• Title/Summary/Keyword: $L^r$ inequalities

Search Result 15, Processing Time 0.022 seconds

TURÁN-TYPE Lr-INEQUALITIES FOR POLAR DERIVATIVE OF A POLYNOMIAL

  • Robinson Soraisam;Mayanglambam Singhajit Singh;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.731-751
    • /
    • 2023
  • If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k, and r ≥ 1, Aziz [1] proved $$\left{{\int}_{0}^{2{\pi}}\,{\left|1+k^ne^{i{\theta}}\right|^r}\,d{\theta}\right}^{\frac{1}{r}}\;{\max\limits_{{\mid}z{\mid}=1}}\,{\mid}p^{\prime}(z){\mid}\,{\geq}\,n\,\left{{\int}_{0}^{2{\pi}}\,{\left|p(e^{i{\theta}})\right|^r\,d{\theta}\right}^{\frac{1}{r}}.$$ In this paper, we obtain an improved extension of the above inequality into polar derivative. Further, we also extend an inequality on polar derivative recently proved by Rather et al. [20] into Lr-norm. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

Sub-gaussian Techniques in Obtaining Laws of Large Numbers in $L^1$(R)

  • Lee, Sung-Ho;Lee, Robert -Taylor
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.39-51
    • /
    • 1994
  • Some exponential moment inequalities for sub-gaussian random variables are studied in this paper. These inequalities are used to obtain laws of large numbers for random variable and random elements in $L^1(R)$.

  • PDF

Lr INEQUALITIES OF GENERALIZED TURÁN-TYPE INEQUALITIES OF POLYNOMIALS

  • Singh, Thangjam Birkramjit;Krishnadas, Kshetrimayum;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.855-868
    • /
    • 2021
  • If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for 𝜌R ≥ k2 and 𝜌 ≤ R, Aziz and Zargar [4] proved that $${\max_{{\mid}z{\mid}=1}}{\mid}p^{\prime}(z){\mid}{\geq}n{\frac{(R+k)^{n-1}}{({\rho}+k)^n}}\{{\max_{{\mid}z{\mid}=1}}{\mid}p(z){\mid}+{\min_{{\mid}z{\mid}=k}}{\mid}p(z){\mid}\}$$. We prove a generalized Lr extension of the above result for a more general class of polynomials $p(z)=a_nz^n+\sum\limits_{{\nu}={\mu}}^{n}a_n-_{\nu}z^{n-\nu}$, $1{\leq}{\mu}{\leq}n$. We also obtain another Lr analogue of a result for the above general class of polynomials proved by Chanam and Dewan [6].

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.

Lr INEQUALITIES FOR POLYNOMIALS

  • Reingachan N;Mayanglambam Singhajit Singh;Nirmal Kumar Singha;Khangembam Babina Devi;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.451-460
    • /
    • 2024
  • If a0 + Σnν=μ aνzν, 1 ≤ µ ≤ n, is a polynomial of degree n having no zeroin |z| < k, k ≥ 1 and p'(z) its derivative, then Qazi [19] proved $$\max_{{\left|z\right|=1}}\left|p\prime(z)\right|\leq{n}\frac{1+\frac{{\mu}}{n}\left|\frac{a_{\mu}}{a_0} \right|k^{{\mu}+1}}{1+k^{{\mu}+1}+\frac{{\mu}}{n}\left|\frac{a_{\mu}}{a_0} \right|(k^{{\mu}+1}+k^{2{\mu}})}\max_{{\left|z\right|=1}}\left|p(z)\right|$$ In this paper, we not only obtain the Lr version of the polar derivative of the above inequality for r > 0, but also obtain an improved Lr extension in polar derivative.

New Two-Weight Imbedding Inequalities for $\mathcal{A}$-Harmonic Tensors

  • Gao, Hongya;Chen, Yanmin;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.105-118
    • /
    • 2007
  • In this paper, we first define a new kind of two-weight-$A_r^{{\lambda}_3}({\lambda}_1,{\lambda}_2,{\Omega})$-weight, and then prove the imbedding inequalities for $\mathcal{A}$-harmonic tensors. These results can be used to study the weighted norms of the homotopy operator T from the Banach space $L^p(D,{\bigwedge}^l)$ to the Sobolev space $W^{1,p}(D,{\bigwedge}^{l-1})$, $l=1,2,{\cdots},n$, and to establish the basic weighted $L^p$-estimates for $\mathcal{A}$-harmonic tensors.

  • PDF

CONVERGENCE PROPERTIES FOR THE PARTIAL SUMS OF WIDELY ORTHANT DEPENDENT RANDOM VARIABLES UNDER SOME INTEGRABLE ASSUMPTIONS AND THEIR APPLICATIONS

  • He, Yongping;Wang, Xuejun;Yao, Chi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1451-1473
    • /
    • 2020
  • Widely orthant dependence (WOD, in short) is a special dependence structure. In this paper, by using the probability inequalities and moment inequalities for WOD random variables, we study the Lp convergence and complete convergence for the partial sums respectively under the conditions of RCI(α), SRCI(α) and R-h-integrability. We also give an application to nonparametric regression models based on WOD errors by using the Lp convergence that we obtained. Finally we carry out some simulations to verify the validity of our theoretical results.

ON BONNESEN-STYLE ALEKSANDROV-FENCHEL INEQUALITIES IN ℝn

  • Zeng, Chunna
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.799-816
    • /
    • 2017
  • In this paper, we investigate the Bonnesen-style Aleksandrov-Fenchel inequalities in ${\mathbb{R}}^n$, which are the generalization of known Bonnesen-style inequalities. We first define the i-th symmetric mixed homothetic deficit ${\Delta}_i(K,L)$ and its special case, the i-th Aleksandrov-Fenchel isoperimetric deficit ${\Delta}_i(K)$. Secondly, we obtain some lower bounds of (n - 1)-th Aleksandrov Fenchel isoperimetric deficit ${\Delta}_{n-1}(K)$. Theorem 4 strengthens Groemer's result. As direct consequences, the stronger isoperimetric inequalities are established when n = 2 and n = 3. Finally, the reverse Bonnesen-style Aleksandrov-Fenchel inequalities are obtained. As a consequence, the new reverse Bonnesen-style inequality is obtained.

FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON WEIGHTED AMALGAM SPACES

  • Rakotondratsimba, Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.855-890
    • /
    • 1999
  • Necessary and sufficient conditions on the weight functions u(.) and $\upsilon$(.) are derived in order that the fractional maximal operator $M\alpha,\;0\;\leq\;\alpha\;<\;1$, is bounded from the weighted amalgam space $\ell^s(L^p(\mathbb{R},\upsilon(x)dx)$ into $\ell^r(L^q(\mathbb{R},u(x)dx)$ whenever $1\leq s\leq r<\infty\;and\;1. The boundedness problem for the fractional intergral operator $I_{\alpha},0<\alpha\leq1$, is also studied.

  • PDF

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.