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ON BONNESEN-STYLE ALEKSANDROV-FENCHEL

INEQUALITIES IN R
n

Chunna Zeng

Abstract. In this paper, we investigate the Bonnesen-style Aleksandrov-
Fenchel inequalities in R

n
, which are the generalization of known Bonne-

sen-style inequalities. We first define the i-th symmetric mixed homo-
thetic deficit ∆i(K,L) and its special case, the i-th Aleksandrov-Fenchel
isoperimetric deficit ∆i(K). Secondly, we obtain some lower bounds of
(n− 1)-th Aleksandrov Fenchel isoperimetric deficit ∆n−1(K). Theorem
4 strengthens Groemer’s result. As direct consequences, the stronger
isoperimetric inequalities are established when n = 2 and n = 3. Finally,

the reverse Bonnesen-style Aleksandrov-Fenchel inequalities are obtained.
As a consequence, the new reverse Bonnesen-style inequality is obtained.

1. Introduction

The geometric inequality describes the relation among the invariants of a
geometric object in space. Perhaps the classical isoperimetric inequality is the
best known geometric inequality. It states that: for a simple closed curve Γ of
length L in the Euclidean plane R

2, the area A enclosed by Γ satisfies

(1.1) L2 − 4πA ≥ 0.

The equality holds if and only if Γ is a circle. It follows that the circle encloses
the maximum area among all curves of the same length.

One can find many simplified and beautiful proofs that lead to generaliza-
tions of higher dimensions (see [1, 2, 3, 6, 8, 24]), and applications to other
branches of mathematics (see [12, 17, 21, 23, 33, 42, 46]).

During the 1920’s, Bonnesen initiated a series of inequalities of the following
type:

(1.2) ∆(K) = L2 − 4πA ≥ BK ,
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where the quantity BK is an invariant of geometric significance with the fol-
lowing basic properties:

1. BK is non-negative;
2. BK vanishes only when K is a disc.
An equality of the type (1.2) is called the Bonnesen-style inequality. The

quantity ∆(K) = L2 − 4πA is called the isoperimetric deficit of K, and it
measures the deficit between a domain K and a disc. Bonnesen proved several
inequalities of the form (1.2) in the Euclidean plane (see [4, 5]), but he did
not obtain direct generalizations of his two-dimensional results. This was done
much later, first by Hadwiger [21] for n = 3, and then by Dinghas [7] for
arbitrary dimension. Although it is a hard work to obtain some Bonnesen-
style inequalities in higher dimensional space, mathematicians are still working
on finding unknown invariants of geometric significance (see [9, 10, 18, 20, 22,
25, 31, 32, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]).

The following Bonnesen-style isoperimetric inequalities are known: Let K
be a plane domain with rectifiable boundary ∂K of area A and bounded by a
simple closed curve of length L. Denote by ri and re, respectively, the radius
of the maximum inscribed circle and the radius of the minimum circumscribed
circle of K. Then for ri ≤ t ≤ re,

π2t2 − Lt+A ≤ 0;

L−
√
L2 − 4πA

2π
≤ ri ≤

L

2π
≤ re ≤

L+
√
L2 − 4πA

2π
;

and

L2 − 4πA ≥ π2(re − ri)
2; L2 − 4πA ≥ L2

(

re − ri
re + ri

)2

;

L2 − 4πA ≥ A2

(

1

ri
− 1

re

)2

; L2 − 4πA ≥ L2

(

r − ri
r + ri

)2

;

L2 − 4πA ≥ A2

(

1

r
− 1

re

)2

; L2 − 4πA ≥ L2

(

re − r

re + r

)2

.

Each equality holds if and only if K is a disc (see [36, 37, 45, 46, 48]). In [39],
Zhang established some different forms of Bonnesen-style inequalities associ-
ated with mean width of convex body K in R

n,
(

ω̄(K)

2

)n/(n−1)

−
(

V (K)

κn

)1/(n−1)

≥
(

V (K)

κn

)n/(n−1)
(

(

V (K)

κn

)−1/n

−R−1

)

,

where ω̄(K) and R are, respectively, the mean width and outradius of K.
The generalization of (1.1) in R

n shows that, of all domains K with given
surface area S, the maximum volume V is attained by the sphere translates
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into the isoperimetric inequality (see [26, 27])

(1.3) Sn − nnωnV
n−1 ≥ 0,

where the equality holds if and only if K is a ball, and ωn is the volume of the
unit ball, that is

ωn =
2πn/2

nΓ(n/2)
,

where Γ(·) is the Gamma function.
The classical Aleksandrov-Fenchel inequality is more general than the iso-

perimetric inequality (1.3) in R
n (see [14, 15, 16, 34]): Let K1,K2, . . . ,Kn be

compact convex sets in R
n,

(1.4)
V (K1,K2,K3, . . . ,Kn)

2 ≥ V (K1,K1,K3, . . . ,Kn)V (K2,K2,K3, . . . ,Kn).

