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CONVERGENCE PROPERTIES FOR THE PARTIAL SUMS

OF WIDELY ORTHANT DEPENDENT RANDOM

VARIABLES UNDER SOME INTEGRABLE ASSUMPTIONS

AND THEIR APPLICATIONS

Yongping He, Xuejun Wang, and Chi Yao

Abstract. Widely orthant dependence (WOD, in short) is a special de-

pendence structure. In this paper, by using the probability inequalities
and moment inequalities for WOD random variables, we study the Lp

convergence and complete convergence for the partial sums respectively

under the conditions of RCI(α), SRCI(α) and R-h-integrability. We also
give an application to nonparametric regression models based on WOD

errors by using the Lp convergence that we obtained. Finally we carry

out some simulations to verify the validity of our theoretical results.

1. Introduction

It is well known that the probability limit theorem and its applications for
independent random variables have been studied by many authors, while the
assumption of independence is not reasonable in real practice. If the inde-
pendent case is classical in the literature, the treatment of dependent random
variables is more recent. In this article, we are interested in WOD random
variables and further study the limiting behavior for the partial sums of WOD
random variables under some special integrable assumptions.

1.1. The concepts of widely orthant dependent random variables

The widely orthant dependence structure was introduced by Wang et al. [24]
as follows.
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Definition 1.1. For the random variables {Xn, n ≥ 1}, if there exists a finite
real sequence {gU (n), n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈ (−∞,∞),
1 ≤ i ≤ n,

P (X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)

n∏
i=1

P (Xi > xi),

then we say that the {Xn, n ≥ 1} are widely upper orthant dependent (WUOD,
in short); if there exists a finite real sequence {gL(n), n ≥ 1} satisfying for each
n ≥ 1 and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)

n∏
i=1

P (Xi ≤ xi),

then we say that the {Xn, n ≥ 1} are widely lower orthant dependent (WLOD,
in short); if they are both WUOD and WLOD, then we say that the {Xn, n ≥ 1}
are widely orthant dependent (WOD, in short), and gU (n), gL(n), n ≥ 1, are
called dominating coefficients.

An array {Xni, i ≥ 1, n ≥ 1} of random variables is called rowwise WOD if
for each n ≥ 1, {Xni, i ≥ 1} is a sequence of WOD random variables.

Recall that when gL(n) = gU (n) = M for some constant M ≥ 1, the random
variables {Xn, n ≥ 1} are called extended negatively upper orthant dependent
(ENUOD, in short) and extended negatively lower orthant dependent (EN-
LOD, in short), respectively. If they are both ENUOD and ENLOD, then
we say that the random variables {Xn, n ≥ 1} are extended negatively or-
thant dependent (ENOD, in short), which was proposed by Liu [15]. When
gL(n) = gU (n) = 1 for any n ≥ 1, the random variables {Xn, n ≥ 1} are called
negatively upper orthant dependent (NUOD, in short) and negatively lower
orthant dependent (NLOD, in short), respectively. If they are both NUOD
and NLOD, then we say that the random variables {Xn, n ≥ 1} are negatively
orthant dependent (NOD, in short), the concept of which was introduced by
Joag-Dev and Proschan [12], and they further pointed out that NA random
variables are NOD. Hu [11] introduced the concept of negatively superaddi-
tive dependence (NSD, in short) and gave an example illustrating that NSD
does not imply NA. Hu [11] posed an open problem whether NA implies NSD.
Christofides and Vaggelatou [6] solved this open problem and indicated that
NA implies NSD. In addition, Hu [11] pointed out that NSD implies NOD (see
Property 2 of Hu [11]). From the statements above, we can see that the class
of WOD random variables contains END random variables, NOD random vari-
ables, NSD random variables, NA random variables and independent random
variables as special cases. Hence, studying the probability limit behavior of
WOD random variables and its applications are of great interest.

Since the concept of WOD random variables was introduced by Wang et
al. [24], many interesting results and applications have been obtained. See, for
example, Wang et al. [24] provided some examples which show that the class of
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WOD random variables contains some common negatively dependent random
variables, some positively dependent random variables and some others; in ad-
dition, they studied the uniform asymptotics for the finite-time ruin probability
of a new dependent risk model with a constant interest rate; Wang et al. [28]
studied the asymptotics of the finite-time ruin probability for a generalized
renewal risk model with independent strong subexponential claim sizes and
widely lower orthant dependent inter-occurrence times; Chen et al. [4] gave a
new type of Nagaev’s inequality for WOD random variables and gave some ap-
plications including the strong law of large numbers, the complete convergence,
the a.s. elementary renewal theorem and the weighted elementary renewal the-
orem; Wang [25] provided the upper and lower bounds of large deviations for
WOD random variables; Xi et al. [31] showed some convergence properties for
partial sums of WOD random variables and presented some statistical applica-
tions; Wu et al. [30] made further research on complete moment convergence for
WOD random variables under some mild conditions; Chen et al. [3] extended
the Spitzer’s law to a version under the WOD random variables; Ding et al. [7]
gave some consistency results of wavelet estimators for the nonparametric re-
gression models under WOD random errors; Shen and Wu [20] established the
complete q-th moment convergence for WOD random variables and provided
some statistical applications, and so forth.

