L^{r} INEQUALITIES OF GENERALIZED TURÁN-TYPE INEQUALITIES OF POLYNOMIALS

Thangjam Birkramjit Singh ${ }^{1}$, Kshetrimayum Krishnadas ${ }^{2}$ and Barchand Chanam ${ }^{3}$
${ }^{1}$ Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India
emails: birkramth@gmail.com
${ }^{2}$ Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India emails: kshetrimayum.krishnadas@sbs.du.ac.in
${ }^{3}$ Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India emails: barchand_2004@yahoo.co.in

Abstract. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for $\rho R \geq k^{2}$ and $\rho \leq R$, Aziz and Zargar [4] proved that

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq n \frac{(R+k)^{n-1}}{(\rho+k)^{n}}\left\{\max _{|z|=1}|p(z)|+\min _{|z|=k}|p(z)|\right\} .
$$

We prove a generalized L^{r} extension of the above result for a more general class of polynomials $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$. We also obtain another L^{r} analogue of a result for the above general class of polynomials proved by Chanam and Dewan [6].

1. Introduction

For a polynomial $p(z)$ of degree n having all its zeros in $|z| \leq 1$, Turán 12] proved that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{1.1}
\end{equation*}
$$

[^0]The result is sharp and equality holds in (1.1) for polynomials having all their zeros on the unit circle.

By involving $\min _{|z|=1}|p(z)|$, Aziz and Dawood [2] improved (1.1) under the same hypotheses of $p(z)$ that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2}\left[\max _{|z|=1}|p(z)|+\min _{|z|=1}|p(z)|\right] . \tag{1.2}
\end{equation*}
$$

Equality occurs in (1.2) for the polynomial $p(z)=\alpha z^{n}+\beta$, where $|\alpha|=|\beta|$. Malik [8] generalized (1.1) by considering polynomials having all zeros in $|z| \leq$ $k, k \leq 1$. He proved

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.3}
\end{equation*}
$$

The result is best possible and the extremal polynomial is $p(z)=(z+k)^{n}$.
Inequality (1.2) was further generalized by Aziz and Zargar [4].
Theorem 1.1. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for $\rho R \geq k^{2}$ and $\rho \leq R$

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq n \frac{(R+k)^{n-1}}{(\rho+k)^{n}}\left[\max _{|z|=1}|p(z)|+\min _{|z|=k}|p(z)|\right] . \tag{1.4}
\end{equation*}
$$

Equality holds in (1.4) for $p(z)=(z+k)^{n}$.
Chanam and Dewan [6] proved the following result which improves Theorem 1.1 by considering the more general class of polynomials

$$
p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu<n
$$

and involving certain coefficients of the polynomial.
Theorem 1.2. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu<n$ and $a_{0} \neq 0$, is a polynomial of degree $n \geq 2$ having all its zeros in $|z| \leq k, k>0$, then for $\rho R \geq k^{2}$ and $\rho \leq R$

$$
\begin{align*}
\max _{|z|=R}\left|p^{\prime}(z)\right| \geq n & \left\{\frac{R^{\mu} n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right| R^{\mu-1}}{R^{\mu+1} n\left|a_{n}\right| k^{\mu-1}+n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right|\left(R k^{\mu-1}+R^{\mu}\right)}\right\} \\
& \times\left(\frac{R+k}{\rho+k}\right)^{n}\left\{\max _{|z|=\rho}|p(z)|+\min _{|z|=k}|p(z)|\right\} \tag{1.5}
\end{align*}
$$

Equality holds in 1.5) for $\mu=1$ and $p(z)=(z+k)^{n}$.

For a polynomial $p(z)$ of degree n and for every $r>0$, we know

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq n\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{1.6}
\end{equation*}
$$

Zygmund [13] proved inequality (1.6) for $r \geq 1$ for all trigonometric polynomials of degree n and not only for those which are of the form $p\left(e^{i \theta}\right)$. The validity of (1.6) for $0<r<1$ was proved by Arestov [1].

From a well-known fact of analysis [10, 11, we know that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}=\max _{|z|=1}|p(z)| . \tag{1.7}
\end{equation*}
$$

In view of (1.7), inequality 1.6 is the L^{r} analogue of the famous Bernstein's inequality [5]. This important fact shows that L^{r} inequalities of a polynomial generalize ordinary inequalities of polynomials.