The complete equality condition for the Aleksandrov-Fenchel inequality is un-
known. However we have: if K3, . . . ,Kn are smooth convex bodies, then the
equality (1.4) holds if and only if K1 and K2 are homothetic.

Since the mixed volume V (K1,K2, . . . ,Kn) is symmetric, it is clear that
from (1.4) we have

(1.5) V 2
i (K,L)− Vi−1(K,L)Vi+1(K,L) ≥ 0, 1 ≤ i ≤ n− 1.

If K,L are smooth convex bodies, then (1.5) holds if and only if K and L are
homothetic, and

Vi(K,L) = V (K, . . . ,K
︸ ︷︷ ︸

n−i

, L, . . . , L
︸ ︷︷ ︸

i

),

where K appears n− i times and L appears i times.
Let L be the unit ball B in (1.5), then we have

(1.6) W 2
i (K)−Wi−1(K)Wi+1(K) ≥ 0, 1 ≤ i ≤ n− 1.

If K is a smooth convex body, the equality holds if and only if K is a ball.
Let i = 1 in the Euclidean plane R

2, then (1.6) is reduced to the classical
isoperimetric inequality (1.1).

In this paper, motivated by Bonnesen’s work, we define the i-th symmetric

mixed homothetic deficit of smooth convex bodies K and L as

(1.7) ∆i(K,L) = V 2
i (K,L)− Vi−1(K,L)Vi+1(K,L), 1 ≤ i ≤ n− 1.

The symmetric mixed homothetic deficit ∆i(K,L) measures the homothetic
between K and L. Then one would ask if there is a non-negative invariant
BK,L of geometric significance such that

(1.8) ∆i(K,L) = V 2
i (K,L)− Vi−1(K,L)Vi+1(K,L) ≥ BK,L, 1 ≤ i ≤ n− 1,

and the quantity BK,L vanishes only when K and L are homothetic. An in-
equality of the form (1.8) can be called the Bonnesen-style symmetric Aleksan-

drov-Fenchel inequality.
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In particular, the quantity

(1.9) ∆i(K) = W 2
i (K)−Wi−1(K)Wi+1(K), 1 ≤ i ≤ n− 1,

is defined as the i-th Aleksandrov-Fenchel isoperimetric deficit of smooth con-
vex body K. Then a Bonnesen-style Aleksandrov-Fenchel inequality can be of
the form

(1.10) ∆i(K) = W 2
i (K)−Wi−1(K)Wi+1(K) ≥ BK , 1 ≤ i ≤ n− 1,

where BK is a nonnegative invariant and vanishes if K is a ball in R
n.

Note that the Aleksandrov-Fenchel isoperimetric deficit ∆1(K) and the
isoperimetric deficit ∆(K) in the Euclidean plane R

2 have no essential dif-
ference except for a constant, then the Bonnesen-style Aleksandrov-Fenchel
inequality (1.10) is more general than Bonnesen-style isoperimetric inequal-
ity (1.2). Furthermore, many lower bounds of ∆1(K,L) in R

2 were found by
Blaschke, Flanders and Zhou (see [2, 11]).

Groemer [18] obtained a lower bound of ∆n−1(K) by Fourier series and
spherical harmonics. Let K be a smooth convex body in R

n and Wi(K) the
i-th quermassintegral of K. Denote by Ku the orthogonal projection of K onto
the linear subspace 〈u〉⊥. Denote by w̄n−1(Ku) the mean width of Ku, and
w̄max(K), w̄min(K) the maximum and minimum of w̄n−1(Ku) over all u ∈ Sn−1,
respectively. Then

(1.11)

∆n−1(K) = W 2
n−1(K)− κnWn−2(K)

≥ W 2
n−2(K)

[

1

w̄min(K)
− 1

w̄max(K)

]2

,

where the equality holds if and only if K is a ball. For higher dimensional case,
the lower bounds of ∆1(K,L) are still unknown except for a few inequalities
(see [19]). Groemer [19] gave a lower bound of ∆1(K,L) of K and L as follows:

(1.12)

∆1(K,L) = V 2
1 (K,L)− V0(K,L)V2(K,L)