The main purpose of the paper is to present some limiting behaviors for the
partial sums of WOD random variables under some integrable assumptions by
using some probability inequalities and moment inequalities. We further study
the Lp convergence and complete convergence for arrays of rowwise WOD ran-
dom variables under the conditions of RCI(α), SRCI(α) and R-h-integrability.
In addition, we will apply the Lp convergence to nonparametric regression
models and investigate the mean consistency for the nonparametric regression
estimator based on WOD errors.

The following concept of stochastic domination will be used in this work.

Definition 1.2. An array {Xni, i ≥ 1, n ≥ 1} of random variables is said to
be stochastically dominated by a random variable X if there exists a positive
constant C such that

P (|Xni| > x) ≤ CP (|X| > x)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

1.2. Some concepts of integrability

Complete convergence and strong law of large numbers for weighted sums or
partial sums of random variables play important roles in the area of limit theo-
rems in probability theory and mathematical statistics. Conditions of indepen-
dence and identical distribution of random variables are basic in historic results
due to Bernoulli, Borel or Kolmogorov. Since then, many attempts have been
made to relax these strong conditions. For example, independence has been
relaxed to pairwise independence or pairwise negative quadrant dependence or,
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even replaced by conditions of dependence such as mixing, martingale, positive
dependence or negative dependence. In order to relax the identical distribution,
several other conditions have been considered, such as stochastic domination
by an integrable random variable. The classical notion of uniform integrability
of a sequence {Xn, n ≥ 1} of integrable random variables is defined through
the following condition:

lim
a→∞

sup
n≥1

E|Xn|I(|Xn| > a) = 0.

Chandra and Goswami [2] introduced the following two special kinds of
uniform integrability, which are weaker than the classical one.

Definition 1.3. For α ∈ (0,∞), a sequence {Xn, n ≥ 1} of random variables
is said to be residually Cesàro α-integrable (RCI(α), in short) if

sup
n≥1

1

n

n∑
i=1

E|Xi| <∞ and lim
n→∞

1

n

n∑
i=1

E(|Xi| − iα)I(|Xi| > iα) = 0.

Definition 1.4. For α ∈ (0,∞), a sequence {Xn, n ≥ 1} of random variables
is said to be strong residually Cesàro α-integrable (SRCI(α), in short) if

sup
n≥1

1

n

n∑
i=1

E|Xi| <∞ and

∞∑
n=1

1

n
E(|Xn| − nα)I(|Xn| > nα) <∞.

Wang and Hu [26] introduced a much weaker concept of uniform integrability
named R-h-integrability as follows.

Definition 1.5. The array {Xni, un ≤ i ≤ vn, n ≥ 1} is said to be residually
h-integrable (R-h-integrable, in short) with exponent p > 0 if

sup
n≥1

1

kn

vn∑
i=un

E|Xni|p <∞

and

lim
n→∞

1

kn

vn∑
i=un

E
(
|Xni| − h1/p(n)

)p
I (|Xni|p > h(n)) = 0.

Under the condition of R-h-integrability with exponent p, Wang and Hu [26]
established some weak laws of large numbers for arrays of dependent random
variables. Noting that(

|Xni| − h1/p(n)
)p
I(|Xni|p > h(n)) ≤ |Xni|pI(|Xni|p > h(n)),

the concept of R-h-integrability with exponent p is weaker than h-integrability
with exponent p, which was introduced by Sung et al. [22].

Throughout the paper, let {Xn, n ≥ 1} be a sequence of WOD random vari-
ables with dominating coefficients gU (n), gL(n), n ≥ 1. Let {Xni, un ≤ i ≤ vn ,
n ≥ 1} be an array of rowwise WOD random variables, where {un, n ≥ 1} and
{vn, n ≥ 1} are two sequences of integers (not necessary positive or finite) such
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that vn > un for all n ≥ 1 and vn − un →∞ as n→∞. Let {kn, n ≥ 1} be a
sequence of positive numbers such that kn →∞ as n→∞, and {h(n), n ≥ 1}
be an increasing sequence of positive constants with h(n) ↑ ∞ as n ↑ ∞. De-
note g(n) = max{gU (n), gL(n)} and Sn =

∑n
i=1Xi. Let C denote a positive

constant, which can be different in various places. an = O(bn) means an ≤ Cbn.

1.3. Some lemmas

In this subsection, we will present some important lemmas, which play im-
portant roles in proving the main results.

The first one is a basic property for WOD random variables, which can be
found in Wang et al. [27] for instance.

Lemma 1.1. Let X1, X2, . . . , Xn be WOD and f1, f2, . . . , fn be all nonde-
creasing (or all nonincreasing). Then the random variables f1(X1), f2(X2),
. . ., fn(Xn) are also WOD.

The next one is about the Marcinkiewicz-Zygmund type moment inequality
and Rosenthal type moment inequality for WOD random variables, which can
be found in Wang et al. [27].

Lemma 1.2. Let p ≥ 1 and {Xn, n ≥ 1} be a sequence of WOD random
variables with EXn = 0 and E|Xn|p < ∞ for each n ≥ 1. Then there exist
positive constants C1(p) and C2(p) depending only on p such that

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ [C1(p) + C2(p)g(n)]

n∑
i=1

E|Xi|p for 1 ≤ p ≤ 2

and

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ C1(p)

n∑
i=1

E|Xi|p + C2(p)g(n)

(
n∑
i=1

EX2
i

)p/2
for p ≥ 2.

Using Lemma 1.2, we can get the following lemma by the same argument as
that in Theorem 2.3.1 of Stout [21].

