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Abstract. In this paper, we first define a new kind of two-weight-Aλ3
r (λ1, λ2, Ω)-weight,

and then prove the imbedding inequalities for A-harmonic tensors. These results can be
used to study the weighted norms of the homotopy operator T from the Banach space
Lp(D,

Vl) to the Sobolev space W 1, p(D,
Vl−1), l = 1, 2, · · · , n, and to establish the basic

weighted Lp-estimates for A-harmonic tensors.

1. Introduction

Throughout this paper, we always assume that Ω is a connected open subset of Rn,
n ≥ 2. We write R = R1. Balls are denoted by B and σB (σ is a real positive number) is
the ball with the same center as B and with diam(σB) = σdiam(B). The n-dimensional
Lebesgue measure of a set E ⊆ Rn is denote by |E|. We call w(x) a weight if w ∈ L1

loc(R
n)

and w > 0 a.e.. For 1 ≤ p < ∞ and a weight w(x), we denote the weighted Lp-norm of a
measurable function f over E by

‖f‖p, E, wα =

�Z

E

|f(x)|pwαdx

�1/p

,

where α is a real number.
Let e1, e2, · · · , en be the standard unit basis of Rn. Let

Vl =
Vl(Rn) be the linear

space of l-vectors, spanned by the exterior products eI = ei1 ∧ei2 ∧· · ·∧eil , corresponding
to all ordered l-tuples I = (i1, i2, · · · , il), 1 ≤ i1 < i2 < · · · < il ≤ n, l = 0, 1, · · · , n. The
Grassman algebra

V
=
LVl is a graded algebra with respect to the exterior products.

For α =
P

αIeI ∈
V

and β =
P

βIeI ∈
V

, the inner product in
V

is given by

〈α, β〉 =
X

αIβI
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with summation over all l-tuples I = (i1, i2, · · · , il) and all integers l = 0, 1, · · · , n. We
define the Hodge star operator ∗ :

V → V
by the rule ∗1 = e1 ∧ e2 ∧ · · · ∧ en and

α∧ ∗β = β ∧ ∗α = 〈α, β〉(∗1) for all α, β ∈ V. The norm of α ∈ V is given by the formula
|α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈ V0 = R. The Hodge star is an isometric isomorphism on

V
with ∗ :

Vl → Vl−1 and ∗ ∗ (−1)l(n−l) :
Vl → Vl.

A differential l-form ω on Ω is a de Rham current (see [13, Chapter III]) on Ω with
values in

Vl(Rn). We use D′(Ω,
Vl) to denote the space of all differential l-forms and

Lp(Ω,
Vl) to denote the l-forms

ω(x) =
X

I

ωI(x)dxI =
X

ωi1i2···il(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil

with ωI(x) ∈ Lp(Ω, R) for all ordered l-tuples I. Thus, Lp(Ω,
Vl) is a Banach space with

norm

‖ω‖p, Ω =

�Z

Ω

|ω(x)|pdx

�1/p

=

0
@
Z

Ω

 X
I

|ωI(x)|2
!p/2

dx

1
A

1/p

.

For ω ∈ D′(Ω,
Vl), the vector-valued differential form

∇ω =

�
∂ω

∂x1
, · · · ,

∂ω

∂xn

�

consists of differential forms ∂ω/∂xi ∈ D′(Ω,
Vl), where the partial differentiation is ap-

plied to the coefficients of ω.
Similarly, W 1,p(Ω,

Vl) is used to denote the Sobolev space of l-forms which equals
Lp(Ω,

Vl) ∩ Lp
1(Ω,

Vl) with norm

‖ω‖W1,p(Ω,
Vl) = diam(Ω)−1‖ω‖p, Ω + ‖∇ω‖p, Ω

The notations W 1,p
loc (Ω, R) and W 1,p

loc (Ω,
Vl) are self-explanatory. For 1 ≤ p < ∞ and a

weight w(x), the weighted norm of ω ∈ W 1,p(Ω,
Vl) over Ω is denoted by

(1.1) ‖ω‖W1,p(Ω,
Vl), wα = diam(Ω)−1‖ω‖p, Ω, wα + ‖∇ω‖p, Ω, wα ,

where α is a real number. We denote the exterior derivative by d : D′(Ω,
Vl) →

D′(Ω,
Vl+1) for l = 0, 1, · · · , n. Its formal adjoint operator d∗ : D′(Ω,

Vl+1) → D′(Ω,
Vl)

is given by d∗ = (−1)nl+1 ∗ d∗ on D′(Ω,
Vl+1), l = 0, 1, · · · , n.

