L^{r} INEQUALITIES FOR POLYNOMIALS

Reingachan \mathbf{N}^{1}, Mayanglambam Singhajit Singh ${ }^{2}$, Nirmal Kumar Singha ${ }^{3}$, Khangembam Babina Devi ${ }^{4}$ and Barchand Chanam ${ }^{5}$
${ }^{1}$ Department of Mathematics, National Institute of Technology,
Langol Imphal 795004, Manipur, India
${ }^{1}$ e-mail: reinga14@gmail.com
${ }^{2}$ Department of Mathematics, National Institute of Technology,
Langol Imphal 795004, Manipur, India
e-mail: msinghasingho@gmail.com
${ }^{3}$ Department of Mathematics, National Institute of Technology,
Langol Imphal 795004, Manipur, India
e-mail: nirmalsingha99@gmail.com
${ }^{4}$ Department of Mathematics, National Institute of Technology,
Langol Imphal 795004, Manipur, India
e-mail: khangembambabina@gmail.com
${ }^{5}$ Department of Mathematics, National Institute of Technology,
Langol Imphal 795004, Manipur, India
e-mail: barchand_2004@yahoo.co.in

Abstract. If $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zero in $|z|<k, k \geq 1$ and $p^{\prime}(z)$ its derivative, then Qazi [19] proved

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \frac{1+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{1+k^{\mu+1}+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{\mu+1}+k^{2 \mu}\right)} \max _{|z|=1}|p(z)| .
$$

In this paper, we not only obtain the L^{r} version of the polar derivative of the above inequality for $r>0$, but also obtain an improved L^{r} extension in polar derivative.

[^0]
1. Introduction and preliminaries

Let $p(z)$ be a polynomial of degree n. Then, according to a well-known classical result due to Bernstein [4],

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is sharp and equality holds if $p(z)$ has all its zeros at the origin.
Now, for a polynomial $p(z)$ of degree n, we define for $r>0$

$$
\begin{equation*}
\|p\|_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{1.2}
\end{equation*}
$$

We let $r \rightarrow \infty$ in (1.2) and make use of the well-known fact from analysis [22] that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}=\max _{\mid z=1}|p(z)|, \tag{1.3}
\end{equation*}
$$

we can suitably denote

$$
\begin{equation*}
\|p\|_{\infty}=\max _{|z|=1}|p(z)| . \tag{1.4}
\end{equation*}
$$

Similarly, one can define

$$
\|p\|_{0}=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|p\left(e^{i \theta}\right)\right| d \theta\right\}
$$

and show that $\lim _{r \rightarrow 0^{+}}\|p\|_{r}=\|p\|_{0}$. It would be of further interest that by taking limit as $r \rightarrow 0^{+}$, the stated results concerning L^{r} inequalities holding for $r>0$, hold for $r=0$ as well. Inequality (1.1) can be obtained by letting $r \rightarrow \infty$ in the inequality

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{r} \leq n\|p\|_{r}, r>0 \tag{1.5}
\end{equation*}
$$

Inequality (1.5) for $r \geq 1$ is due to Zygmund [24]. Arestov [1] proved that (1.5) remains valid for $0<r<1$ as well.

If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then inequalities (1.1) and (1.5) can be respectively improved by

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{2}\|p\|_{\infty} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{r} \leq \frac{n}{\|1+z\|_{r}}\|p\|_{\infty}, r>0 \tag{1.7}
\end{equation*}
$$

Inequality (1.6) was conjectured by Erdös and later verified by Lax [13], whereas inequality (1.7) was proved by de-Brujin [8] for $r \geq 1$, Rahman and Schmeisser [20] showed that (1.7) remains true for $0<r<1$.

Let $P_{n, \mu}$ be the class of polynomials $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, of degree n. As a generalization of (1.6), Malik [14] proved that if $p \in P_{n, 1}$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{1+k}\|p\|_{\infty} \tag{1.8}
\end{equation*}
$$

For a polynomial $p(z)$ of degree n, we now define the polar derivative of $p(z)$ with respect to a real or complex number α as

$$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)
$$

This polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative $p^{\prime}(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z)
$$

uniformly with respect to z for $|z| \leq R, R>0$.
Aziz [2] was among the first who extended some of the above inequalities to polar versions. He, in fact, extended inequality (1.8) to polar derivative of a polynomial by proving that if $p(z)$ is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then for any complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq n\left(\frac{|\alpha|+k}{1+k}\right) \max _{|z|=1}|p(z)| . \tag{1.9}
\end{equation*}
$$