≥ V (L)2

4

(

R(K,L)− r(K,L)
)2

,

where r(K,L) and R(K,L) are, respectively, the relative inradius and outradius
of K with respect to L, defined by

r(K,L) = sup{λ : x ∈ R
n and x+ λL ⊂ K},

R(K,L) = inf{λ : x ∈ R
n and K ⊂ x+ λL},

and r(K,L)R(L,K) = 1.
Bonnesen-style inequalities are obtained through various approaches. Bon-

nesen, Ren and Zhou obtained Bonnesen-style inequalities by kinematic for-
mulas and the containment measure in integral geometry (see [30, 33, 36, 37,
43, 44, 45, 46, 47, 48]). Other researchers obtained Bonnesen-style inequal-
ities by using the approaches in differential geometry and analysis. In this
paper, motivated by Bonnesen’s work, we mainly investigate Bonnesen-style
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Aleksandrov-Fenchel inequality by means of convex geometry analysis. Some
BK ’s are obtained. The obtained Bonnesen-style Aleksandrov-Fenchel inequal-
ities are the generalization of Bonnesen-style isoperimetric inequalities. When
n = 2 and n = 3, the stronger isoperimetric inequalities are established. Finally,
the reverse Bonnesen-style Aleksandrov-Fenchel inequalities are obtained.

2. Preliminaries

A subset K in the Euclidean space R
n is convex if for any x, y ∈ K and

0 ≤ λ ≤ 1, λx + (1− λ)y ∈ K. A domain is a set with nonempty interiors. A
convex body is a compact convex domain. The set of convex bodies in R

n is
denoted by Kn and Kn

o if the convex body contains the origin in their interiors.
The Minkowski sum of convex sets K1,K2, . . . ,Km in R

n, and the Minkowski

scalar product of convex set K in R
n for λ ≥ 0, are, respectively, defined by

(2.1) K1 + · · ·+Km = {x1 + · · ·+ xm : x1 ∈ K1, . . . , xm ∈ Km},
and

(2.2) λK = {λx : x ∈ K}.
A homothety of a convex set K is of the form y + λK for y ∈ R

n, λ > 0.
Let K1 and K2 be two convex domains in R

n. If there exist y ∈ R
n and t > 0,

such that K1 = y + tK2 or K2 = y + tK1, then K1 and K2 are homothetic.
The support function of a convex domain K in R

n is defined by

(2.3) hK(x) = max{〈x, y〉 : y ∈ K}, x ∈ R
n,

where 〈·, ·〉 is the ordinary standard inner product in R
n (see [34]). A convex

domain in R
n is uniquely determined by its support function.

Let K1, . . . ,Km be convex domains in R
n and λ1, . . . , λm ≥ 0. Then the

volume of λ1K1 + · · · + λmKm is a homogeneous polynomial of degree n in
λ1, . . . , λm:

V (λ1K1 + · · ·+ λmKm) =

m
∑

i1,...,in=1

V (Ki1 , . . . ,Kin)λi1 · · ·λin .

The coefficients V (Ki1 , . . . ,Kin) are nonnegative, symmetric in the indices, and
dependent only on Ki1 , . . . ,Kin . V (Ki1 , . . . ,Kin) is called the mixed volume
of Ki1 , . . . ,Kin .

If K is a compact convex set and B is the unit ball in R
n, there is the Steiner

formula,

V (K + λB) =
n
∑

i=0

(

n

i

)

Wi(K)λi,

where

Wi(K) = Vi(K,B), i = 0, 1, . . . , n

is called the i-th quermassintegral of K, and W0(K) = V (K), Wn(K) =
On−1/n = κn, On−1 denotes the surface of unit n-ball.
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It is clear that from the Aleksandrov-Fenchel inequality many other inequal-
ities can be deduced by repeated application. Schneider derived an improved
version from the Aleksandrov-Fenchel inequality as follows (see [34, Chapter
7]):

Lemma 1. Let K,L,M,K3, . . . ,Kn ∈ Kn and L := (K3, . . . ,Kn), and suppose

that

(2.4) V (K,M,L) > 0, V (L,M,L) > 0, V (M,M,L) > 0.

Then

(2.5) V (K,L,L)2 ≥ V (K,K,L)V (L,L,L),
and

(2.6)
V (K,K,L)
V (K,M,L)2 − 2V (K,L,L)

V (K,M,L)V (L,M,L) +
V (L,L,L)
V (L,M,L)2 ≤ 0.

The following assertions are equivalent:

(1) equality in (2.5);
(2) equality in (2.6).

3. The Bonnesen-style Aleksandrov-Fenchel inequalities

Let K3 = · · · = Kn = B in (2.6), and we write V (K,L) = V (K,L,B, . . .,
B). So (2.6) is rewritten in the following form:
(3.1)
2V (K,M)V (L,M)V (K,L)− V (L,M)2Wn−2(K)− V (K,M)2Wn−2(L) ≥ 0.