Lemma 1.3. Let p ≥ 1 and {Xn, n ≥ 1} be a sequence of WOD random
variables with EXn = 0 and E|Xn|p <∞ for any n ≥ 1. Then there exist two
positive constants C1(p) and C2(p) depending only on p such that

E

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p)
≤ C1(p)(log n)pg(n)

n∑
i=1

E|Xi|p for 1 < p ≤ 2

and

E

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p)
≤ C1(p)(log n)p

n∑
i=1

E|Xi|p
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+ C2(p)(log n)pg(n)

(
n∑
i=1

EX2
i

)p/2
for p ≥ 2,

where log n = ln max(n, e).

The following lemma can be found in Remark 3 of Landers and Rogge [13].

Lemma 1.4. For sequences {an, n ≥ 1} and {bn, n ≥ 1} of nonnegative real

numbers, if sup
n≥1

n−1
n∑
i=1

ai <∞, then

n∑
i=1

aibi ≤

(
sup
m≥1

m−1
m∑
i=1

ai

)
n∑
i=1

bi

for each n ≥ 1.

The last one is a fundamental inequality for stochastic domination. For the
proof, one can refer to Wu [29].

Lemma 1.5. Assume that {Xni, i ≥ 1, n ≥ 1} is an array of random variables
stochastically dominated by a random variable X. Then for all α > 0 and
b > 0, there exist two positive constants C1 and C2 such that

E|Xni|αI(|Xni| ≤ b) ≤ C1 [E|X|αI(|X| ≤ b) + bαP (|X| > b)]

and

E|Xni|αI(|Xni| > b) ≤ C2E|X|αI(|X| > b).

Consequently, E|Xni|α ≤ CE|X|α.

2. Lp convergence for the partial sums under the condition of
RCI(α)

In this section, we will investigate the Lp convergence for arrays of row-
wise WOD random variables under the condition of RCI(α) by using the
Marcinkiewicz-Zygmund type moment inequality and Rosenthal type moment
inequality.

The first theorem deals with the case 1 ≤ p < 2.

Theorem 2.1. Let 1 ≤ p < 2 and {Xn, n ≥ 1} be a sequence of WOD random
variables. Suppose that the following conditions hold true:

(i) {|Xn|p, n ≥ 1} is RCI(α) for some α ∈ (0, 1p );

(ii) g(n) = O(nδ) for some 0 ≤ δ < (2− p)( 1
p − α);

(iii) lim
n→∞

g(n)

(
1
n

n∑
i=1

E[(|Xi|p − iα)I(|Xi|p > iα)]

)
= 0.

Then

n−1/p|Sn − ESn| → 0 in Lp.(2.1)
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Proof. For fixed n ≥ 1, denote

Yn = −nαI(Xn < nα) +XnI(Xn ≤ nα) + nαI(Xn > nα),

Zn = Xn − Yn,
and

S(1)
n =

n∑
i=1

Yi, S
(2)
n =

n∑
i=1

Zi.

It is easy to see that |Yn| = min{|Xn|, nα}, |Zn| = (|Xn| − nα)I(|Xn| >
nα) and |Zn|p ≤ (|Xn|p − nα)I(|Xn|p > nα) for all p ≥ 1. By Lemma 1.1,
{Yn − EYn, n ≥ 1} and {Zn − EZn, n ≥ 1} are both sequences of zero mean
WOD random variables.

Note that Sn−ESn = S
(1)
n −ES(1)

n +S
(2)
n −ES(2)

n . To prove (2.1), it suffices
to show

n−1/p|S(1)
n − ES(1)

n | → 0 in L2(2.2)

and

n−1/p|S(2)
n − ES(2)

n | → 0 in Lp.(2.3)

Using Lemma 1.2 and the definition of RCI(α) of the sequence {|Xn|p, n ≥ 1},
we obtain

n−2/pE|S(1)
n − ES(1)

n |2 = n−2/pE

∣∣∣∣∣
n∑
i=1

(Yi − EYi)

∣∣∣∣∣
2

≤ n−2/p[C1(p) + C2(p)g(n)]

n∑
i=1

E |Yi − EYi|2

≤ Cn−2/pg(n)

n∑
i=1

EY 2
i

≤ Cn−2/p+(2−p)α · nδ
n∑
i=1

E|Yi|p

≤ Cn−(2−p)(
1
p−α)+δ

(
sup
n≥1

n−1
n∑
i=1

E|Xi|p
)
.

The expression above clearly goes to 0 as n→∞.
Using Lemma 1.2 again and condition (iii), we have

n−1E
∣∣∣S(2)
n − ES(2)

n

∣∣∣p = n−1E

∣∣∣∣∣
n∑
i=1

(Zi − EZi)

∣∣∣∣∣
p

≤ n−1[C1(p) + C2(p)g(n)]

n∑
i=1

E|Zi − EZi|p
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≤ Cg(n)

(
1

n

n∑
i=1

E[(|Xi|p − iα)I(|Xi|p > iα)]

)
→ 0

as n→∞.
This completes the proof of the theorem. �

Remark 2.1. When g(n) = O(1), the third condition (iii) of Theorem 2.1 is
equivalent to the second condition of the definition of RCI(α).

Next, we consider the case p ≥ 2.

Theorem 2.2. Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of WOD random
variables with

sup
n≥1

1

n

n∑
i=1

E|Xi|p <∞.