As an L^{r} analogue of polar derivative of (1.8), Rather [21] proved that for any complex number α with $|\alpha| \geq 1$ and for every $r>0$,

$$
\begin{equation*}
\left\|D_{\alpha} p(z)\right\|_{r} \leq n\left(\frac{|\alpha|+k}{\|z+k\|_{r}}\right)\|p\|_{r} \tag{1.10}
\end{equation*}
$$

Over the last four decades, many different authors produced a large number of different versions and generalizations of the above inequalities. Many of these generalizations involve the comparison of polar derivative $D_{\alpha} p(z)$ with various choices of $p(z), \alpha$ and other parameters. More information on this topic can be found in the books of Milovanović et al. [17] and Marden [15], and in the literatures $[6,7,10,12,16,23]$.

Using the class of Lacunary-type polynomial, Mir [18] recently extended (1.9) by proving that if $p(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then for every $r>0$ and for every
complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\left\|D_{\alpha} p(z)\right\|_{r} \leq n \frac{\left(|\alpha|+k^{\mu}\right)}{\left\|z+k^{\mu}\right\|_{r}}\|p\|_{r} . \tag{1.11}
\end{equation*}
$$

Further, Qazi [19] improved (1.8) by proving:
Theorem 1.1. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{\left\|A_{0}+z\right\|_{\infty}}\|p\|_{\infty} \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{0}=\frac{n\left|a_{0}\right| k^{\mu+1}+\mu\left|a_{\mu}\right| k^{2 \mu}}{n\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}} \tag{1.13}
\end{equation*}
$$

Dewan et al. [9] also improved Theorem 1.1 by involving $\min _{|z|=k}|p(z)|$.
Theorem 1.2. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\infty} \leq \frac{n}{\left\|A_{0}+z\right\|_{\infty}}\|p\|_{\infty}-\frac{n}{k^{n}}\left\{1-\frac{1}{\left\|A_{0}+z\right\|_{\infty}}\right\} \min _{|z|=k}|p(z)|, \tag{1.14}
\end{equation*}
$$

where A_{0} is as defined in (1.13).
Dewan et al. [9] extended Theorem 1.1 to L^{r} analogue for $r \geq 1$ and for $r>0$ by Chanam [5].
Theorem 1.3. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for each $r>0$,

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{r} \leq \frac{n}{\left\|A_{0}+z\right\|_{r}}\|p\|_{r} \tag{1.15}
\end{equation*}
$$

where A_{0} is as defined in (1.13).

2. Lemmas

For the proof of the theorem, we require the following lemmas. The first lemma is due to Qazi [19].
Lemma 2.1. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
k^{\mu+1} \frac{\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1}{1+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}\left|p^{\prime}(z)\right| \leq\left|q^{\prime}(z)\right| \text { on }|z|=1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu} \leq 1, \tag{2.2}
\end{equation*}
$$

where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.

The next lemma is due to Govil and Kumar [11].
Lemma 2.2. Let p, q be any two positive real numbers such that $p \geq q x$, where $x \geq 1$. If γ is any real such that $0 \leq \gamma \leq 2 \pi$, then for any $y \geq 1$

$$
\begin{equation*}
\frac{p+q y}{x+y} \leq\left|\frac{p+q e^{i \gamma}}{x+e^{i \gamma}}\right| . \tag{2.3}
\end{equation*}
$$

Lemma 2.3. Let z_{1}, z_{2} be two complex numbers independent of α, where α being real. Then for $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|z_{1}+z_{2} e^{i \alpha}\right|^{r} d \alpha=\int_{0}^{2 \pi}| | z_{1}\left|+\left|z_{2}\right| e^{i \alpha}\right|^{r} d \alpha \tag{2.4}
\end{equation*}
$$

The above lemma is due to Govil and Kumar [11].
Lemma 2.4. Let $p(z)$ be a polynomial of degree n. Then for every γ with $0 \leq \gamma<2 \pi$ and $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+e^{i \gamma} q^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta d \gamma \leq 2 \pi n^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta \tag{2.5}
\end{equation*}
$$

where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.
The above result is due to Aziz and Rather [3].