When L = B and M is a line segment of unit length, it is easily established
([5], p. 49 and [18]) that in this case

(3.2) V (K,M) = W
′

n−2(Ku),

where u ∈ Sn−1 has the same direction asM, Ku denotes the orthogonal projec-
tion of K onto the linear subspace 〈u〉⊥, and W

′

n−2(Ku) is the quermassintegral
of Ku in R

n−1.
If a convex body K ∈ Kn is contained in some hyperplane H, then there are

two possibilities for defining its mean width. One can either disregard the fact
that K ⊂ H and define w̄(K) in the same way as it is defined for all convex
bodies of Kn, or one can consider H as the underlying Euclidean space. In
the latter case K is viewed as a convex body in R

n−1 and its mean width is
defined accordingly. In this case, to avoid any confusion, the mean width of K
is denoted by w̄n−1(K). Then for any K ⊂ H,

On−1

κn−2
w̄n−1(K) =

On

κn−1
w̄(K).

By (3.2), it follows that

(3.3) W
′

n−2(Ku) =
κn−1

2
w̄n−1(Ku).
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Combining (3.2), (3.3) and (3.1), we come to:

Theorem 1. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. Then

(3.4)
κn

4
w̄n−1(Ku)

2 −Wn−1(K)w̄n−1(Ku) +Wn−2(K) ≤ 0,

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄n−1(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, re-

spectively, the maximum and minimum of w̄n−1(Ku) over all u ∈ Sn−1. The
equality holds if and if K is a ball.

The above Bonnesens inequality can be rewritten in several equivalent forms:

Wn−1(K)w̄n−1(Ku) ≥ Wn−2(K) +
κn

4
w̄n−1(Ku)

2;(3.5)

∆n−1(K) = W 2
n−1(K)− κnWn−2(K)(3.6)

≥
(

Wn−1(K)− κn

2
w̄n−1(Ku)

)2

;

∆n−1(K) = W 2
n−1(K)− κnWn−2(K)(3.7)

≥
(

Wn−1(K)− 2Wn−2(K)

w̄n−1(Ku)

)2

;

∆n−1(K) = W 2
n−1(K)− κnWn−2(K)(3.8)

≥
(Wn−2(K)

w̄n−1(Ku)
− κnw̄n−1(Ku)

4

)2

.

We have the following Bonnesen-style Aleksandrov-Fenchel inequalities:

Theorem 2. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. Then

∆n−1(K) ≥ W 2
n−2(K)

( 1

w̄min(K)
− 1

w̄max(K)

)2

,

∆n−1(K) ≥ W 2
n−1(K)

( w̄max(K)− w̄min(K)

w̄max(K) + w̄min(K)

)2

,

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄n−1(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, re-

spectively, the maximum and minimum of w̄n−1(Ku) over all u ∈ Sn−1. Each
equality holds if and only if K is a ball.

Proof. By (3.7), it follows that

(3.9)
√

∆n−1(K) ≥ Wn−1(K)− 2Wn−2(K)

w̄max(K)
,

(3.10)
√

∆n−1(K) ≥ 2Wn−2(K)

w̄min(K)
−Wn−1(K).
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By x2 + y2 ≥ (x+y)2

2 , adding (3.9) and (3.10) yields

(3.11) ∆n−1(K) ≥ W 2
n−2(K)

( 1

w̄min(K)
− 1

w̄max(K)

)2

.

Inequalities (3.9) and (3.10) can be rewritten as

(3.12) w̄max(K)
√

∆n−1(K) ≥ w̄max(K)Wn−1(K)− 2Wn−2(K),

(3.13) w̄min(K)
√

∆n−1(K) ≥ 2Wn−2(K)− w̄min(K)Wn−1(K).

Then adding (3.12) and (3.13) side by side leads to

(3.14)
(

w̄max(K) + w̄min(K)
)
√

∆n−1(K) ≥ Wn−1(K)
(

w̄max(K)− w̄min(K)
)

.

Squaring the inequality, we obtain that

(3.15) ∆n−1(K) ≥ W 2
n−1(K)

( w̄max(K)− w̄min(K)

w̄max(K) + w̄min(K)

)2

.
�

Similarly, we also obtain the following theorem:

Theorem 3. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. Then

∆n−1(K) ≥ W 2
n−2(K)

( 1

w̄min(K)
− 1

w̄n−1(Ku)

)2

;

∆n−1(K) ≥ W 2
n−2(K)

( 1

w̄max(K)
− 1

w̄n−1(Ku)

)2

;

∆n−1(K) ≥ W 2
n−1(K)

( w̄n−1(Ku)− w̄min(K)

w̄n−1(Ku) + w̄min(K)

)2

;

∆n−1(K) ≥ W 2
n−1(K)

( w̄max(K)− w̄n−1(Ku)

w̄max(K) + w̄n−1(Ku)

)2

;

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄n−1(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, re-

spectively, the maximum and minimum of w̄n−1(Ku) over all u ∈ Sn−1. Each
equality holds if and only if K is a ball.

