\alpha_{2,0} u a(0)=0$. If $\alpha_{2,0} \neq 0$, it results $u a(0)=$ 0 , false, since $a(0)$ is a unit. We repeat this procedure and we get $\alpha_{1, i_{1}}=$ $\alpha_{2, i_{2}}=0$ for all $i_{j} \in\{0,1,2, \ldots, n-1\}, j \in\{1,2\}$, hence B is a linearly independent system. It results that B is a basis in the \mathbb{F}_{q}-vector space C and $|C|=|q|^{2 n-r-t}$.

4. Minimum Hamming distance for the cyclic codes over the rings

$$
R_{i}, S_{i}, T_{(i, j)}
$$

Let C be a linear code over the ring R. The Hamming distance between two codewords c_{1} and c_{2}, denoted by $H\left(c_{1}, c_{2}\right)$, is the number of coordinates in which the codewords c_{1} and c_{2} differ. The number of nonzero entries of a codeword c, denoted $w(c)$, is called the Hamming weight of the codeword c. The Hamming distance of a linear code C is

$$
d(C)=\min \{w(c) \mid c \in C, c \neq 0\} .
$$

In [1], the authors studied the Hamming distance of cyclic codes of even length, especially codes of length $2^{e}, e \in \mathbb{N}-\{0\}$ (Lemmas 16, 17, and 18). In the following, using some ideas from the mentioned lemmas, we will investigate the

Hamming distance for cyclic codes of length $n=p^{r}, r \in \mathbb{N}-\{0\}$, over the rings $R_{i}, S_{i}, T_{(i, j)}$.

Definition 4.1. Let $n=a_{s-1} p^{s-1}+a_{s-2} p^{s-2}+\cdots+a_{1} p^{1}+a_{0} p^{0}, \alpha_{i} \in$ $\{0,1, \ldots, p-1\}, i \in\{0,1, \ldots, s-1\}$, be the p-adic expansion of n.

1) If $a_{s-1}=\cdots=a_{s-t} \neq 0, s-t>0$ and $a_{s-i}=0$ for all $i \in\{t+2, t+$ $3, \ldots, s-1\}$, then n has a p-adic length t zero expansion.
2) If $a_{s-1}=\cdots=a_{s-t} \neq 0, s-t>0$ and $a_{s-i} \neq 0$ for some elements $i \in\{t+2, t+3, \ldots, s-1\}$, then n has a p-adic length t non-zero expansion.

3) If $s=t$, then n has a p-adic full expansion.
Proposition 4.2. Let $C=(g(x))$ be a cyclic code over $R \in\left\{R_{i}, S_{i}, T_{(i, j)}\right\}$ of length $p^{r}, r \in \mathbb{N}-\{0\}$, where $g(x)=\left(x^{a^{r-1}}-1\right) g_{1}(x)$. If $g_{1}(x)$ generates a cyclic code of length p^{r-1} and Hamming distance d, then $d(C)=2 d$.
Proof. For $c \in C$ we have $c=\left(x^{a p^{r-1}}-1\right) g_{1}(x) g_{2}(x), g_{2}(x) \in \mathbb{F}_{q}[x] /\left(x^{n}-\right.$ 1) and $g_{1}(x) g_{2}(x) \in\left(g_{1}(x)\right)$. It results $w(c)=w\left(\left(x^{a p^{r-1}}-1\right) g_{1}(x) g_{2}(x)\right)=$ $w\left(x^{a p^{r-1}} g_{1}(x) g_{2}(x)\right)+w\left(g_{1}(x) g_{2}(x)\right)$. Then $d(C)=d+d=2 d$.

Conclusion. In this paper we investigate the structure of cyclic codes of arbitrary length over the rings $R_{i}, S_{i}, T_{(i, j)}$. Moreover the ranks and minimum Hamming distance of these codes were studied. Since the rings with Hamming weight cannot produce always better codes, a more relevant weight as, for example, the homogeneous weight on the above mentioned rings can be studied. The remark above can constitute the starting point for further research.

Acknowledgements. I would like to thank the referee for his/her many suggestions which helped me improve this paper.

References

[1] T. Abualrub and I. Siap, On the construction of cyclic codes over the ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, WSEAS Trans. Math. 5 (2006), no. 6, 750-755.
[2] \qquad , Cyclic codes over the rings $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ and $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}$, Des Codes Cryptogr. 42 (2007), no. 3, 273-287.
[3] M. M. Al-Ashker and M. Hamoudeh, Cyclic codes over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+\cdots+u^{k-1} \mathbb{Z}_{2}$, Turk J. Math. 34 (2010), 1-13.
[4] M. Bhaintwal and S. K. Wasan, On quasi-cyclic codes over \mathbb{Z}_{q}, Appl. Algebra Engrg. Comm. Comput. 20 (2009), no. 5-6, 459-480.
[5] I. F. Blake, Codes over certain rings, Inf. Control 20 (1972), 396-404.
[6] S. T. Dougherty, S. Karadeniz, and B. Yildiz, Cyclic codes over R_{k}, Des. Codes Cryptogr. 63 (2012), no. 1, 113-126.
[7] S. T. Dougherty, H. Liu, and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ. 53 (2011), 39-53.
[8] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, SpringerVerlag, Berlin, New York, 1995.
[9] M. Greferath, Cyclic codes over finite rings, Discrete Math. 177 (1997), no. 1-3, 273277.
[10] A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, The Z_{4} liniarity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319.
[11] T. W. Hungerford, Algebra, Springer Verlag, New York, 1974.
[12] B. R. McDonald, Finite Rings with Identity, New York, Marcel Dekker Inc., 1974.
[13] J. G. Milne, Étale cohomology, Princeton University Press, 1980.
[14] A. A. Nechaev and T. Honold, Fully weighted modules and representations of codes, (Russian) Problemy Peredachi Informatsii 35 (1999), no. 3, 18-39; translation in Problems Inform. Transmission 35 (1999), no. 3, 205-223.
[15] J.-F. Qian, L.-N. Zhang, and A.-X. Zhu, Cyclic codes over $\mathbb{F}_{p}+u \mathbb{F}_{p}+\cdots+u^{k-1} \mathbb{F}_{p}$, IEICE Trans. Fundamentals Vol. E88-A (2005), no. 3, 795-797.
[16] P. Solé and V. Sison, Bounds on the minimum homogeneous distance of the p^{r}-ary image of linear block codes over the Galois ring $G R\left(p^{r}, m\right)$, IEEE Trans. Inform. Theory 53 (2007), no. 6, 2270-2273.
[17] , Quaternary convolutional codes from linear block codes over Galois rings, IEEE Trans. Inform. Theory 53 (2007), no. 6, 2267-2270.
[18] E. Spiegel, Codes over Z_{m} revisited, Inform. and Control 37 (1978), no. 1, 100-104.
[19] B. Yildiz and S. Karadeniz, Cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}+u v \mathbb{F}_{2}$, Des. Codes Cryptogr. 58 (2011), no. 3, 221-234.

Faculty of Mathematics and Computer Science
Ovidius University
Bd. Mamaia 124, 900527, Constanta, Romania
E-mail address: cflaut@univ-ovidius.ro; cristina_flaut@yahoo.com