2. Lemmas

We need the following lemmas to prove our results.
Lemma 2.1. ([9]) If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \geq k^{\mu+1} \frac{\frac{\mu}{n} \frac{\left|a_{\mu}\right|}{\left|a_{0}\right|} k^{\mu-1}+1}{1+\frac{\mu}{n} \frac{\left|a_{\mu}\right|}{\left|a_{0}\right|} k^{\mu+1}}\left|p^{\prime}(z)\right| \quad \text { on }|z|=1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n} \frac{\left|a_{\mu}\right|}{\left|a_{0}\right|} k^{\mu} \leq 1 \tag{2.2}
\end{equation*}
$$

where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

Lemma 2.2. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for $|z|=1$

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \geq \frac{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}\left|q^{\prime}(z)\right| \tag{2.3}
\end{equation*}
$$

where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} .
$$

Proof. Since $p(z)$ has all its zeros in $|z| \leq k, k \leq 1, q(z)$ has no zero in $|z|<\frac{1}{k}, \frac{1}{k} \geq 1$. Hence, applying Lemma 2.1 to the polynomial $q(z)$, we have by inequality (2.1)

$$
\left|p^{\prime}(z)\right| \geq\left(\frac{1}{k}\right)^{\mu+1} \frac{\frac{\mu}{n} \frac{\left|a_{n-\mu}\right|}{\left|a_{n}\right|}\left(\frac{1}{k}\right)^{\mu-1}+1}{1+\frac{\mu}{n} \frac{\left|a_{n-\mu}\right|}{\left|a_{n}\right|}\left(\frac{1}{k}\right)^{\mu+1}}\left|q^{\prime}(z)\right| \quad \text { on }|z|=1,
$$

which simplifies to

$$
\left|p^{\prime}(z)\right| \geq \frac{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}\left|q^{\prime}(z)\right| .
$$

Lemma 2.3. ([4]) If $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \leq k, k>0$, then for $\rho R \geq k^{2}$ and $\rho \leq R$, we have for $|z|=1$

$$
\begin{equation*}
|p(R z)| \geq\left(\frac{R+k}{\rho+k}\right)^{n}|p(\rho z)| \tag{2.4}
\end{equation*}
$$

Equality in (2.4) holds for the polynomial $p(z)=(z+k)^{n}$.
Lemma 2.4. ([3) If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for $|z|=1$

$$
\begin{equation*}
k^{\mu}\left|p^{\prime}(z)\right| \geq\left|q^{\prime}(z)\right| . \tag{2.5}
\end{equation*}
$$

3. Main results

In this paper, we first prove a generalized L^{r} extension of Theorem 1.1 , Secondly, we obtain an L^{r} analogue of Theorem 1.2. We find that our results have significant influences on other well-known inequalities.

The following result is a generalized L^{r} version of Theorem 1.1.

Theorem 3.1. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k>0$, then for $\rho R \geq k^{2}$ and $\rho \leq R$, and $s, q \geq 1$ such that $\frac{1}{s}+\frac{1}{q}=1$, and for each $r>0$

$$
\begin{align*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \geq & n\left(\frac{R+k}{\rho+k}\right)^{n} \frac{1}{R}\left\{\int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} e^{i \theta}\right|^{s r} d \theta\right\}^{-\frac{1}{s r}} \\
& \times\left\{\int_{0}^{2 \pi}\left(\left|p\left(\rho e^{i \theta}\right)\right|+m\right)^{r} d \theta\right\}^{\frac{1}{r}} \tag{3.1}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|$.
Proof. Let α be any real or complex number such that $|\alpha|<1$. Since $p(z)$ has all its zeros in $|z| \leq k, k>0$, by Rouche's theorem, the polynomial $G(z)=p(z)+\alpha m$, where $m=\min _{|z|=k}|p(z)|$, has all its zeros in $|z| \leq k, k>0$.