Proof. By (3.7), it follows that

(3.16)
√

∆n−1(K) ≥ Wn−1(K)− 2Wn−2(K)

w̄n−1(Ku)
.

By x2 + y2 ≥ (x+y)2

2 , adding (3.16) and (3.10) yields

(3.17) ∆n−1(K) ≥ W 2
n−2(K)

( 1

w̄min(K)
− 1

w̄n−1(Ku)

)2

.

(3.16) can be rewritten as

(3.18) w̄n−1(Ku)
√

∆n−1(K) ≥ w̄n−1(Ku)Wn−1(K)− 2Wn−2(K).



ON BONNESEN-STYLE ALEKSANDROV-FENCHEL INEQUALITIES IN R
n 807

Then adding (3.18) and (3.13) side by side leads to
(3.19)
(

w̄n−1(Ku) + w̄min(K)
)
√

∆n−1(K) ≥ Wn−1(K)
(

w̄n−1(Ku)− w̄min(K)
)

.

Squaring the inequality, we obtain that

(3.20) ∆n−1(K) ≥ W 2
n−1(K)

( w̄n−1(Ku)− w̄min(K)

w̄n−1(Ku) + w̄min(K)

)2

.

Similar with (3.17) and (3.20), we have

∆n−1(K) ≥ W 2
n−2(K)

( 1

w̄max(K)
− 1

w̄n−1(Ku)

)2

,

and

∆n−1(K) ≥ W 2
n−1(K)

( w̄max(K)− w̄n−1(Ku)

w̄max(K) + w̄n−1(Ku)

)2

.
�

Next, we consider two corollaries in the case that n = 2 and n = 3. Let K
be a smooth convex body of length L and area A in the Euclidean plane R

2,
then W0(K) = A,W1(K) = L

2 ,W2(K) = π. Hence

(3.21) ∆1(K) = W 2
1 (K)− κ2W0(K) =

L2 − 4πA

4
.

So the following Bonnesen style inequalities are direct consequences of Theorem
2 and Theorem 3.

Corollary 1. Let K be a convex body and the boundary ∂K be C2 in R
2.

Denote L and A the length and the area of K, respectively. Then

L2 − 4πA ≥ L2
( w̄max(K)− w̄(Ku)

w̄max(K) + w̄(Ku)

)2

;

L2 − 4πA ≥ 4A2
( 1

w̄min(K)
− 1

w̄max(K)

)2

;

L2 − 4πA ≥ 4A2
( 1

w̄min(K)
− 1

w̄(Ku)

)2

;

L2 − 4πA ≥ 4A2
( 1

w̄max(K)
− 1

w̄(Ku)

)2

;

L2 − 4πA ≥ L2
( w̄max(K)− w̄min(K)

w̄max(K) + w̄min(K)

)2

;

L2 − 4πA ≥ L2
( w̄(Ku)− w̄min(K)

w̄(Ku) + w̄min(K)

)2

;

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, respec-

tively, the maximum and minimum of w̄(Ku) over all u ∈ Sn−1. Each equality

holds if and only if K is a disc.
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Let K be a smooth convex body of surface area A and volume K in the
Euclidean space R

3, then W0(K) = V,W1(K) = A
3 ,W3(K) = 4

3π.
Following (1.6), we have

(3.22) ∆1(K) = W 2
1 (K)−W0(K)W2(K) ≥ 0

and

(3.23) ∆2(K) = W 2
2 (K)−W1(K)W3(K) ≥ 0,

and (3.22) is equivalent to

(3.24) W2(K) ≤ A2

9V
,

that is

(3.25) W 2
2 (K) ≤ A4

81V 2
.

Hence,

(3.26) ∆2(K) = W 2
2 (K)− 4πA

9
≤ A4

81V 2
− 4πA

9
.

Combining (3.6) and (3.26) together gives

(3.27)
A4

81V 2
− 4πA

9
≥ ∆2(K) = W 2

2 (K)− 4πA

9
≥
(

W2(K)− 2π

3
w̄2(Ku)

)2
,

that is

(3.28) A3 − 36πV 2 ≥ 81V 2

A

(

W2(K)− 2π

3
w̄2(Ku)

)2
.

Similarly, combining the equalities in Theorem 2 and Theorem 3 with (3.26),
respectively, we have the following Bonnesen-style inequalities in the Euclidean
space R

3 (Corollary 2 and Corollary 3).

Corollary 2. Let K be a convex body and the boundary ∂K be C2 in Euclidean

space R
3. Denote A and V the surface area and the volume of K, respectively.

