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CYCLIC CODES OVER SOME SPECIAL RINGS

Cristina Flaut

Abstract. In this paper we will study cyclic codes over some special
rings: Fq[u]/(ui), Fq[u1, . . . , ui]/(u2

1, u
2
2, . . . , u

2
i , u1u2 − u2u1, . . . , ukuj −

ujuk, . . .), and Fq[u, v]/
(

ui, vj , uv − vu
)

, where Fq is a field with q ele-
ments q = pr for some prime number p and r ∈ N− {0}.

0. Introduction

Codes over finite rings have been intensively studied in the last time, some
of the earliest results of them are in [5], [18]. Ones of the most important finite
rings in the coding theory are: the finite field Fq and the ring Zq, where q = pr

for some prime number p and r ∈ N − {0}. For example, in the paper [10]
some codes over Z4 are investigated. The class of cyclic codes is an important
class of linear codes with a big interest in coding theory. Described as ideals in
certain polynomial rings, they have a good algebraic structure and the cyclic
codes over some special finite rings were recently described (see [2], [3], [6], [9],
[14], [15], [19]). Two classes of these main rings are: Galois rings and rings
of the form Fq[u]/(u

i) or generalization of these, where q = pr for some prime
number p and r ∈ N− {0}.

In this paper, we will investigate the structure of cyclic codes of arbitrary
length over the rings:

Fq[u]/(u
i),

Fq[u1, . . . , ui]/(u
2
1, u

2
2, . . . , u

2
i , u1u2 − u2u1, . . . , ukuj − ujuk, . . .),

Fq[u, v]/
(
ui, vj , uv − vu

)
.

1. Preliminaries

The Galois ring GR (q, n) is the residue class ring Z/prZ[x] / (f(x)), where
f(x) is a monic irreducible polynomial of degree n in Zpr [x] such that f(x) mod

p is a monic irreducible polynomial in Zp[x]. The existence of the polynomial
f(x) is given by the Hensel lifting, which allows us to “lift” a root ρ of a
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polynomial f mod pt to a new root σ for the polynomial f mod pt+1, t ∈ N−{0}
(see [8], [13]). From here, it results that we can choose the polynomial f,
monic and irreducible over Zp, as in the standard construction of the Galois
field Fpr from Zp, and we lift it to a polynomial over Z/prZ. We remark that
|GR (q, n)| = prm. For example, GR (q, 1) = Zq and GR (p, r) = Fq. Let θ be
a root of the polynomial f(x). Since we can think at GR (q, n) as a Galois
extension Zpr [θ] of Zpr by a root θ of f (x), each element v ∈ GR (q, n) has the
form

v = a0 + a1θ + a2θ
2 + · · ·+ an−1θ

n−1,

where ai ∈ Zpr , i ∈ {0, 1, . . . , n− 1} (see [16] and [17]).
The Galois ring GR (q, n) is a free module of rank n over Zq and the set

{1, θ, θ2, . . . , θn−1}

is a free basis for GR (q, n) . Since the ring Zpr satisfies the invariant dimension
property, it results that all bases in GR (q, n) have n elements.

Let R be a commutative ring and I be an ideal of the ring R. The ideal I is
called principal if it is generated by one element. The ring R is called principal

if all its ideals are principal. The ring R is called a local ring if it has a unique
maximal ideal. A ring R is called a chain ring if the set of all ideals of R is
ordered by inclusion (is a chain under set inclusion). For a chain ring its unique
maximal ideal contains the nilpotent elements.

All ideals in a finite chain ring R are principal. Indeed, if I is not a principal
ideal, since R is finite, we have that I is finite generated and I = 〈a1, . . . , at〉,
where {a1, . . . , at} is a minimal set of generators. It results 〈ai〉  〈aj〉, i 6=
j, i, j ∈ {1, 2}, which is a contradiction, since R is a chain ring. We obtain
that all ideals in a finite chain ring are principal and there is a unique maximal
ideal. It results that a chain ring is a local ring. For details about the chain
rings, the reader is referred to [12].