If g(n) = O(nδ) holds for some 0 ≤ δ < p(θ − 1/2) and θ > 1/2, then

n−θ|Sn − ESn| → 0 in Lp.(2.4)

Proof. By Lemma 1.2 and Cr-inequality, we obtain

E
(
n−θ|Sn − ESn|

)p ≤ C1n
−pθ

n∑
i=1

E|Xi|p + C2n
−pθg(n)

(
n∑
i=1

E|Xi|2
)p/2

≤ C1n
−pθ

n∑
i=1

E|Xi|p + C2n
−pθ+(p/2)−1g(n)

n∑
i=1

(EXi
2)p/2

≤ Cn−pθ+(p/2)−1+δ
n∑
i=1

E|Xi|p

≤ Cn−p(θ−1/2)+δ
(

sup
n≥1

1

n

n∑
i=1

E|Xi|p
)
→ 0 as n→∞,

which yields (2.4). The proof is completed. �

3. Complete convergence for the maximum of the partial sums
under the condition of SRCI(α)

A sequence {Xn, n ≥ 1} of random variables is said to converge completely
to a constant a if for any ε > 0,

∞∑
n=1

P (|Xn − a| > ε) <∞.

In this case we write Xn → a completely. It is easily seen that complete con-
vergence implies almost sure convergence in view of the Borel-Cantelli lemma.

The condition of SRCI(α) is a “strong” version of the condition of RCI(α).
In this section, we will show that each of the theorems in the previous section
has a corresponding “strong” analogue in the sense of complete convergence.
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Theorem 3.1. Let 1 < p < 2, and {Xn, n ≥ 1} be a sequence of WOD random
variables. If {|Xn|p, n ≥ 1} is SRCI(α) for some α ∈ (0, 1/(2− p)) and g(n) =
O(nδ) for some 0 ≤ δ < min{p− 1, 1− (2− p)α}, then

n−1 max
1≤i≤n

|Si − ESi| → 0 completely.(3.1)

Proof. For each n ≥ 1, let m = mn be the integer such that

2m−1 < n ≤ 2m.

Observe that

n−1 max
1≤i≤n

|Si − ESi| ≤ (2m−1)−1 max
1≤i≤2m

|Si − ESi|

= 2 · 2−m max
1≤i≤2m

|Si − ESi| .

Hence, to prove (3.1), it suffices to show

2−m max
1≤i≤2m

|Si − ESi| → 0 completely.

Let Yn, Zn, S
(1)
n , S

(2)
n be defined as in the proof of Theorem 2.1. We first prove

2−m max
1≤i≤2m

|S(2)
i − ES

(2)
i | → 0 completely.(3.2)

Noting that
∞∑
n=1

P (|Xn − a| > ε) ≤
∞∑
n=1

E|Xn − a|k

εk
,

it suffices to show
∞∑
m=0

E

(
2−m max

1≤i≤2m

∣∣∣S(2)
i − ES

(2)
i

∣∣∣)p <∞.
By Lemma 1.3, we get

∞∑
m=0

E

(
2−m max

1≤i≤2m

∣∣∣S(2)
i − ES

(2)
i

∣∣∣)p

≤ C

∞∑
m=0

2−mp · g(2m) logp(2m)

2m∑
i=1

E |Zi − EZi|p

≤ C

∞∑
m=0

2−mp ·mp · 2mδ
2m∑
i=1

E |Zi|p

≤ C

∞∑
m=0

mp2−mp+mδ
2m∑
i=1

E |Zi|p

= C

∞∑
i=1

E|Zi|p
∑

[m:2m≥i]

mp2−mp+mδ
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≤ C

∞∑
i=1

ln2 i− ln i+ 1

ip−δ
E|Zi|p

≤ C

∞∑
i=1

i−1E[(|Xi|p − iα)I(|Xi|p > iα)] <∞,(3.3)

which implies (3.2).
Next, we show that

2−m max
1≤i≤2m

|S(1)
i − ES

(1)
i | → 0 completely.(3.4)

Similar to the proof of (3.3) and noting that |Yi| = min{|Xi|, iα}, we have by
Lemmas 1.3 and 1.4 that

∞∑
m=0

E

(
2−m max

1≤i≤2m

∣∣∣S(1)
i − ES

(1)
i

∣∣∣)2

≤ C

∞∑
m=0

2−2m · log2(2m) · g(2m)

2m∑
i=1

EY 2
i

≤ C

∞∑
m=0

2−2mm22mδ
2m∑
i=1

i(2−p)αE|Xi|p

≤ C

∞∑
m=0

m22−2m+mδ
2m∑
i=1

i(2−p)α

(
sup
k≥1

k−1
k∑
i=1

E|Xi|p
)

≤ C

∞∑
m=0

2−2m+mδm2
2m∑
i=1

i(2−p)α

≤ C

∞∑
i=1

i(2−p)α
∑

[m:2m≥i]

m22−2m+mδ

≤ C

∞∑
i=1

[(ln i)2 + ln i− 1]i(2−p)α+δ−2 <∞,

which yields (3.4). This completes the proof of the theorem. �

For the case p ≥ 2, we have the following theorem.