Consider the following A-harmonic equation

(1.2) d∗A(x, du(x)) = 0

for differential forms,where A : Ω×Vl(Rn) → Vl( Rn) satisfies the conditions

(1.3) |A(x, ξ)| ≤ a|ξ|p−1 and 〈 A(x, ξ), ξ〉 ≥ |ξ|p

for almost every x ∈ Ω and all ξ ∈ Vl(Rn). Here a > 0 is a constant and 1 < p < ∞ is
a fixed exponent associated with (1.2). A solution to (1.2) is an element of the Sobolev
space W 1, p

loc (Ω,
Vl−1) such that

Z

Ω

〈A(x, du), dϕ〉 = 0
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for all ϕ ∈ W 1, p(Ω,
Vl−1) with compact support.

Definition 1.1. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic
equation (1.2) in Ω.

A differential l-form u ∈ D′(Ω,
Vl) is called closed if du = 0 in Ω. Similarly, a

differential (l + 1)-form v ∈ D′(Ω,
Vl+1) is called coclosed if d∗v = 0. Clearly, the A-

harmonic equation is not affected by adding a closed form to ω. Therefore, any type of
estimates about u must be modulo a closed form.

If ω : Ω → Vl, then the value of ω(x) at the vectors ξ1, ξ2, · · · , ξl ∈ Rn will be denoted
by ω(x; ξ1, · · · , ξl). The following lemma appears in [11].

Lemma 1.2. Let D ⊂ Rn be a bounded, convex domain. To each y ∈ D, there corresponds
a linear operator Ky : C∞(D,

Vl) → C∞(D,
Vl−1) defined by

(Kyω)(x; ξ1, · · · , ξl) =

Z 1

0

tl−1ω(tx + y − ty; x− y, ξ1, · · · , ξl−1)dt

and the decomposition
ω = d(Kyω) + Ky(dω).

A homotopy operator T : C∞(D,
Vl) → C∞(D,

Vl−1) is defined by averaging Ky over
all points y in D

(1.4) Tω =

Z

D

ϕ(y)Kyωdy,

where ϕ ∈ C∞0 (D) is normalized by
R

D
ϕ(y)dy = 1. Then we have the following decompo-

sition:
ω = d(Tω) + T (dω).

If we define the l-form ωD ∈ D′(D,
Vl) by

ωD = |D|−1

Z

D

ω(y)dy, for l = 0, and ωD = d(Tω), for l = 1, 2, · · · , n

for all ω ∈ Lp(D,
Vl), 1 ≤ p < ∞, then

ωD = ω − T (dω).

By substituting z = tx + y − ty, (1.4) reduces to

(1.5) Tω(x, ξ) =

Z

D

ω(z, ζ(z, x− z), ξ)dz,

where the vector function ζ : D × Rn → Rn is given by

ζ(z, h) = h

Z ∞

0

sl−1(1 + s)n−1ϕ(z − sh)ds.

Integral (1.5) defines a bounded operator

T : Ls(D,
^l

) → W 1, s(D,
^l−1

), l = 1, 2, · · · , n
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with norm estimated by
‖Tu‖W1, s(D) ≤ C|D|‖u‖s, D.

In recent years many interesting results concerning geometric and analytic properties
of solutions to the A-harmonic equation (1.2) has been established, see [1]-[9]. The purpose
of this paper is to prove some new weighted imbedding inequalities for solutions to the
A-harmonic equation (1.2) and establish some weighted norm estimates for the homotopy
operator T . These inequalities are important tools in generalizing the theory of Sobolev
functions to differential forms and estimating the upper bounds of Lp-norms of differential
forms. These results can also be used to study the integrability of differential forms and
estimate the integrals for them.

2. Local Aλ3
r (λ1, λ2, Ω)-weighted imbedding inequalities

Definition 2.1. We say a pair of weights (w1(x), w2(x)) satisfies the Aλ3
r (λ1, λ2, Ω)-

condition for some r > 1 and 0 < λ1, λ2, λ3 < ∞, write (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω), if

w1(x) > 0, w2(x) > 0 a.e., and

(2.1) sup
B

�
1

|B|
Z

B

wλ1
1 dx

� 
1

|B|
Z

B

�
1

w2

�λ2/(r−1)

dx

!λ3(r−1)

< ∞

for any ball B ⊂ Ω.