Let m be the maximal ideal in a finite chain ring and let u be its generator,
i.e., m = 〈u〉 = Ru. Since R is finite, the chain R = 〈u0〉 ⊇ 〈u1〉 ⊇ 〈u2〉 ⊇
· · · 〈uj〉 ⊇ · · · is a finite chain. It results that there is an element j with the
property 〈uj〉 = 0. The smallest number t such that 〈ut〉 = 0 is called the

nilpotency index of u. The residue field F = R/m has q = pt elements with p
a prime number, charF = p and |F∗| = pt − 1.

For details about the finite chain rings, the reader is referred to [12].
Galois rings or the rings of the form Fq[u]/(u

i) are principal ideal rings.
Galois ring GR (pr, n) is a finite chain ring (of length r).
Finite chain rings allow us to find good description for cyclic codes over

these rings.
Let R be a unitary finite commutative ring. A code C of length n over R

is a nonempty subset of Rn = R×R× · · · ×R
︸ ︷︷ ︸

n-times

. The elements of C are called

codewords. A linear code C of length n over R is a R-submodule of Rn. We
remark that such a submodule is not necessary a free module. A linear code
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C of length n is a cyclic code if for each codeword c = (c0, . . . , cn−1) ∈ C, the
codeword (cn−1, c0, . . . , cn−2) belongs to C.

For the cyclic codes, we will write the codewords as polynomials. Let C be
a cyclic code. For each c = (c0, . . . , cn−1) ∈ C we associate the polynomial
c(x) of degree less than n, c(x) = c0 + c1x+ · · ·+ cix

i + · · ·+ cn−1x
n−1 ∈ R[x],

called the associated polynomial. The codeword c = (cn−1, c0, . . . , cn−2) has
the associated polynomial c(x) = cn−1 + c0x + · · · + cix

i+1 + · · · + cn−2x
n−1

and we have c(x) = c(x)x− cn−1(x
n− 1), therefore c(x) = c(x)x mod (xn − 1).

We remark that c(x) ∈ C mod (xn − 1) if and only if c(x)x ∈ C mod (xn − 1).
Using induction steps, c(x)x ∈ C mod (xn − 1) if and only if c(x)x2 ∈ Cmod

(xn − 1) . Therefore we have c (x)xi ∈ C mod (xn − 1) for all i ∈ N − {0}.
From here, it results that C is a cyclic code of length n over R if and only if C
is an ideal in the ring R[x]/ (xn − 1) .

2. The rings

With the above notations, we consider the rings

Ri ≃ Fq[u]/(u
i),

Si ≃ Fq[u1, . . . , ui]/(u
2
1, u

2
2, . . . , u

2
i , u1u2 − u2u1, . . . , ukuj − ujuk, . . .), k 6= j,

T(i,j) = Fq[u, v]/
(
ui, vj , uv − vu

)
, i, j ∈ N− {0}.

For example, the ring Ri is a commutative chain ring and 〈u〉 is a maximal
ideal (see [7]).

For R ∈ {Ri, Si, T(i,j)}, i, j, n ∈ N− {0}, we denote

Ri,n = Ri[x]/ (x
n − 1) ,

Si,n = Si[x]/ (x
n − 1) ,

T(i,j),n = T(i,j)[x]/ (x
n − 1) .

Remark 2.1. Since the rings Ri, Si, T(i,j) are finite rings, the rings Ri,n,
Si,n, T(i,j),n are isomorphic with the group ring RG,where G = (g / gn−1 = 0)
is the cyclic group of order n and R ∈ {Ri,n, Si,n, T(i,j),n}.

Remark 2.2. If the characteristic of the ring is not prime with the length n of
the code, then the polynomial xn − 1 factors uniquely over Fq, but does not
factor uniquely over the rings Ri, Si, T(i,j). Indeed, for example, for p = 2, r =

2, i = 3, j = 2, n = 2, we have x2 − 1 = (x − 1)2 = (x − (1 − u2))2 over R3,
x2 − 1 = (x − 1)2 = (x − (1 + u2

1 + u2
2 + u2

3))
2 over S3, x

2 − 1 = (x − 1)2 =
(
x−

(
1 + u2 + v

))2
over T(3,2).

In [15], if gcd (n, p) = 1, the authors proved that Ri,n is a principal ideal
ring. In the case of the rings Si,n and T(i,j),n situation is not the same.