Theorem 3.2. Let p ≥ 2, θ > 1/2, and {Xn, n ≥ 1} be a sequence of WOD
random variables with g(n) = O(nδ) for some 0 ≤ δ < (θ − 1/2)p. If

sup
n≥1

1

n

n∑
i=1

E|Xi|p <∞,(3.5)

then

n−θ max
1≤i≤n

|Si − ESi| → 0 completely.(3.6)
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Proof. Let mn, n ≥ 1 be defined as in the proof of Theorem 3.1. To prove (3.6),
it suffices to show

2−mθ max
1≤i≤2m

|Si − ESi| → 0 completely.

Indeed, by Lemma 1.3 and Cr inequality, we obtain
∞∑
m=0

E

(
2−mθ max

1≤i≤2m
|Si − ESi|

)p
=

∞∑
m=0

2−mpθE

(
max

1≤i≤2m
|Si − ESi|

)p

≤
∞∑
m=0

2−mpθ

C1(p) logp(2m)
2m∑
i=1

E|Xi|p + C2(p) logp(2m)g(2m)

(
2m∑
i=1

EX2
i

)p/2
≤ C

∞∑
m=0

mp · 2−mpθ+mδ
 2m∑
i=1

E|Xi|p +

(
2m∑
i=1

EX2
i

)p/2
≤ C

∞∑
m=0

mp · 2−mpθ−m+mp/2+mδ
2m∑
i=1

E|Xi|p

= C

∞∑
i=1

E|Xi|p
∑

[m:2m≥i]

mp · 2−mpθ−m+mp/2+mδ

≤ C

∞∑
i=1

(∫ ∞
ln i
ln 2

mp · 2−mpθ−m+mp/2+mδdm

)
E|Xi|p

≤ C

(
sup
n≥1

1

n

n∑
i=1

E|Xi|p
) ∞∑
i=1

(∫ ∞
ln i
ln 2

mp · 2−mpθ−m+mp/2+mδdm

)

≤ C

∞∑
i=1

(ln i)2 − ln i+ 1

ipθ+1−p/2−δ <∞,

which yields (3.6). This completes the proof of the theorem. �

4. Lp convergence for the partial sums under the condition of
R-h-integrability

Inspired by Shen et al. [19], we get the following result on Lp convergence
for arrays of rowwise WOD random variables.

Theorem 4.1. Let 1 ≤ p < 2, and {Xni, un ≤ i ≤ vn, n ≥ 1} be an array
of rowwise WOD random variables. Let kn → ∞ and h(n) ↑ ∞ as n → ∞.
Suppose that the following conditions hold:

(i) sup
n≥1

1
kn

vn∑
i=un

E|Xni|p <∞;

(ii) lim
n→∞

g(vn − un + 1) 1
kn

vn∑
i=un

E(|Xni| − h1/p(n))pI(|Xni|p > h(n)) = 0;
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(iii) lim
n→∞

(
h(n)
kn

) 2−p
p

g(vn − un + 1) = 0.

Then
1

k
1/p
n

vn∑
i=un

(Xni − EXni)→ 0 in Lp,

and, hence, in probability as n→∞.

Proof. For fixed n ≥ 1, denote for un ≤ i ≤ vn that

Yni = − h1/p(n)I(Xni < −h1/p(n)) +XniI(|Xni| ≤ h1/p(n))

+ h1/p(n)I(Xni > h1/p(n)),

Zni = Xni − Yni
= (Xni + h1/p(n))I(Xni < −h1/p(n)) + (Xni − h1/p(n))I(Xni > h1/p(n)),

Sn =
1

k
1/p
n

vn∑
i=un

(Yni − EYni), Tn =
1

k
1/p
n

vn∑
i=un

(Zni − EZni).

Noting that

1

k
1/p
n

vn∑
i=un

(Xni − EXni) = Sn + Tn, n ≥ 1,

we have by Cr-inequality that

E

∣∣∣∣∣ 1

k
1/p
n

vn∑
i=un

(Xni − EXni)

∣∣∣∣∣
p

≤ CE|Sn|p + CE|Tn|p.

To prove 1

k
1/p
n

∑vn
i=un

(Xni−EXni)→ 0 in Lp, we only need to show E|Sn|p → 0

and E|Tn|p → 0 as n→∞, where 1 ≤ p < 2.
Firstly, we will show that E|Sn|p → 0 as n→∞. Noting that 1 ≤ p < 2, it

suffices to show ES2
n → 0 as n→∞.

For fixed n ≥ 1, we have by Lemma 1.2 and conditions (i) and (iii) that

ES2
n = E

∣∣∣∣∣ 1

k
1/p
n

vn∑
i=un

(Yni − EYni)

∣∣∣∣∣
2

≤ C

k
2/p
n

g(vn − un + 1)

vn∑
i=un

EY 2
ni

≤ C

k
2/p
n

[h(n)]
(2−p)/p

g(vn − un + 1)

vn∑
i=un

E|Yni|p

≤ C
(
h(n)

kn

)(2−p)/p

g(vn − un + 1)

(
sup
n≥1

1

kn

vn∑
i=un

E|Xni|p
)

→ 0 as n→∞,
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which implies that ES2
n → 0 as n→∞, and thus, E|Sn|p → 0 as n→∞.