Let $H(z)=G(R z)$. Then

$$
H(z)=a_{n} R^{n} z^{n}+a_{n-\mu} R^{n-\mu} z^{n-\mu}+\cdots+a_{1} R z+\left(a_{0}+\alpha m\right),
$$

where $\rho R \geq k^{2}$ and $\rho \leq R$ (it also implies $R \geq k$). Consequently, $H(z)$ has all its zeros in $|z| \leq \frac{k}{R}, \frac{k}{R} \leq 1$. Applying Lemma 2.4 to $H(z)$, we obtain for $|z|=1$

$$
\begin{equation*}
\left(\frac{k}{R}\right)^{\mu}\left|H^{\prime}(z)\right| \geq\left|I^{\prime}(z)\right| \tag{3.2}
\end{equation*}
$$

where $I(z)=z^{n} \overline{H\left(\frac{1}{\bar{z}}\right)}$. Since $H(z)$ has all its zeros in $|z| \leq \frac{k}{R}, \frac{k}{R} \leq 1, H^{\prime}(z)$ also has all its zeros in $|z| \leq \frac{k}{R}, \frac{k}{R} \leq 1$. Hence by Gauss-Lucas theorem, the polynomial

$$
z^{n-1} \overline{H^{\prime}\left(\frac{1}{z}\right)}=n I(z)-z I^{\prime}(z)
$$

has all its zeros in $|z| \geq \frac{R}{k}, \frac{R}{k} \geq 1$.
From (3.2), we have for $|z|=1$

$$
\begin{equation*}
\left|I^{\prime}(z)\right| \leq\left(\frac{k}{R}\right)^{\mu}\left|H^{\prime}(z)\right| \tag{3.3}
\end{equation*}
$$

We also know that for $|z|=1,\left|H^{\prime}(z)\right|=\left|n I(z)-z I^{\prime}(z)\right|$, and thus, inequality (3.2) gives

$$
\begin{equation*}
\left|I^{\prime}(z)\right| \leq\left(\frac{k}{R}\right)^{\mu}\left|n I(z)-z I^{\prime}(z)\right| \tag{3.4}
\end{equation*}
$$

Let

$$
w(z)=\frac{z I^{\prime}(z)}{n I(z)-z I^{\prime}(z)} .
$$

Then $w(z)$ is analytic in $|z| \leq 1,|w(z)| \leq 1$ for $|z|=1$ and $w(0)=0$. Therefore, the function $1+\left(\frac{k}{R}\right)^{\mu} w(z)$ is subordinate to $1+\left(\frac{k}{R}\right)^{\mu} z$ for $|z| \leq 1$. Hence, by a well-known property of subordination [7], we have for every $r>0$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} w\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} e^{i \theta}\right|^{r} d \theta \tag{3.5}
\end{equation*}
$$

Now,

$$
\begin{aligned}
1+\left(\frac{k}{R}\right)^{\mu} w(z) & =1+\frac{z I^{\prime}(z)}{n I(z)-z I^{\prime}(z)} \\
& =\frac{n I(z)}{n I(z)-z I^{\prime}(z)}
\end{aligned}
$$

This implies for $|z|=1$

$$
\begin{aligned}
|n I(z)| & =\left|1+\left(\frac{k}{R}\right)^{\mu} w(z)\right|\left|n I(z)-z I^{\prime}(z)\right| \\
& =\left|1+\left(\frac{k}{R}\right)^{\mu} w(z)\right|\left|H^{\prime}(z)\right|
\end{aligned}
$$

Thus, for $r>0$ and $0 \leq \theta<2 \pi$

$$
\left|n I\left(e^{i \theta}\right)\right|^{r} \leq\left|1+\left(\frac{k}{R}\right)^{\mu} w\left(e^{i \theta}\right)\right|^{r}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{r},
$$

which implies

$$
n^{r} \int_{0}^{2 \pi}\left|I\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} w\left(e^{i \theta}\right)\right|^{r}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta
$$

By (3.5), the above inequality becomes

$$
n^{r} \int_{0}^{2 \pi}\left|n I\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} e^{i \theta}\right|^{r}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta
$$

Applying Holder's inequality, for $q \geq 1$ and $s \geq 1$ with $s^{-1}+q^{-1}=1$ and $r>0$, we get

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|I\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} e^{i \theta}\right|^{r s} d \theta\right\}^{\frac{1}{r s}}\left\{\int_{0}^{2 \pi}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{3.6}
\end{equation*}
$$

Since $H(z)=G(R z)=p(R z)+\alpha m$, therefore, $H^{\prime}(z)=R p^{\prime}(R z)$. Then,

$$
\left\{\int_{0}^{2 \pi}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}}=R\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}}
$$