Proposition 2.3. The rings Si,n and T(i,j),n are not principal ideal rings.
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Proof. In the following, we will use some ideas given in [19], Lemma 2.4, when
the authors proved the above result for Si,n in the case when i = 2, p = 2, r = 1.

Let R ∈ {Si, T(i,j)}. From Remark 2.1, we define the ring morphism ϕ :

RG → R,ϕ
(
c0 + c1x+ · · ·+ cn−1x

n−1
)
= c0 + c1 + · · · + cn−1, which is a

surjective map, called the augmentation morphism. Let Ii = (u1, . . . , ui) be
the ideal in Si generated by the elements {u1, . . . , ui} and Iu,v be the ideal in
T(i,j) generated by the elements {u, v}. These ideals are not principal ideals.

Let I ∈ {Ii, Iu,v}. We have that ϕ−1 (I) = J is an ideal in RG. Since ϕ is
surjective, therefore ϕ (J) is an ideal in R and ϕ (J) = ϕ

(
ϕ−1 (I)

)
= I. From

here, if J is a principal ideal, it results that I is a principal ideal, false. �

Proposition 2.4. With the above notations, for n = plk, with k > 1, gcd(p, k)
= 1, the rings Ri,n, Si,n and T(i,j),n are not local rings.

Proof. From [11], we know that a ring is local if and only if the non-units form
a maximal ideal in the ring. Let R ∈ {Ri,n, Si,n, T(i,j),n}.

Case 1. gcd(p, k − 1) 6= 1. From the hypothesis, in R, we have

0 = xplk − 1 = (xpl

− 1)
(

xpl(k−1) + xpl(k−2) + · · ·+ 1
)

.

It results that f(x) = xpl(k−1) + xpl(k−2) + · · · + 1 is a zero divisor, so that it
is not invertible in R. We obtain

ϕ
(

xpl(k−2) + xpl(k−2) + · · ·+ 1
)

= 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

(k−1)-times

= 0.

Then g(x) = xpl(k−2)+xpl(k−2)+ · · ·+1 is a non-unit in R. Since xpl(k−1)xpl

=

1, we have that f(x)− g(x) = xpl(k−1) is a unit in R. Therefore non-invertible
elements in R do not form an ideal, hence R is not a local ring.

Case 2. gcd(p, k − 1) = 1. Let g1 = ug, g1 be a non-unit element. Such
an element is a nilpotent element. Denoting h (x) = f(x) + g1(x), we have
ϕ (h(x)) = k + (k − 1)u. Since gcd(p, k − 1) = 1, it results that (k − 1)u is a
nonzero nilpotent element. From here, we obtain that k + (k − 1)u is a sum
between an invertible element, k, and a nilpotent element, therefore it is an
invertible element. It results that ϕ (h(x)) is a unit and h(x) is also a unit,
hence non-invertible elements do not form an ideal. We just proved that R is
not a local ring. �

Proposition 2.5. With the above notations, for n = pl the rings Ri,n, Si,n,

T(i,j),n are local rings.

Proof. LetRn ∈ {Ri,n, Si,n, T(i,j),n}, R ∈ {Ri, Si, T(i,j)}.We will prove that the
non-units form an ideal in the ring Rn. First of all, we remark that a non-unit
element in Rn different from zero is a zero divisor. Indeed, if α ∈ Rn, α 6= 0,
is a non-invertible element, then the ideal generated by α is different from Rn.
Hence we can find the elements α1 6= α2 such that α1α = α2α. Therefore
(α1 − α2)α = 0 and α is a zero divisor. We remark that an element θ in R
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has the form θ = θ1 + θ2, where θ1 ∈ Fq and θ2 ∈ R − Fq. If θ is a unit in R,
then θ1 ∈ F∗q. Let s = s0 + s1x+ · · ·+ sn−1x

n−1 ∈ Rn and sk = (sk)1 + (sk)2,

where (sk)1 ∈ Fq and (sk)2 ∈ R − Fq, j ∈ {1, . . . , n − 1}. Since xpj

= 1, it

results that sp
j

= sp
j

0 + sp
j

1 + · · · + sp
j

n−1 and sp
j

is a unit or a zero divisor.

