DOI QR코드

DOI QR Code

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio (Department of Mathematical Science, Ibaraki University Mito)
  • Received : 2006.06.13
  • Published : 2008.03.31

Abstract

Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.

Keywords

References

  1. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related Topics, North-Holland Mthematics Studies, 116(1985).
  2. T. Horiuchi, Some remarks on Kato's inequality, J. of Inequalities and applications., 6(2001), 29-36. https://doi.org/10.1155/S1025583401000030
  3. T. Kato, Schrodinger operators with singular potentials, Israel J. Math., 1 (1972), 135-148.