Then

A3 − 36πV 2 ≥ 81V 2

A

(

W2(K)− 2π

3
w̄2(Ku)

)2

;

A3 − 36πV 2 ≥ 81V 2

A

( 1

w̄min(K)
− 1

w̄max(K)

)2

;

A3 − 36πV 2 ≥ 81V 2

A
W2(K)2

( w̄max(K)− w̄min(K)

w̄max(K) + w̄min(K)

)2

;

where W2(K) is the 2-th quermassintegral of K and Ku is the orthogonal pro-

jection of K onto the linear subspace 〈u〉⊥, w̄(Ku) denotes the mean width of

Ku, and w̄max(K), w̄min(K) denote, respectively, the maximum and minimum

of w̄(Ku) over all u ∈ Sn−1. Each equality holds if and only if K is a ball.
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Corollary 3. Let K be a convex body and the boundary ∂K be C2 in Euclidean

space R
3. Denote A and V the surface area and the volume of K, respectively.

Then

A3 − 36πV 2 ≥ 9AV 2
( 1

w̄min(K)
− 1

w̄(Ku)

)2

;

A3 − 36πV 2 ≥ 9AV 2
( 1

w̄max(K)
− 1

w̄(Ku)

)2

;

A3 − 36πV 2 ≥ 81V 2

A
W2(K)2

( w̄(Ku)− w̄min(K)

w̄(Ku) + w̄min(K)

)2

;

A3 − 36πV 2 ≥ 81V 2

A
W2(K)2

( w̄max(K)− w̄(Ku)

w̄max(K) + w̄(Ku)

)2

;

where W2(K) is the 2-th quermassintegral of K and Ku is the orthogonal pro-

jection of K onto the linear subspace 〈u〉⊥, w̄(Ku) denotes the mean width of

Ku, and w̄max(K), w̄min(K) denote, respectively, the maximum and minimum

of w̄(Ku) over all u ∈ Sn−1. Each equality holds if and only if K is a ball.

It is a remarkable fact that only a few Bonnesen-style inequalities for convex
bodies in R

3 are known. Higher-dimensional cases are more complicated. In
the above we have obtained many lower bounds of Aleksandrov-Fenchel isoperi-
metric deficit. It is interesting and difficult to compare those lower bounds and
to determine which is the best. The following theorem strengthens Gromer’s
result (the inequation (1.11)).

Theorem 4. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. Then
(3.29)

∆n−1(K) ≥ κ2
n

16

[

w̄max(K)− w̄min(K)
]2

+
[κn

4

(

w̄max(K) + w̄min(K)
)

−Wn−1(K)
]2

,

∆n−1(K) ≥ W 2
n−2(K)

[

1

w̄min(K)
− 1

w̄max(K)

]2

+

[

Wn−2(K)

w̄min(K)
+

Wn−2(K)

w̄max(K)

−Wn−1(K)

]2

,

(3.30)

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄n−1(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, re-

spectively, the maximum and minimum of w̄n−1(Ku) over all u ∈ Sn−1. Each
equality holds if and only if K is a ball.

Proof. By (3.4), we have

−Wn−2(K) ≥ κn

4
w̄min(K)2 −Wn−1(K)w̄min(K)
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and

−Wn−2(K) ≥ κn

4
w̄max(K)2 −Wn−1(K)w̄max(K).

That is,

W 2
n−1(K)− κ2

nWn−2(K) ≥ κn

4
w̄min(K)2 − κnWn−1(K)w̄min(K) +W 2

n−1(K),

W 2
n−1(K)− κ2

nWn−2(K) ≥ κn

4
w̄max(K)2 − κnWn−1(K)w̄max(K) +W 2

n−1(K).

Adding the above inequalities side by side, we obtain

W 2
n−1(K)− κ2

nWn−2(K)(3.31)

≥ κ2
n

8

[

w̄max(K)2 + w̄min(K)2
]

− κn

2
Wn−1(K)

[

w̄min(K) + w̄max(K)
]

+W 2
n−1(K)

=
κ2
n

8

[

w̄max(K)2 − 2w̄min(K)w̄max(K) + w̄min(K)2
]

+
κ2
n

2
w̄max(K)w̄min(K)− κn

2
Wn−1(K)

[

w̄min(K) + w̄max(K)
]

+W 2
n−1(K),

that is,

W 2
n−1(K)− κ2

nWn−2(K)

≥κ2
n

8

[

w̄max(K)− w̄min(K)
]2

+
κ2
n

4
w̄min(K)w̄max(K)− κn

2
Wn−1(K)·

[

w̄min(K) + w̄max(K)
]

+W 2
n−1(K)