If sp
j

is a zero divisor, then s is a zero divisor, hence a non-unit. If sp
j

is a

unit, it results that s is a unit, since s · sp
j
−1 = sp

j

. If sp
j

is a zero divisor,

then
∑n−1

k=1 (s
pj

k )1 = 0 and this characterize a zero-divisor, hence a non-unit in

the ring Rn. Let t = t0 + t1x + · · · + tn−1x
n−1 ∈ Rn, with

∑n−1
k=1 (t

pj

k )1 = 0,
be another non-unit. The element r = s + t is also a non-unit. For prove

this, we compute
∑n−1

k=1 (r
pj

k )1. It results
∑n−1

k=1 (r
pj

k )1 =
∑n−1

k=1 (sk + tk)
pj

1 =
∑n−1

k=1 (s
pj

k )1 +
∑n−1

k=1 (t
pj

k )1 = 0+ 0 = 0, therefore r is a non-unit and non-units
form an ideal. Hence R is a local ring. �

Propositions 2.5 and 2.6 were proved for the ring Si,n in [19] in the particular
case i = 2 (see Theorem 2.5 and Theorem 2.7).

3. Ranks for the cyclic codes over the rings Ri, Si, T(i,j)

In [4], Proposition 1, the authors described cyclic codes of length n over the
Galois ring GR (q, l) = Zpm [x]/ (f), deg f = l, q = pm, (n, q) = 1. Using some
ideas given in this proof, we can describe cyclic codes over the rings Ri, Si, T(i,j)

in the general case.

Proposition 3.1. Let R ∈ {Ri, Si, T(i,j)}. A non-zero cyclic code C of length

n over R is a free module over R if it is generated by a monic polynomial h(x),
where h(x) | (xn − 1) over R. In this case, rank C = n− r, deg h(x) = r, and
{h(x), xh(x), . . . , xn−r−1h(x)} is a basis in C.

Proof. Let C be a non-zero cyclic code C of length n over R generated by the
polynomial h(x), where h(x) | (xn − 1) . Since h(x) | (xn − 1) , we can consider
h(x) a monic polynomial. Then there is a monic polynomial q(x) ∈ R such
that h(x)q (x) = xn − 1. From here, it results that deg q(x) = n− r and q has
the form q(x) = q0 + q1x+ · · ·+ xn−r . Let Rn ∈ {Ri,n, Si,n, T(i,j),n}. In Rn we

have h (x) q(x) = h(x)(q0 + q1x + · · · + xn−r) = 0. Therefore xih(x), for i ≥
n− r, can be written as a linear combination of the elements {h(x), xh(x), . . .,
xn−rh(x)}, hence each element in C of the form p(x)h(x), p(x) ∈ Rn is a
linear combination of {h(x), xh(x), . . ., xn−r−1h (x)}. It results that the system
{h(x), xh(x), . . ., xn−r−1h(x)} spans C. For linearly independence over R, let
α0, . . . , αn−r−1 ∈ R such that α0h(x)+α1xh (x)+· · ·+αn−r−1x

n−r−1h(x) = 0.
We obtain (α0 + α1x + · · · + αn−r−1x

n−r−1)h(x) = 0 in Rn, hence (xn − 1) |
(α0 + α1x+ · · ·+ αn−r−1x

n−r−1)h(x) in R[x], with

deg(α0 + α1x+ · · ·+ αn−r−1x
n−r−1)h(x) = n− 1 < n.
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From here, we have (α0 + α1x + · · · + αn−r−1x
n−r−1)h(x) = 0 in R[x]. Since

h(x) is monic, it results α0 + α1x+ · · ·+αn−r−1x
n−r−1 = 0, hence α0 = α1 =

· · · = αn−r−1 = 0. �

We remark that another proof of the above results can be obtained using
the main result from [9].

Corollary 3.2. With the notations used in Proposition 3.1, if C is a nonzero-

cyclic code of length n over R generated by a monic polynomial h(x), where

h(x) | (xn − 1) over R, then |C| = |R|
n−r

.

Proposition 3.3. Let C be a non-zero cyclic code of length n over R ∈
{Ri, Si, T(i,j)} generated by the polynomials {h1, . . . , ht}. Therefore C is a vec-

tor space over Fq and |C| ≤ |q|
sn

, where s = dimFq
R.