Also, for $|z|=1,|I(z)|=|H(z)|=|G(R z)|$. Then by Lemma 2.3 for $\rho R \geq k^{2}$ and $\rho \leq R$

$$
|I(z)| \geq|G(R z)| \geq\left(\frac{R+k}{\rho+k}\right)^{n}|G(\rho z)|
$$

which implies

$$
\begin{equation*}
|I(z)| \geq\left(\frac{R+k}{\rho+k}\right)^{n}|p(\rho z)+\alpha m| \tag{3.7}
\end{equation*}
$$

Using (3.6) and (3.7) in (3.5), we obtain

$$
\begin{align*}
n\left(\frac{R+k}{\rho+k}\right)^{n} & \left\{\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)+\alpha m\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} e^{i \theta}\right|^{r s} d \theta\right\}^{\frac{1}{r s}} \\
& \times R\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} d \theta \tag{3.8}
\end{align*}
$$

Choosing the argument of α suitably such that

$$
\left|p\left(\rho e^{i \theta}\right)+\alpha m\right|=\left|p\left(\rho e^{i \theta}\right)\right|+|\alpha| m,
$$

which on letting $|\alpha| \rightarrow 1$ gives

$$
\left|p\left(\rho e^{i \theta}\right)+\alpha m\right|=\left|p\left(\rho e^{i \theta}\right)\right|+m .
$$

Inequality (3.8) thus reduces to

$$
\begin{aligned}
n\left(\frac{R+k}{\rho+k}\right)^{n} & \left\{\int_{0}^{2 \pi}\left(\left|p\left(\rho e^{i \theta}\right)\right|+\alpha m\right)^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+\left(\frac{k}{R}\right)^{\mu} e^{i \theta}\right|^{r s} d \theta\right\}^{\frac{1}{r s}} \\
& \times R\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} d \theta
\end{aligned}
$$

This completes the proof of Theorem 3.1.
Remark 3.2. Taking $\mu=1$ and letting $r \rightarrow \infty$ in Theorem 3.1, we have

$$
\max _{|z|=R}\left|p^{\prime}(z)\right| \geq \frac{n(R+k)^{n}}{R(\rho+k)^{n}}\left(1+\frac{k}{R}\right)^{-1}\left\{\max _{|z|=\rho}|p(z)|+\min _{|z|=k}|p(z)|\right\},
$$

which simplifies to inequality (1.4) of Theorem 1.1. This verifies that Theorem 3.1 is a generalized L^{r} version of Theorem 1.1 proved by Aziz and Zargar 4.

Remark 3.3. Again, if we let $r \rightarrow \infty$ and taking $\mu=1$ along with $\rho=R=1$ in Theorem 3.1 we have the following result which is an improvement of (1.3) due to Malik [8].

Corollary 3.4. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k}\left\{\max _{|z|=1}|p(z)|+\min _{|z|=k}|p(z)|\right\} \tag{3.9}
\end{equation*}
$$

It is obvious that (3.9) is an improvement of inequality (1.3). Consequently, Theorem 3.1 is an improvement and a generalization of (1.3) due to Malik [8].

Remark 3.5. For $k=1$, inequality (3.9) of Corollary 3.4 reduces to inequality (1.2) due to Aziz and Dawood [2]. Thus, Theorem 3.1 is an improved and a generalized L^{r} version of (1.1) due to Turán [12].

Next, we prove the L^{r} analogue of Theorem 1.2 which further gives a refinement of Theorem 3.1. More precisely, we prove:

Theorem 3.6. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k>0$, then for $\rho R \geq k^{2}$ and $\rho \leq R$, and $s \geq 1, q \geq 1$ such that $\frac{1}{s}+\frac{1}{q}=1$, and for each $r>0$,

$$
\begin{align*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \geq n & \left(\frac{R+k}{\rho+k}\right)^{n} \frac{1}{R}\left\{\int_{0}^{2 \pi}\left|1+A e^{i \theta}\right|^{s r} d \theta\right\}^{-\frac{1}{s r}} \\
& \times\left\{\int_{0}^{2 \pi}\left(\left|p\left(\rho e^{i \theta}\right)\right|+m\right)^{r} d \theta\right\}^{\frac{1}{r}} \tag{3.10}
\end{align*}
$$