If w1 = w2 = w, λ1 = λ2 = 1 and λ3 = λ in definition 2.1, we then obtain the usual
Aλ

r (Ω)-weight introduced in [10], [18]. See [10], [18] for properties about Aλ
r (Ω)-weight. If

w1 = w2, λ2 = λ3 = 1 and λ1 = λ in definition 2.1, we then obtain the usual Ar(λ, Ω)-
weight introduced in [14]. See [1], [16]-[17] for results about Ar(λ, Ω)-weight. If w1 = w2

and λ1 = λ2 = λ3 = 1 in definition 2.1, we then obtain the usual Ar(Ω)-weight introduced
in [15]. See [2]-[5] and [15], [16] for results about Ar(Ω)-weight. We will also need the
following generalized Hölder’s inequality.

Lemma 2.2. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 +β−1. If f and g are measurable
functions on Rn, then

‖fg‖s, Ω ≤ ‖f‖α, Ω · ‖g‖β, Ω

for any Ω ⊂ Rn.

From results appearing in [11], we have the following lemma.

Lemma 2.3. Let u ∈ Ls
loc(B,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form in a
ball B ⊂ Rn, then

‖∇(Tu)‖s, B ≤ C|B|‖u‖s, B

and
‖Tu‖s, B ≤ C|B|diam(B)‖u‖s, B .

The following weak reverse Hölder inequality appears in [8].

Lemma 2.4. Let u be a differential form satisfying (1.2) in a domain Ω, ρ > 1 and
0 < s, t < ∞. Then there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t, ρB
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for all balls or cubes B with ρB ⊂ Ω.

Theorem 2.5. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,

Vl) → C∞(Ω,
Vl−1) be a ho-

motopy operator defined in (1.4). Assume that ρ > 1 and (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω)

for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C, independent of
u, such that

(2.2)

�Z

B

|Tu|swαλ1
1 dx

�1/s

≤ C|B|diam(B)

�Z

ρB

|u|swαλ2λ3
2 dx

�1/s

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Note that (2.2) can be written as

(2.2)′ ‖Tu‖
s, B, w

αλ1
1

≤ C|B|diam(B)‖u‖
s, ρB, w

αλ2λ3
2

.

Proof. Let t = s/(1− α). Applying Lemmas 2.2 and 2.3, we obtain

�Z

B

|Tu|swαλ1
1 dx

�1/s

=

�Z

B

�
|Tu|wαλ1/s

1

�s

dx

�1/s

(2.3)

≤
�Z

B

|Tu|tdx

�1/t�Z

B

w
αtλ1/(t−s)
1 dx

�(t−s)/st

≤ C1|B|diam(B)‖u‖t, B

�Z

B

wλ1
1 dx

�α/s

.

Choose m = s/(1 + αλ3(r − 1)), then m < s. Using Lemma 2.4, we have

(2.4) ‖u‖t, B ≤ C2|B|(m−t)/mt‖u‖m, ρB .

Where ρ > 1. Substituting (2.4) in (2.3), we have

(2.5)

�Z

B

|Tu|swαλ1
1 dx

�1/s

≤ C3|B|diam(B)|B|(m−t)/mt‖u‖m, ρB

�Z

B

wλ1
1 dx

�α/s

.

Using Hölder’s inequality again with 1/m = 1/s + (s−m)/sm, we have

‖u‖m, ρB(2.6)

=

�Z

ρB

|u|mdx

�1/m

=

�Z

ρB

�
|u|wαλ2λ3/s

2 w
−αλ2λ3/s
2

�m

dx

�1/m

≤
�Z

ρB

|u|swαλ2λ3
2 dx

�1/s
 Z

ρB

�
1

w2

�αλ2λ3m/(s−m)

dx

!(s−m)/sm

=

�Z

ρB

|u|swαλ2λ3
2 dx

�1/s
 Z

ρB

�
1

w2

�λ2/(r−1)

dx

!αλ3(r−1)/s
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for all balls B with ρB ⊂ Ω. Combining (2.5) and (2.6), we find that

�Z

B

|Tu|swαλ1
1 dx

�1/s

(2.7)

≤ C3|B|diam(B)|B|(m−t)/mt

�Z

ρB

|u|swαλ2λ3
2 dx

�1/s

×
�Z

B

wλ1
1 dx

�α/s
 Z

ρB

�
1

w2

�λ2/(r−1)

dx

!αλ3(r−1)/s

.