3. Main Results

In this paper, we obtain L^{r} analogue of the polar derivative version of Theorem 1.2 for $r>0$ which further extends both Theorems 1.1 and 1.3. More precisely, we prove:

Theorem 3.1. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for every real or complex number α and β with $|\alpha| \geq 1$ and $|\beta|<\frac{1}{k^{n}}$ and for each $r>0$,

$$
\begin{equation*}
\left\|D_{\alpha} p(z)+n \alpha m \beta z^{n-1}\right\|_{r} \leq \frac{n(|\alpha|+A)}{\|A+z\|_{r}}\left\|p(z)+m \beta z^{n}\right\|_{r} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{n\left|a_{0}\right| k^{\mu+1}+\mu\left|a_{\mu}+m \beta\right| k^{2 \mu}}{n\left|a_{0}\right|+\mu\left|a_{\mu}+m \beta\right| k^{\mu+1}} \quad \text { and } m=\min _{|z|=k}|p(z)| . \tag{3.2}
\end{equation*}
$$

Proof. We have for any $r>0$

$$
\begin{align*}
&\left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left[\int_{0}^{2 \pi}\left|D_{\alpha}\left\{p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right\}\right|^{r} d \theta\right] \\
&=\left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left[\int_{0}^{2 \pi} \mid n\left\{p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right\}\right. \\
&\left.+\left.\left(\alpha-e^{i \theta}\right)\left\{p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right\}\right|^{r} d \theta\right] \\
&=\left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+n \alpha m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right\} . \tag{3.3}
\end{align*}
$$

If $q(z)=z^{n} \overline{\left(\frac{1}{\bar{z}}\right)}$, then it can be easily verified that for $0 \leq \theta<2 \pi$,

$$
n\left\{p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right\}-e^{i \theta}\left\{p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right\}=e^{i(n-1) \theta} \overline{q^{\prime}\left(e^{i \theta}\right)} .
$$

Using the above inequality, we have for $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
D_{\alpha}\left\{p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right\}= & n\left\{p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right\} \\
& +\left(\alpha-e^{i \theta}\right)\left\{p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right\} \\
= & e^{i(n-1) \theta} \overline{q^{\prime}\left(e^{i \theta}\right)}+\alpha\left\{p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right\},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|D_{\alpha}\left\{p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right\}\right| \leq\left|q^{\prime}\left(e^{i \theta}\right)\right|+|\alpha|\left|p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right| . \tag{3.4}
\end{equation*}
$$

Using inequality (3.4) in inequality (3.3), we get

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+n \alpha m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right\} \\
& \leq\left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left[\int_{0}^{2 \pi}\left\{\left|q^{\prime}\left(e^{i \theta}\right)\right|+|\alpha|\left|p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right|\right\}^{r} d \theta\right] . \tag{3.5}
\end{align*}
$$

By Rouche's theorem, the polynomial $P(z)=p(z)+m \beta z^{n}$ has no zero in $|z|<k, k \geq 1$ and if we apply Lemma 2.1 to the polynomial $P(z)$, we have

$$
\begin{equation*}
\left\{\frac{n\left|a_{0}\right| k^{\mu+1}+\mu\left|a_{\mu}\right| k^{2 \mu}}{n\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}}\right\}\left|p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right| \leq\left|q^{\prime}\left(e^{i \theta}\right)\right| . \tag{3.6}
\end{equation*}
$$

Taking $p=\left|q^{\prime}\left(e^{i \theta}\right)\right|, q=\left|p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right|, x=A$ and $y=|\alpha|$ in Lemma 2.2, we have for all $\gamma \in[0,2 \pi]$,

$$
\begin{align*}
& \left|A+e^{i \gamma}\right|\left\{\left|q^{\prime}\left(e^{i \theta}\right)\right|+|\alpha|\left|p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right|\right\} \\
& \leq(A+|\alpha|)| | q^{\prime}\left(e^{i \theta}\right)\left|+e^{i \gamma}\right| p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}| | . \tag{3.7}
\end{align*}
$$

Further, it can be easily verified that

Now, inequality (3.7) and inequality (3.8) give

$$
\begin{align*}
& \left|A+e^{i \gamma}\right|\left\{\left|q^{\prime}\left(e^{i \theta}\right)\right|+|\alpha|\left|p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right|\right\} \\
& \leq(A+|\alpha|)| | p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\left|+e^{i \gamma}\right| q^{\prime}\left(e^{i \theta}\right)| | . \tag{3.9}
\end{align*}
$$

Applying inequality (3.9) to the right hand side of inequality (3.5), we have for any $r>0$