where

$$
\begin{equation*}
A=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1} R^{\mu}}{n\left|a_{n}\right| k^{\mu-1} R^{\mu+1}+\mu\left|a_{n-\mu}\right| R^{\mu}} \tag{3.11}
\end{equation*}
$$

and $m=\min _{|z|=k}|p(z)|$.
Proof. Since $p(z)$ has all its zeros in $|z| \leq k, k>0$, by Rouche's theorem, for real or complex number α with $|\alpha|<1$, the polynomial $G(z)=p(z)+\alpha m$, where $m=\min _{|z|=k}|p(z)|$ has all its zeros in $|z| \leq k, k>0$. Therefore,

$$
\begin{aligned}
H(z) & =G(R z) \\
& =a_{n} R^{n} z^{n}+a_{n-\mu} R^{n-\mu} z^{n-\mu}+\cdots+a_{1} R z+a_{0}+\alpha m,
\end{aligned}
$$

where $\rho R \geq k^{2}$ and $\rho \leq R$ (implies $R \geq k$ also), has all its zeros in $|z| \leq \frac{k}{R}$, $\frac{k}{R} \leq 1$. Applying Lemma 2.2 to $H(z)$, it follows from inequality (2.3) that

$$
\begin{align*}
\left|H^{\prime}(z)\right| & \geq \frac{n\left|a_{n}\right| R^{n}\left(\frac{k}{R}\right)^{\mu-1}+\mu\left|a_{n-\mu}\right| R^{n-\mu}}{n\left|a_{n}\right| R^{n}\left(\frac{k}{R}\right)^{2 \mu}+\mu\left|a_{n-\mu}\right| R^{n-\mu} k^{\mu-1}}\left|I^{\prime}(z)\right| \\
& =\frac{n\left|a_{n}\right| R^{\mu+1} k^{\mu-1}+\mu\left|a_{n-\mu}\right| R^{\mu}}{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1} R^{\mu}}\left|I^{\prime}(z)\right| \tag{3.12}
\end{align*}
$$

where

$$
I(z)=z^{n} H\left(\frac{1}{\bar{z}}\right) .
$$

Since $H(z)$ has all its zeros in $|z| \leq \frac{k}{R}, \frac{k}{R} \leq 1, H^{\prime}(z)$ also has all its zeros in $|z| \leq \frac{k}{R}, \frac{k}{R} \leq 1$. Hence by Gauss-Lucas Theorem, the polynomial

$$
z^{n-1} \overline{H^{\prime}\left(\frac{1}{\bar{z}}\right)}=n I(z)-z I^{\prime}(z)
$$

has all its zeros in $|z| \geq \frac{R}{k}, \frac{R}{k} \geq 1$.
From (3.12), we have for $|z|=1$,

$$
\begin{align*}
\left|I^{\prime}(z)\right| & \leq \frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1} R^{\mu}}{n\left|a_{n}\right| k^{\mu-1} R^{\mu+1}+\mu\left|a_{n-\mu}\right| R^{\mu}}\left|H^{\prime}(z)\right| \\
& =A\left|H^{\prime}(z)\right|, \tag{3.13}
\end{align*}
$$

where

$$
A=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1} R^{\mu}}{n\left|a_{n}\right| k^{\mu-1} R^{\mu+1}+\mu\left|a_{n-\mu}\right| R^{\mu}} .
$$

Since, for $|z|=1,\left|H^{\prime}(z)\right|=\left|n I(z)-z I^{\prime}(z)\right|$, inequality (3.13) equivalently gives

$$
\begin{equation*}
\left|I^{\prime}(z)\right| \leq A\left|n I(z)-z I^{\prime}(z)\right| . \tag{3.14}
\end{equation*}
$$

Using the fact (3.14), we have

$$
w(z)=\frac{z I^{\prime}(z)}{A\left(n I(z)-z I^{\prime}(z)\right)}
$$

is analytic in $|z| \leq 1,|w(z)| \leq 1$ for $|z|=1$ and $w(0)=0$. Therefore, the function $1+A w(z)$ is subordinate to $1+A z$ for $|z| \leq 1$. Hence, by a well-known property of subordination [7], we have for $r>0$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+A w\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+A e^{i \theta}\right|^{r} d \theta \tag{3.15}
\end{equation*}
$$