Next, we will show that E|Tn|p → 0 as n→∞. Noting that

|Zni| =
(
|Xni| − h1/p(n)

)
I
(
|Xni| > h1/p(n)

)
,

we have by Lemma 1.2 and condition (ii) that

E|Tn|p = E

∣∣∣∣∣ 1

k
1/p
n

vn∑
i=un

(Zni − EZni)

∣∣∣∣∣
p

≤ C

kn
g(vn − un + 1)

vn∑
i=un

E|Zni − EZni|p

≤ C

kn
g(vn − un + 1)

vn∑
i=un

E|Zni|p

≤ C

kn
g(vn − un + 1)

vn∑
i=un

E
(
|Xni| − h1/p(n)

)p
I (|Xni|p > h(n))

→ 0 as n→∞,

which implies that E|Tn|p → 0 as n → ∞. This completes the proof of the
theorem. �

Remark 4.1. If we take g(n) = O(1), then conditions (i) and (ii) of Theorem
4.1 are actually the two conditions of the definition of R-h integrability. In this
case, WOD reduces to END. On the other hand, Shen et al. [19] obtained the
similar conclusion as Theorem 4.1 for END random variables. In other words,
Theorem 4.1 extends the relevant conclusion in Shen et al. [19].

By Theorem 4.1, we can get the following corollary, which will be applied to
nonparametric regression models.

Corollary 4.1. Let 1 ≤ p < 2, {Xni, un ≤ i ≤ vn, n ≥ 1} be an array of
rowwise WOD random variables and {ani, un ≤ i ≤ vn, n ≥ 1} be an array of
constants. Suppose that h(n) ↑ ∞, and

(i) sup
n≥1

vn∑
i=un

|ani|pE|Xni|p <∞;

(ii) lim
n→∞

g(vn − un + 1)
vn∑
i=un

|ani|pE|Xni|pI (|Xni|p > h(n)) = 0;

(iii) lim
n→∞

g(vn − un + 1)

(
h(n) · sup

un≤i≤vn
|ani|p

)(2−p)/p

= 0.

Then
vn∑
i=un

ani(Xni − EXni)→ 0 in Lp,

and hence, in probability as n→∞.
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Proof. Denote 1
kn

= supun≤i≤vn |ani|
p. It follows from (iii) that kn → ∞ as

n→∞. Without loss of generality, we assume that ani ≥ 0 for all un ≤ i ≤ vn
and n ≥ 1. Otherwise, we will use a+ni and a−ni instead of ani respectively and

note that ani = a+ni − a−ni. Hence, it is clearly that {k1/pn aniXni, un ≤ i ≤
vn, n ≥ 1} is still an array of rowwise WOD random variables by Lemma 1.1.

Taking k
1/p
n aniXni instead of Xni in Theorem 4.1, we have by condition (i)

that

sup
n≥1

1

kn

vn∑
i=un

E|k1/pn aniXni|p = sup
n≥1

vn∑
i=un

|ani|pE|Xni|p <∞.

It follows by condition (ii) that

lim
n→∞

g(vn − un + 1)
1

kn

vn∑
i=un

E
(
|k1/pn aniXni| − h1/p(n)

)p
I(|k1/pn aniXni|p > h(n))

≤ lim
n→∞

g(vn − un + 1)
1

kn

vn∑
i=un

E|k1/pn aniXni|pI(|k1/pn aniXni|p > h(n))

≤ lim
n→∞

g(vn − un + 1)

vn∑
i=un

|ani|pE|Xni|pI(|Xni|p > h(n)) = 0.

Hence, the desired result follows from the statements above and Theorem 4.1
immediately. The proof is completed. �

5. An application to nonparametric regression models

In Section 4, we have established the Lp convergence for arrays of row-
wise WOD random variables under some uniformly integrable conditions. In
this section, we will present an application to nonparametric regression models
based on WOD errors by using the Lp convergence obtained in Section 4.

Consider the following nonparametric regression model:

Yni = f(xni) + εni, i = 1, 2, . . . , n, n ≥ 1,(5.1)

where {xni, i = 1, 2, . . . , n} are known fixed design points from A, and A ⊂ Rm
is a given compact set for some m ≥ 1, f(·) is an unknown regression function
defined on A, and εn1, εn2, . . . , εnn are random errors for each n ≥ 1. As an
estimator of f(·), we consider the weighted regression estimator as follows:

fn(x) =

n∑
i=1

Wni(x)Yni, x ∈ A ⊂ Rm,(5.2)

where Wni(x) = Wni(x : xn1, xn2, . . . , xnn), i = 1, 2, . . . , n are the weight
functions.

The above weighted regression estimator for nonparametric regression mod-
els was first adapted by Georgiev [9] to the fixed design case. Since then,
many authors were devoted to studying the asymptotic properties of fn(x) and
providing many interesting results. We refer the readers to Roussas [16], Fan
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[8], Roussas et al. [17], Tran et al. [23], Liang and Jing [14], Wang et al. [27],
Chen et al. [5], Shen [18], Bruno et al. [1] and Grama et al. [10] for instance.
The purpose of this section is to further investigate the mean consistency and
weak consistency for the estimator fn(x) in the nonparametric regression model
based on WOD errors by using the results obtained in Section 4.

5.1. Theoretical results

In this subsection, let c(f) denote the set of continuity points of the function
f on A. The symbol ‖x‖ denotes the Euclidean norm. For any fixed design
point x ∈ A, the following assumptions on weight functions Wni(x) will be
used:

(H1)
n∑
i=1

Wni(x)→ 1 as n→∞;

(H2)
n∑
i=1

|Wni(x)| ≤ C <∞ for all n;

(H3)
n∑
i=1

|Wni(x)| · |f(xni) − f(x)|I(‖xni − x‖ > η) → 0 as n → ∞ for all

η > 0.