=
κ2
n

16

[

w̄max(K)− w̄min(K)
]2

+
κ2
n

16

[

w̄max(K)− w̄min(K)
]2

+
κ2
n

4
w̄min(K)·

w̄max(K)− κn

2
Wn−1(K)

[

w̄min(K) + w̄max(K)
]

+W 2
n−1(K)

=
κ2
n

16

[

w̄max(K)− w̄min(K)
]2

+
κ2
n

16

[

w̄max(K) + w̄min(K)
]2 − κn

2
Wn−1(K)·

[

w̄min(K) + w̄max(K)
]

+W 2
n−1(K)

=
κ2
n

16

[

w̄max(K)− w̄min(K)
]2

+
[κn

4

(

w̄max(K) + w̄min(K)
)

−Wn−1(K)
]2
.

Thus we complete the proof of (3.29).
On the other hand, let t = w̄n−1(Ku), tm = w̄min(K), tM = w̄max(K) and

r = 1
t , then (3.4) can be rewritten as

(3.32) Wn−2(K)r2 −Wn−1(K)r +
κn

4
≤ 0.
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By (3.32), and similarly as (3.29), we have

∆n−1(K) ≥ W 2
n−2(K)

[ 1

tm
− 1

tM

]2
+
[Wn−2(K)

tm
+

Wn−2(K)

tM
−Wn−1(K)

]2
.

So we complete the proof of Theorem 4. �

In particular, when n = 2, ∆1(K) = W 2
1 (K)− κ2W0(K) = L2−4πA

4 = ∆(K)
4 ,

we obtain the direct consequence of Theorem 4.

Corollary 4. Let K be a convex body and the boundary ∂K be C2 in R
2.

Denote L and A the length and the area of K, respectively. Then

L2 − 4πA ≥ π2

4

[

w̄max(K)− w̄min(K)
]2

+
[π

2
w̄max(K) +

κn

2
w̄min(K)− L

]2
,

L2 − 4πA ≥ A2

[

1

w̄min(K)
− 1

w̄max(K)

]2

+

[

A

w̄min(K)
+

A

w̄max(K)
− L

2

]2

,

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, respec-

tively, the maximum and minimum of w̄(Ku) over all u ∈ Sn−1. Each equality

holds if and only if K is a disc.

When n = 3, combining (3.29) and (3.26), (3.30) and (3.26), respectively, it
follows that:

Corollary 5. Let K be a convex body and the boundary ∂K be C2 in Euclidean

space R
3. Denote A and V the surface area and the volume of K, respectively.

Then

A3 − 36πV 2 ≥ 81V 2

A

[π2

9

(

w̄max(K)− w̄min(K)
)2

+
(π

3
w̄max(K) +

π

3
w̄min(K)−W2(K)

)2]

,

A3 − 36πV 2 ≥81V 2

A

[

W 2
1 (K)

( 1

w̄min(K)
− 1

w̄max(K)

)2

+
( W1(K)

w̄min(K)
+

W1(K)

w̄max(K)
−W2(K)

)2]

,

where W2(K) is the 2-th quermassintegral of K and Ku is the orthogonal pro-

jection of K onto the linear subspace 〈u〉⊥, w̄(Ku) denotes the mean width of

Ku, and w̄max(K), w̄min(K) denote, respectively, the maximum and minimum

of w̄(Ku) over all u ∈ Sn−1. Each equality holds if and only if K is a ball.

Theorem 5. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. Then

2Wn−1(K)− 2
√

∆n−1(K)

κn
≤ w̄min(K) ≤ w̄max(K)
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≤ 2Wn−1(K) + 2
√

∆n−1(K)

κn
,

where Ku is the orthogonal projection of K onto the linear subspace 〈u〉⊥,
w̄n−1(Ku) denotes the mean width of Ku, and w̄max(K), w̄min(K) denote, re-

spectively, the maximum and minimum of w̄n−1(Ku) over all u ∈ Sn−1. Each
equality holds if and only if K is a ball.

Proof. Notice that the equality

κn

4
w̄n−1(Ku)

2 −Wn−1(K)w̄n−1(Ku) +Wn−2(K) = 0

has two difference roots

2Wn−1(K) + 2
√

∆n−1(K)

κn
,
2Wn−1(K)− 2

√

∆n−1(K)

κn

if ∆n−1(K) = W 2
n−1(K) − κnWn−2(K) > 0. The inequality κn

4 w̄n−1(Ku)
2 −

Wn−1(K)w̄n−1(Ku) + Wn−2(K) ≤ 0 holds for any w̄n−1(Ku) in the closed
interval

[2Wn−1(K) + 2
√

∆n−1(K)

κn
,
2Wn−1(K)− 2

√

∆n−1(K)

κn

]

.
�

4. Reverse Bonnesen-style Aleksandrov-Fenchel inequalities

Mathematicians are also interested in reverse Bonnesen-style inequalities.
Only a few upper bounds for convex domains are known (see [13, 29, 28, 35, 48])
and an upper bound for an oval domain in R

2 was given by Bottema. The
higher-dimensional cases are more complicated.