Now,

$$
\begin{aligned}
1+A w(z) & =1+\frac{z I^{\prime}(z)}{n I(z)-z I^{\prime}(z)} \\
& =\frac{n I(z)}{n I(z)-z I^{\prime}(z)} .
\end{aligned}
$$

Hence, for $|z|=1$, it implies from $\left|H^{\prime}(z)\right|=\left|n I(z)-z I^{\prime}(z)\right|$ that

$$
\begin{aligned}
|n I(z)| & =|1+A w(z)|\left|n I(z)-z I^{\prime}(z)\right| \\
& =|1+A w(z)|\left|H^{\prime}(z)\right| .
\end{aligned}
$$

Which gives for $r>0$ and $0 \leq \theta<2 \pi$

$$
\left|n I\left(e^{i \theta}\right)\right|^{r} \leq\left|1+A w\left(e^{i \theta}\right)\right|^{r}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{r},
$$

which implies

$$
n^{r} \int_{0}^{2 \pi}\left|I\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+A w\left(e^{i \theta}\right)\right|^{r}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta
$$

Using (3.15), the above inequality gives

$$
n^{r} \int_{0}^{2 \pi}\left|I\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+A e^{i \theta}\right|^{r}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta
$$

Applying Holder's inequality, for $q \geq 1$ and $s \geq 1$ with $\frac{1}{s}+\frac{1}{q}=1$ and $r>0$, we get

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|I\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+A e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s r}}\left\{\int_{0}^{2 \pi}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{3.16}
\end{equation*}
$$

Since $H(z)=G(R z)=p(R z)+\alpha m, H^{\prime}(z)=R p^{\prime}(R z)$. Then, the factor

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|H^{\prime}\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}}=R\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{3.17}
\end{equation*}
$$

Also, since $|I(z)|=|H(z)|=|G(R z)|$ for $|z|=1$, by Lemma 2.3 for $\rho R \geq k^{2}$ and $\rho \leq R$

$$
|I(z)| \geq|G(R z)| \geq\left(\frac{R+k}{\rho+k}\right)^{n}|G(\rho z)|
$$

that is,

$$
\begin{equation*}
|I(z)| \geq\left(\frac{R+k}{\rho+k}\right)^{n}|p(\rho z)+\alpha m| \tag{3.18}
\end{equation*}
$$

Making use of (3.17) and (3.18) in (3.16), we have

$$
\begin{align*}
n\left(\frac{R+k}{\rho+k}\right)^{n}\left\{\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)+\alpha m\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq & \left\{\int_{0}^{2 \pi}\left|1+A e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s r}} \\
& \times R\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} . \tag{3.19}
\end{align*}
$$

Choosing the argument of α suitably such that

$$
\left|p\left(\rho e^{i \theta}\right)+\alpha m\right|=\left|p\left(\rho e^{i \theta}\right)\right|+|\alpha| m
$$

and letting $|\alpha| \rightarrow 1$, we have

$$
\left|p\left(\rho e^{i \theta}\right)+\alpha m\right|=\left|p\left(\rho e^{i \theta}\right)\right|+m .
$$

Inequality (3.19) thus reduces to

$$
\begin{aligned}
n\left(\frac{R+k}{r+k}\right)^{n}\left\{\int_{0}^{2 \pi}\left(\left|p\left(\rho e^{i \theta}\right)\right|+m\right)^{r} d \theta\right\}^{\frac{1}{r}} \leq & \left\{\int_{0}^{2 \pi}\left|1+A e^{i \theta}\right|^{s r} d \theta\right\}^{\frac{1}{s r}} \\
& \times R\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(R e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}}
\end{aligned}
$$

from which inequality (3.10) follows.
Letting $r \rightarrow \infty$ in inequality (3.10), we have the following result.
Corollary 3.7. If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k>0$, then for $\rho R \geq k^{2}$ and $\rho \leq R$

$$
\begin{equation*}
\max _{|z|=R}\left|p^{\prime}(z)\right| \geq n\left(\frac{R+k}{\rho+k}\right)^{n} \frac{1}{R(1+A)}\left\{\max _{|z|=\rho}|p(z)|+\min _{|z|=k}|p(z)|\right\} \tag{3.20}
\end{equation*}
$$

where A is given by (3.11).
Remark 3.8. Since

$$
\frac{1}{R(1+A)}=\frac{n\left|a_{n}\right| R^{\mu} k^{\mu-1}+\mu\left|a_{n-\mu}\right| R^{\mu-1}}{n\left|a_{n}\right| R^{\mu+1} k^{\mu-1}+n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right|\left(R k^{\mu-1}+R^{\mu}\right)},
$$