Proof. We know that R is a vector space over Fq. Let s = dimFq
R and

{1, v1, . . . , vs−1} be a basis in R.We will prove thatB = {1, x, . . . , xn−1, v1, v1x,
. . . , v1x

n−1, . . . , vs−1, vs−1x, . . . , vs−1x
n−1} is a basis in the Fq-vector space

Rn, Rn ∈ {Ri,n, Si,n, T(i,j),n}.
First, we will show the linearly independence of the elements from B. If

there are the elements α1,i1 , α2i2 , . . . , αsis ∈ Fq, ij ∈ {0, 1, 2, . . . , n − 1}, j ∈
{1, 2, . . . , s} such that α1,0 · 1 + · · · + α1,n−1x

n−1 + · · · + αs,0vs−1 + · · · +
αs,n−1vs−1x

n−1 = 0, comparing the coefficients in this equation, we get

(3.1.) α1,0 · 1 + α2,0vs−1 + · · ·+ αs,0vs−1 = 0.

Since v1, . . . , vs−1 are nilpotent elements in R, if α1,0 6= 0, from relation
(3.1) , we obtain that a unit is equal with a nilpotent element, false. Hence
α1,0 = 0 and α2,0vs−1 + · · · + αs,0vs−1 = 0, therefore α2,0 = · · · = αs,0 = 0.
In the same way, comparing coefficients of x, x2, . . . , xn−1 with zero, we have
α1,i1 = α2,i2 = · · · = αs,is = 0 for all ij ∈ {0, 1, 2, . . . , n− 1}, j ∈ {1, 2, . . . , s}.

We will prove that B generates Rn. Let f(x) ∈ Rn. By straightforward
calculations, we obtain that f(x) is a linear combination of elements in B with
coefficients in Fq. It results |Rn| = |q|

sn
.

Now, let C be a nonzero cyclic code. Then C is a vector subspace of the
Fq-vector space Rn, therefore |C| ≤ |q|

sn
. �

In [2], Theorem 3, and in [3], Theorem 4.2, the authors gave a basis or a
minimal spanning set for the codes of even length over Z2 + uZ2, respectively
Z2 + uZ2 + · · · + uk−1Z2. The same description could be done, in general
case, over the ring Ri. If we have supplementary relations between polynomials
h1, . . . , ht, we can compute |C| , as we can see in the following examples.

Example 3.4. Over Ri, for i = 2, using Theorem 3 from [2], if C is a
nonzero cyclic code of length n, (n, p) 6= 1, and C = (g(x) + up(x), ua(x)),
a(x) | g(x) | (xn − 1) , with deg g(x) = r, deg a(x) = t, r ≥ t, deg a (x) >
deg p(x), then |C| = (q)2n−r−t. Indeed, C is a vector space over Fq and let
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B = {g(x)+up(x), x(g(x)+up(x)), . . ., xn−r−1(g(x)+up(x)), ua(x), xua(x), . . .,
xn−t−1ua(x)}. We will prove that B is a basis in the Fq-vector space C.

First, we will show that B spans C. Let c(x) ∈ C. Then

c(x) = q1(x) (g(x) + up (x)) + q2(x)ua(x), qi (x) ∈ R[x], i ∈ {1, 2}.

If deg q1(x) < n− r and deg q2(x) < n− t, we have B spans C. If deg q1(x) ≥
n − r or deg q2(x) ≥ n − t, it suffices to show that xn−r (g(x) + up(x)) ,
u (g(x) + up(x)) and xn−tua (x) are generated by B over Fq.

We have xn−r (g(x) + up(x)) = xn−1+q(x), deg q(x) ≤ n−1. But q (x) ∈ C
and, by the division algorithm, we have q(x) = (g(x) + up(x))h1(x) + s1(x),
deg s1(x) < r, deg h1 (x) ≤ n − 1, s1(x) = ua(x)h2 (x) + s2(x), deg s2(x) <
deg ua (x), deg h2(x) ≤ r− t. Since deg ua(x) = deg a(x) and in C any polyno-
mial must have degree greater or equal with deg a(x), it results s2(x) = 0. Since
a(x) | g(x), hence g(x) = a (x)h(x) and we have ug(x) = u (g (x) + up(x)) =
ua(x)h(x), with deg h(x) ≤ r − t < n − t − 1. It results that u (g(x) + up(x))
is generated by B over Fq. To finish the proof, it is enough to show that
the element uxr−ta(x) is generated by B over Fq. We have uxr−ta(x) =
u (g(x) + up(x)) + uh3(x), where uh3 belongs to C and t ≤ deg h3(x) < r.
Therefore uh3(x) = α0ua(x)+α1xua(x)+· · ·+αr−t−1x

r−t−1ua(x), αi ∈ Fq, i ∈
{0, . . . , r − t− 1}.