We point out that the design assumptions (H1)-(H3) are regular conditions
for nonparametric regression models and are very general. For more details,
one can refer to Liang and Jing [14] and Wang et al. [27] for instance. Based on
the assumptions above, we present the following result for the nonparametric
regression estimator fn(x).

Theorem 5.1. Let {εni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise WOD
random variables with mean zero which is stochastically dominated by a random
variable X with E|X|p < ∞ for some 1 < p < 2. Suppose that the conditions
(H1)-(H3) hold, and

max
1≤i≤n

|Wni(x)| = O(n−u) for some 0 < u ≤ 1.(5.3)

If g(n) = O(nδ) for some 0 ≤ δ < min{u(p−1), u(2−p)}, then for all x ∈ c(f),

fn(x)→ f(x) in Lp,(5.4)

and thus,

fn(x)→ f(x) in probability.

Proof. For η > 0 and x ∈ c(f), we obtain

|Efn(x)− f(x)| ≤
n∑
i=1

|Wni(x)| · |f(xni)− f(x)|I(‖xni − x‖ ≤ η)

+

n∑
i=1

|Wni(x)| · |f(xni)− f(x)|I(‖xni − x‖ > η)
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+ |f(x)| ·

∣∣∣∣∣
n∑
i=1

Wni(x)− 1

∣∣∣∣∣ .(5.5)

It follows from x ∈ c(f) that for all ε > 0, there exists a constant λ > 0 such
that for all x′ which satisfies ‖x′ − x‖ < λ, we have |f(x′)− f(x)| < ε. Taking
0 < η < λ in (5.5), we obtain that

|Efn(x)− f(x)| ≤ ε

n∑
i=1

|Wni(x)|

+

n∑
i=1

|Wni(x)| · |f(xni)− f(x)|I(‖xni − x‖ > η)

+ |f(x)| ·

∣∣∣∣∣
n∑
i=1

Wni(x)− 1

∣∣∣∣∣ .
By assumptions (H1)-(H3) and the arbitrariness of ε > 0, we have that for all
x ∈ c(f),

lim
n→∞

Efn(x) = f(x).

Note that

E|fn(x)− f(x)|p ≤ 2p−1E|fn(x)− Efn(x)|p + 2p−1|Efn(x)− f(x)|p.
Hence, to prove (5.4), it suffices to show

E|fn(x)− Efn(x)|p = E

∣∣∣∣∣
n∑
i=1

Wni(x)εni

∣∣∣∣∣
p

→ 0 as n→∞.(5.6)

We will apply Corollary 4.1 with Xni = εni, ani = Wni(x), un = 1, vn = n
and h(n) = na, where 0 < a < p(u− δ

2−p ). By E|X|p <∞ and (5.3), we have

sup
n≥1

vn∑
i=un

|ani|pE|Xni|p = sup
n≥1

n∑
i=1

|Wni(x)|pE|εni|p

≤ C sup
n≥1

(
max
1≤i≤n

|Wni(x)|
)p−1 n∑

i=1

|Wni(x)| · E|X|p

≤ C sup
n≥1

n−u(p−1) ≤ C <∞,

0 ≤ g(n)

n∑
i=1

|Wni(x)|pE|εni|pI(|εni|p > h(n))

≤ Cg(n)

n∑
i=1

|Wni(x)|pE|X|p

≤ Cnδ
(

max
n≥1
|Wni(x)|p−1

) n∑
i=1

|Wni(x)| · E|X|p
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≤ Cn−u(p−1)+δ → 0 as n→∞,

and(
h(n) sup

un≤i≤vn
|ani|p

)(2−p)/p

g(n) ≤ Cna(2−p)/p+δ
(

sup
1≤i≤n

|Wni(x)|p
)(2−p)/p

≤ Cn[a−p(u−
δ

2−p )]
2−p
p → 0 as n→∞.

Thus, the conditions (i)-(iii) in Corollary 4.1 are satisfied. By Corollary 4.1,
we can obtain the desired result (5.6), and thus (5.4) holds. The proof is
completed. �

5.2. The nearest neighbor weights

In this subsection, we will illustrate that the designed assumptions (H1)-
(H3) and (5.3) are satisfied for the nearest neighbor weights. Assume that
A = [0, 1] and take xni = i

n , i = 1, 2, . . . , n. For any x ∈ A, we rewrite
|xn1 − x|, |xn2 − x|, . . . , |xnn − x| as follows:

|x(n)R1(x)
− x| ≤ |x(n)R2(x)

− x| ≤ · · · ≤ |x(n)Rn(x)
− x|.

If |xni − x| = |xnj − x|, then |xni − x| is permuted before |xnj − x| when
xni < xnj .

Let 1 ≤ kn ≤ n, the nearest neighbor weight function estimator of f(x) in
model (5.1) is defined as follows:

f̃n(x) =

n∑
i=1

W̃ni(x)Yni,

where

W̃ni(x) =

{
1
kn
, if |xni − x| ≤ |x(n)Rkn (x)

− x|,
0, otherwise.

Assume that f(x) is continuous on compact set A. For simplicity, let kn =
bnac for some 0 < a < 1.

It is easily checked that for any x ∈ [0, 1], W̃ni(x) satisfies assumptions
(H1)-(H3) and (5.3).

For (H1), it is easy to get that

n∑
i=1

W̃ni(x) =

n∑
i=1

W̃nRi(x)(x) =

kn∑
i=1

1

kn
= 1.