In the Euclidean plane R
2, if the boundary of the convex set K is strictly

convex and with the C2 smooth boundary ∂K, Bottema gave an upper bound
of the isoperimetric deficit (see [30, 33]):

∆(K) = L2 − 4πA ≤ π2(ρM − ρm)2,

where ρM and ρm are the maximum and minimum of the continues curvature
radius of ∂K. The equality holds if and only if ρM = ρm, that is, ∂K is a circle.

In contrast to the Bonnesen-style Alesandrov-Fenchel inequality, one may
wish to consider the following type reverse Bonnesen-style Alesandrov-Fenchel
inequality, that is, for a smooth convex body K in R

n, is there a geometric
invariant UK , such that

∆n−1(K) = W 2
n−1(K)− κnWn−2(K) ≤ UK?

Here UK is non-negative and vanishes when K is a ball.
In order to obtain the reverse Bonnesen-style Aleksandrov-Fenchel inequal-

ities, we first introduce the following lemma:



ON BONNESEN-STYLE ALEKSANDROV-FENCHEL INEQUALITIES IN R
n 813

Lemma 2. Let K,L be two smooth convex bodies in R
n. Denote by r(K,L) and

R(K,L) the relative inradius and the relative circumradius of K with respect

to L, respectively. Then

(4.1) r(K,L)Vi+1(K,L) ≤ Vi(K,L) ≤ R(K,L)Vi+1(K,L), 0 ≤ i ≤ n− 1.

Proof. By r(K,L)L ⊆ K and K ⊆ R(K,L)L, and the monotonicity of mixed
volumes, the following inequalities

(4.2) r(K,L) ≤ V0(K,L)

V1(K,L)

and

(4.3)
Vn−1(K,L)

Vn(K,L)
≤ R(K,L)

are established. Following the Aleksandrov-Fenchel inequality, we have

(4.4) V 2
i (K,L)− Vi−1(K,L)Vi+1(K,L) ≥ 0, 1 ≤ i ≤ n− 1.

By (4.2), (4.3) and (4.4), we have

r(K,L) ≤ V0(K,L)

V1(K,L)
≤ V1(K,L)

V2(K,L)
≤ · · ·(4.5)

≤ Vi(K,L)

Vi+1(K,L)
≤ · · · ≤ Vn−1(K,L)

Vn(K,L)
≤ R(K,L).

Thus we complete the proof of Lemma 2. �

Let L = B in (4.5), we have
(4.6)

r(K,B) ≤ W0(K)

W1(K)
· · · ≤ Wi−2(K)

Wi−1(K)
≤ Wi−1(K)

Wi(K)
· · · ≤ Wn−1(K)

Wn(K)
≤ R(K,B),

then

(4.7)
Wi−1(K)

Wi(K)
− Wi−2(K)

Wi−1(K)
≤ R(K,B)− r(K,B),

that is

(4.8) W 2
i−1(K)−Wi(K)Wi−2(K) ≤ Wi(K)Wi−1(K)

(

R(K,B)− r(K,B)
)

.

So we have the following theorem:

Theorem 6. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. If 1 ≤ i ≤ n− 1, then we have

(4.9)

∆i(K) = W 2
i (K)−Wi+1(K)Wi−1(K) ≤ Wi+1(K)Wi(K)

(

R(K,B)−r(K,B)
)

,

where r(K,B) and R(K,B) are, respectively, the relative inradius and the rel-

ative circumradius of K with respect to B.

Especially, when i = n− 1, we obtain that:
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Theorem 7. Let K be a smooth convex body in R
n and Wi(K) the i-th quer-

massintegral of K. Then
(4.10)
∆n−1(K) = W 2

n−1(K)− κnWn−2(K) ≤ κnWn−1(K)
(

R(K,B)− r(K,B)
)

,

where r(K,B) and R(K,B) are, respectively, the relative inradius and the rel-

ative circumradius of K with respect to B.

Let n = 2, then ∆1(K) = ∆(K)
4 . The following reverse Bonnesen-style in-

equality is a direct consequence of Theorem 7:

Corollary 6. Let K be a convex body and the boundary ∂K be C2 in R
2.

Denote L and A the length and the area of K, respectively. Then

∆(K) = L2 − 4πA ≤ 2πL
(

R(K,B)− r(K,B)
)

,

where r(K,B) and R(K,B) are, respectively, the relative inradius and the rel-

ative circumradius of K with respect to B.
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