We will prove that B is a linearly independent system. Indeed, if there
are the elements α1,i1 , α2,i2 ∈ Fq, ij ∈ {0, 1, 2, . . . , n − 1}, j ∈ {1, 2} such
that α1,0 (g(x) + up(x))+ · · ·+α1,n−1x

n−r−1 (g(x) + up(x))+α2,0ua(x)+ · · ·+
α2,n−1x

n−t−1ua (x) = 0, comparing the coefficients in this equation, we get
α1,0g (0) + α1,0up (0) + α2,0ua (0) = 0. If α1,0 6= 0, since g (0) is a unit and
u a nilpotent element, it results that a unit is equal with a nilpotent, false.
Therefore α1,0 = 0. We obtain α2,0ua (0) = 0. If α2,0 6= 0, it results ua (0) =
0, false, since a (0) is a unit. We repeat this procedure and we get α1,i1 =
α2,i2 = 0 for all ij ∈ {0, 1, 2, . . . , n − 1}, j ∈ {1, 2}, hence B is a linearly
independent system. It results that B is a basis in the Fq-vector space C and

|C| = |q|2n−r−t .

4. Minimum Hamming distance for the cyclic codes over the rings

Ri, Si, T(i,j)

Let C be a linear code over the ring R. The Hamming distance between
two codewords c1 and c2, denoted by H (c1, c2) , is the number of coordinates
in which the codewords c1 and c2 differ. The number of nonzero entries of a
codeword c, denoted w(c), is called the Hamming weight of the codeword c.
The Hamming distance of a linear code C is

d (C) = min{w(c) | c ∈ C, c 6= 0}.

In [1], the authors studied the Hamming distance of cyclic codes of even length,
especially codes of length 2e, e ∈ N − {0} (Lemmas 16, 17, and 18). In the
following, using some ideas from the mentioned lemmas, we will investigate the
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Hamming distance for cyclic codes of length n = pr, r ∈ N−{0}, over the rings
Ri, Si, T(i,j).

Definition 4.1. Let n = as−1p
s−1 + as−2p

s−2 + · · · + a1p
1 + a0p

0, αi ∈
{0, 1, . . . , p− 1}, i ∈ {0, 1, . . . , s− 1}, be the p-adic expansion of n.

1) If as−1 = · · · = as−t 6= 0, s − t > 0 and as−i = 0 for all i ∈ {t + 2, t +
3, . . . , s− 1}, then n has a p-adic length t zero expansion.

2) If as−1 = · · · = as−t 6= 0, s − t > 0 and as−i 6= 0 for some elements
i ∈ {t+ 2, t+ 3, . . . , s− 1}, then n has a p-adic length t non-zero expansion.

3) If s = t, then n has a p-adic full expansion.

Proposition 4.2. Let C = (g(x)) be a cyclic code over R ∈ {Ri, Si, T(i,j)} of

length pr, r ∈ N − {0}, where g(x) = (xapr−1

− 1)g1(x). If g1 (x) generates a

cyclic code of length pr−1 and Hamming distance d, then d (C) = 2d.

Proof. For c ∈ C we have c = (xapr−1

− 1)g1(x)g2(x), g2(x) ∈ Fq[x]/(x
n −

1) and g1 (x) g2(x) ∈ (g1(x)) . It results w(c) = w((xapr−1

− 1)g1(x)g2(x)) =

w(xapr−1

g1(x)g2(x)) + w (g1(x)g2(x)) . Then d (C) = d+ d = 2d. �

Conclusion. In this paper we investigate the structure of cyclic codes of
arbitrary length over the rings Ri, Si, T(i,j). Moreover the ranks and minimum
Hamming distance of these codes were studied. Since the rings with Hamming
weight cannot produce always better codes, a more relevant weight as, for
example, the homogeneous weight on the above mentioned rings can be studied.
The remark above can constitute the starting point for further research.
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