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+n \alpha m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right\} \\
& \leq(A+|\alpha|)^{r}\left\{\int_{0}^{2 \pi} \int_{0}^{2 \pi}| | p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\left|+e^{i \gamma}\right| q^{\prime}\left(e^{i \theta}\right)| |^{r} d \gamma d \theta\right\} . \tag{3.10}
\end{align*}
$$

Using Lemma 2.3 and then applying Lemma 2.4 to the right hand side of inequality (3.10), we get

$$
\begin{aligned}
& \left\{\int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+n \alpha m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right\} \\
& \leq(A+|\alpha|)^{r} 2 \pi n^{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \gamma d \theta\right\}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|A+e^{i \gamma}\right|^{r} d \gamma\right\}^{\frac{1}{r}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+n \alpha m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq(A+|\alpha|) n\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}}
\end{aligned}
$$

which completes the proof.

Remark 3.2. If we take $\beta=0$ and divide both sides of inequality (3.1), by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, Theorem 3.1 reduces to the integral analogue of Theorem 1.1.

If we let $r \rightarrow \infty$ in (3.1), we get the following result.
Corollary 3.3. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for every real or complex numbers α and β with $|\alpha|>1$ and $|\beta|<\frac{1}{k^{n}}$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)+n \alpha m \beta z^{n-1}\right| \leq \frac{n(|\alpha|+A)}{(A+1)} \max _{|z|=1}\left|p(z)+m \beta z^{n}\right| . \tag{3.11}
\end{equation*}
$$

Remark 3.4. If we take $\beta=0$, Theorem 3.1 reduces to the following interesting result which provides the polar version of Theorem 1.3.

Corollary 3.5. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for every real or complex number α with $|\alpha|>1$ and for each $r>0$,

$$
\begin{equation*}
\left\|D_{\alpha} p(z)\right\|_{r} \leq \frac{n(|\alpha|+A)}{\|A+z\|_{r}}\|p\|_{r}, \tag{3.12}
\end{equation*}
$$

where A is as defined in Theorem 3.1.
Remark 3.6. If we divide both sides of (3.12) of Corollary 3.5 by $|\alpha|$ and take limit as $|\alpha| \rightarrow \infty$, we obtain inequality (1.15) of Theorem 1.3, which corresponds the L^{r} analogue of Theorem 1.1.

Remark 3.7. By (2.2) of Lemma 2.1, it is evident that

$$
A=\frac{n\left|a_{0}\right| k^{\mu+1}+\mu\left|a_{\mu}\right| k^{2 \mu}}{n\left|a_{0}\right|+\mu\left|a_{\mu}\right| k^{\mu+1}} \geq k^{\mu}
$$

for $1 \leq \mu \leq n$ and hence for $|\alpha| \geq 1$ and for each $r>0$,

$$
\begin{equation*}
\frac{(|\alpha|+A)}{\|A+z\|_{r}} \leq \frac{\left(|\alpha|+k^{\mu}\right)}{\left\|k^{\mu}+z\right\|_{r}} . \tag{3.13}
\end{equation*}
$$

Using (3.13) to Corollary 3.5, we get inequality (1.11).
Remark 3.8. Dividing both sides of inequality (3.1) by $|\alpha|$ and taking limit as $|\alpha| \rightarrow \infty$, we have the following result independently proved by Chanam [5].

Corollary 3.9. If $p \in P_{n, \mu}, 1 \leq \mu \leq n$ and $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for every real or complex number β with $|\beta|<\frac{1}{k^{n}}$ and for each $r>0$,

$$
\begin{equation*}
\left\|p^{\prime}(z)+m n \beta z^{n-1}\right\|_{r} \leq \frac{n}{\|A+z\|_{r}}\left\|p(z)+m \beta z^{n}\right\|_{r} \tag{3.14}
\end{equation*}
$$

where A and m are as defined in Theorem 3.1.