Corollary 3.7 shows that Theorem 3.6 is L^{r} analogue of Theorem 1.2. Further, as explained by Chanam and Dewan [6, Corollary 3.7 is an improvement of Theorem 1.1 and hence, correspondingly, Theorem 3.6 is a refinement of Theorem 3.1.

Remark 3.9. In view of Corollary 3.7, Theorem 3.6 is L^{r} version of Theorem 1.2 in a richer form for restrictions concerning the polynomial $p(z)$, namely $a_{0} \neq 0, \mu \neq n$ and $n \neq 1$ in the hypotheses of Theorem 1.2, have all been dropped in Theorem 3.6 and consequently in Corollary 3.7. In other words, Corollary 3.7 is a better version of Theorem 1.2 .

Remark 3.10. Letting $r \rightarrow \infty$ in inequality (3.10), and taking $\mu=1$ along with $\rho=R=k=1$, it reduces to inequality (1.2) as in Remark 3.5 and hence same consequences of Remark 3.5 follow.

Further, if we take $\mu=1$ and $\rho=R=1$ in Corollary 3.7, we have:
Corollary 3.11. If $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+A}\left\{\max _{|z|=1}|p(z)|+\min _{|z|=k}|p(z)|\right\} \tag{3.21}
\end{equation*}
$$

where $A=\frac{n\left|a_{n}\right| k^{2}+\left|a_{n-1}\right|}{n\left|a_{n}\right|+\left|a_{n-1}\right|}$.
Remark 3.12. Inequality (3.21) of Corollary 3.11 is an improvement of (1.3) due to Malik [8]. To see this it is sufficient to show that $\frac{n}{1+A} \geq \frac{n}{1+k}$, which is equivalent to showing $A \leq k$, where A is defined as in Corollary 3.11.

If $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$, then $q(z)=\sum_{\nu=0}^{n} \bar{a}_{\nu} z^{n-\nu}$ has no zero in $|z|<\frac{1}{k}, \frac{1}{k} \geq 1$. Applying Lemma 2.1 to $q(z)$, it follows from (2.2) that for $\mu=1$

$$
\begin{equation*}
\frac{1}{n} \frac{\left|a_{n-1}\right|}{\left|a_{n}\right|} \frac{1}{k} \leq 1 \tag{3.22}
\end{equation*}
$$

Now, as $k \leq 1$, in view of (3.22), it is easy to verify that $A \leq k$.
Acknowledgements: The authors are extremely grateful to the referees for their valuable comments and suggestions about the paper.

References

[1] V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
[2] A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivatives, J. Approx. Theory, 54 (1988), 306-313.
[3] A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivatives, Math. Inequal. Appl., 7(3) (2004), 379-391.
[4] A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivatives, Math. Inequal. Appl.,1(4) (1998), 543-550.
[5] S. Bernstein, Lecons sur les propriétés extrémales et la meilleure approximation desfonctions analytiques d'une variable réelle, Gauthier Villars, Paris, 1926.
[6] B. Chanam and K.K. Dewan, Inequalities for a polynomial and its derivatives, J. Interdis. Math., 11(4) (2008), 469-478.
[7] E. Hille, Analytic Function Theory, Vol. II, Ginn. and Company, New York, Toronto, 1962.
[8] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[9] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343.
[10] W. Rudin, Real and Complex Analysis, Tata Mcgraw-Hill Publishing Company (Reprinted in India), 1977.
[11] A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc. New York, 1958.
[12] P. Turán, Über die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.
[13] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392400.

[^0]: ${ }^{0}$ Received June 28, 2021. Revised July 4, 2021. Accepted August 21, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30C10, 30C15.
 ${ }^{0}$ Keywords: Polynomial, derivative, L^{r} inequality.
 ${ }^{0}$ Corresponding author: Barchand Chanam(barchand_2004@yahoo.co.in).