We can easily get (H2) by W̃ni(x) ≥ 0.

Next, we prove (H3). Actually, it follows from the definition of W̃ni(x) that

n∑
i=1

|W̃ni(x)| · |f(xni)− f(x)|I(‖xni − x‖ > η)



1468 Y. HE, X. WANG, AND C. YAO

≤ C

n∑
i=1

(xni − x)2|W̃ni(x)|
η2

≤ C

kn∑
i=1

( in )2

kn

≤ Cn2a−2 → 0 as n→∞.

Finally, we verify (5.3). By the definition of W̃ni(x), we have that

max
1≤i≤n

|W̃ni(x)| = 1

kn
≤ Cn−a := Cn−u,

where u = a.
From the statements above, we can see that all conditions of Theorem 5.1

are satisfied.

5.3. Simulation

In this subsection, we will provide some numerical simulations to verify the
validity of our theoretical result.

The data are generated from model (5.1). For any fixed n ≥ 3, let random
vector (ξn1, ξn2, . . . , ξnn) ∼ Nn(0,Σ), where 0 represents zero vector and

Σ =



1 + ρ2 −ρ 0 · · · 0 0 0
−ρ 1 + ρ2 −ρ · · · 0 0 0
0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 + ρ2 −ρ 0
0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1 + ρ2


n×n

, 0 < ρ < 1.

Table 1. E(f) for f(x) = x1.5 and f(x) = sinx

f(x) x n=50 n=100 n=200 n=500
0.25 0.01879762 0.01094119 0.005982647 0.003000944

x1.5 0.5 0.01842202 0.0104473 0.005595755 0.002911286
0.75 0.02424447 0.0105015 0.006491024 0.003075828
0.25 0.02164711 0.009789948 0.005561452 0.002931394

sinx 0.5 0.01696706 0.01019933 0.005751109 0.002931394
0.75 0.02465604 0.01128112 0.006392818 0.002988757

By Joag-Dev and Proschan [12], it can be seen that (ξn1, ξn2, . . . , ξnn) is
an NA vector for each n ≥ 3 with finite moment of any order, and thus is a
WOD vector. We choose casually that ρ = 0.6, u = a = 2/3, kn = bn2/3c and
p = 12/7 in Theorem 5.1. Taking the points x = 0.25, 0.5, 0.75 and the sample
sizes n as n = 50, 100, 200, 500, respectively, we use R software to compute

(f̃n(x)− f(x))p for 1000 times and use their arithmetic mean, denote by E(f),
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Figure 1: Boxplots of E(f) with x=0.25 and f(x)=x^(1.5)
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Figure 2: Boxplots of E(f) with x=0.5 and f(x)=x^(1.5)
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Figure 3: Boxplots of E(f) with x=0.75 and f(x)=x^(1.5)
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Figure 4: Boxplots of E(f) with x=0.25 and f(x)=sin(x)
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Figure 5: Boxplots of E(f) with x=0.5 and f(x)=sin(x)
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Figure 6: Boxplots of E(f) with x=0.75 and f(x)=sin(x)

to estimate E(f̃n(x) − f(x))p with f(x) = x1.5 and f(x) = sinx, respectively.
We obtain the boxplots of E(f) in Figures 1-6 and show the results in Table 1.

Figures 1-3 are the boxplots of E(f) for f(x) = x1.5 and Figures 4-6 are the
boxplots of E(f) for f(x) = sinx with x = 0.25, 0.5, 0.75, respectively. From
Figures 1-6 and Table 1, we can see that no matter f(x) = x1.5 or f(x) = sinx,
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Figure 7: Comparison of n(x) and f(x)=x(1.5)  with n=200
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Figure 8: Comparison of n(x) and f(x)=x(1.5)  with n=500
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Figure 9: Comparison of n(x) and f(x)=x^(1.5) with n=1000

++++++++
+
++

+
+
++

+
++

+
++

+
+
+
+
+
+
++

+
+
+
+
++

+
+
+
+++

++++++++++++
+++

++
++

++
+
+
+
+
+
++

+
+
+
+
+
+
+
+
+
+
+
++

+
+
+
+
+
++

++
++

+++++++

0.0 0.2 0.4 0.6 0.8 1.0

Experiments times 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f
~

Figure 10: Comparison of n(x) and f(x)=cos2*πx  with n=200
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Figure 11: Comparison of n(x) and f(x)=cos2*πx  with n=500
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Figure 12: Comparison of n(x) and f(x)=cos2*πx  with n=1000

for the fixed points x = 0.25, 0.5 or 0.75, the estimation of E(f̃n(x) − f(x))p

decreases markedly to zero as n increases. These simulation results above verify
the validity of our theoretical results.

We also present a numerical simulation for the uniformly mean consistency

of the nearest neighbor estimator f̃n(x). For ρ = 0.8, kn = bn4/7c, and every
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point x = 0.01, 0.02, . . . , 0.98, 0.99, 1, we also use R software to compute f̃n(x)
for 1000 times and take the mean of 1000 numbers as the final estimation value
of f̃n(x) for each point, and then compare the estimations with f(x) = x1.5

and f(x) = cos 2πx in Figures 7-12 respectively under different sample sizes.
Figures 7-12 show a very good fit of the uniformly mean consistency result

when the sample size n increases. These simulation results above also verify
the validity of our theoretical results.
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