Remark 3.10. If we let $r \rightarrow \infty$ on both sides of (3.14), we have

$$
\begin{align*}
\max _{|z|=1}\left|p^{\prime}(z)+m n \beta z^{n-1}\right| & \leq \frac{n}{1+A} \max _{|z|=1}\left|p(z)+m \beta z^{n}\right| \\
& \leq \frac{n}{1+A}\left\{\max _{|z|=1}|p(z)|+m|\beta|\right\}, \tag{3.15}
\end{align*}
$$

where A and m are as defined in Theorem 3.1.
Let z_{0} on $|z|=1$ be such that

$$
\max _{|z|=1}\left|p^{\prime}(z)\right|=\left|p^{\prime}\left(z_{0}\right)\right| .
$$

Then, in particular, inequality (3.15) becomes

$$
\left|p^{\prime}\left(z_{0}\right)+m n \beta z_{0}^{n-1}\right| \leq \frac{n}{1+A}\left\{\max _{|z|=1}|p(z)|+m|\beta|\right\} .
$$

Choosing the argument of β suitably such that

$$
\left|p^{\prime}\left(z_{0}\right)+m n \beta z_{0}^{n-1}\right|=\left|p^{\prime}\left(z_{0}\right)\right|+m n|\beta|,
$$

and finally making limit as $|\beta| \rightarrow \frac{1}{k^{n}}$, we get as cited earlier, the best possible inequality due to Dewan et al. [9].

References

[1] V.V. Arestov, On integral inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45(2) (1981), 3-22.
[2] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55(2) (1988), 183-193.
[3] A. Aziz and N.A. Rather, Some Zygmund type Lp inequalities for polynomials, J. Math. Anal. Appl., 289(2004), 14-29.
[4] S. Bernstein, "Lecons Sur Les Propriétés extrémales et la meilleure approximation desfunctions analytiques d'une fonctions reele," Gauthier-Villars (Paris, 1926).
[5] B. Chanam, L^{r} inequalities for polynomials, Southeast Asian Bulletin of Mathematics, 42 (2018), 825-832.
[6] B. Chanam, K.B. Devi and K. Krishnadas, Some inequalities concerning polar derivative of a polynomial, Int. J. Pure and Appl. Math. Sci., 14(1) (2021), 9-19.
[7] I. Das, R. Soraisam, M.S. Singh, N.K. Singha and B. Chanam, Inequalities for complex polynomial with restricted zeros, Nonlinear Funct. Anal. Appl., 28(4) (2023), 943-956.
[8] N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Ned-erl. Akad. Wetench. Proc. Ser. A 50 (1947), 1265-1272; Indag. Math., 9 (1947), 591-598.
[9] K.K. Dewan, A. Bhat and M.S. Pukhta, Inequalities concerning the L^{r} norm of a polynomial, J. Math. Anal. Appl., 224 (1998), 14-21.
[10] K.K. Dewan, N. Singh and A. Mir, Extensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl., 352 (2009), 807-815.
[11] N.K. Govil and P. Kumar, On L^{p} inequalities involving polar derivative of a polynomial, Acta Math. Hungar., 152 (2017), 130-139 .
[12] I. Hussain and A. Liman, Generalization of certain inequalities concerning the polar derivative of a polynomial, Kragujav. J. Math., 47(4) (2023), 613-625.
[13] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
[14] M.A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc., 1(2) (1969), 57-60.
[15] M. Marden, Geometry of Polynomials, Math. Surveys, Amer. Math. Soc., Providence, 31966.
[16] G.V. Milovanović, A. Mir and A. Malik, Estimates for the polar derivative of a constrained polynomial on a disk, CUBO, Math. J., 24(3) (2022), 541-554.
[17] G.V. Milovanović, D.S. Mitrinović and T.M. Rassias, Topics in Polynomials: Extremal Problems, Ineq. Zeros, World Scientific., Singapore, 1994.
[18] A. Mir, Bernstein-type integral inequalities for a certain class of polynomials, Mediterr. J. Math., 16(143) (2020), 1-11.
[19] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(2) (1992), 337-343.
[20] Q.I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
[21] N.A. Rather, Extremal properties and location of zeros of polynomials, Ph.D. Thesis, University of Kashmir, 1998.
[22] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company(reprinted in India), 1977.
[23] M.S. Singh, N. Reingachand, M.T. Devi and B. Chanam, L^{γ} Inequalities for the polar derivative of polynomials, Malaysian J. Math. Sci., 17(3) (2023), 333-347.
[24] A. Zygmund, A remark on conjugate series, Proc. London. Math. Soc., 34 (1932), 392400.

[^0]: ${ }^{0}$ Received August 10, 2023. Revised January 10, 2024. Accepted January 13, 2024.
 ${ }^{0} 2020$ Mathematics Subject Classification: 30A10, 30C10, 30D15.
 ${ }^{0}$ Keywords: Polynomial, polar derivative, zero, L^{r} inequalities.
 ${ }^{0}$ Corresponding author: Mayanglambam Singhajit Singh(msinghasingho@gmail.com).