Using the condition that (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω), we derive that

�Z

B

wλ1
1 dx

�α/s
 Z

ρB

�
1

w2

�λ2/(r−1)

dx

!αλ3(r−1)/s

(2.8)

≤
0
@
�Z

ρB

wλ1
1 dx

� Z

ρB

�
1

w2

�λ2/(r−1)

dx

!λ3(r−1)
1
A

α/s

=

0
@|ρB|λ3(r−1)+1

�
1

|ρB|
Z

ρB

wλ1
1 dx

� 
1

|ρB|
Z

ρB

�
1

w2

�λ2/(r−1)

dx

!λ3(r−1)
1
A

α/s

≤ C4|B|α(λ3(r−1)+1)/s.

Finally, substituting (2.8) in (2.7) and using the fact that (m−t)/mt = −α(λ3(r−1)+1)/s,
we obtain

(2.9)

�Z

B

|Tu|swαλ1
1 dx

�1/s

≤ C|B|diam(B)

�Z

ρB

|u|swαλ2λ3
2 dx

�1/s

for all balls B with ρB ⊂ Ω. This ends the proof of Theorem 2.5. �

Theorem 2.6. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,

Vl) → C∞(Ω,
Vl−1) be a ho-

motopy operator defined in (1.4). Assume that ρ > 1 and (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω)

for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C, independent of
u, such that

(2.10)

�Z

B

|∇(Tu)|swαλ1
1 dx

�1/s

≤ C|B|
�Z

ρB

|u|swαλ2λ3
2 dx

�1/s

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Note that (2.10) can be written as

(2.10)′ ‖∇(Tu)‖
s, B, w

αλ1
1

≤ C|B|‖u‖
s, ρB, w

αλ2λ3
2

.
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Proof. Let t = s/(1− α). Using Lemma 2.2, we obtain

�Z

B

|∇(Tu)|swαλ1
1 dx

�1/s

=

�Z

B

(|∇(Tu)|wαλ1/s
1 )sdx

�1/s

(2.11)

≤ ‖∇(Tu)‖t, B

�Z

B

w
αtλ1/(t−s)
1 dx

�(t−s)/st

= ‖∇(Tu)‖t, B

�Z

B

wλ1
1 dx

�α/s

.

By lemma 2.3, we have

(2.12) ‖∇(Tu)‖t, B ≤ C1|B|‖u‖t, B .

Choose m = s/(1 + αλ3(r − 1)), then m < s. Substituting (2.12) into (2.11) and using
Lemma 2.4, we have

�Z

B

|∇(Tu)|swαλ1
1 dx

�1/s

(2.13)

≤ C1|B|‖u‖t, B

�Z

B

wλ1
1 dx

�α/s

≤ C2|B||B|(m−t)/mt‖u‖m, ρB

�Z

B

wλ1
1 dx

�α/s

.

Using Hölder’s inequality again with 1/m = 1/s + (s−m)/sm, we arrive at

‖u‖m,ρB =

�Z

ρB

|u|mdx

�1/m

(2.14)

=

�Z

ρB

(|u|wαλ2λ3/s
2 w

−αλ2λ3/s
2 )mdx

�1/m

≤
�Z

ρB

|u|swαλ2λ3
2 dx

�1/s�Z

ρB

(
1

w2
)αλ2λ3m/(s−m)dx

�(s−m)/sm

=

�Z

ρB

|u|swαλ2λ3
2 dx

�1/s�Z

ρB

(
1

w2
)λ2/(r−1)dx

�αλ3(r−1)/s

for all balls B with ρB ⊂ Ω. Combining (2.13) and (2.14), we obtain

�Z

B

|∇(Tu)|swαλ1
1 dx

�1/s

(2.15)

≤ C3|B||B|(m−t)/mt

�Z

ρB

|u|swαλ2λ3
2 dx

�1/s

×
�Z

B

wλ1
1 dx

�α/s
 Z

ρB

�
1

w2

�λ2/(r−1)

dx

!αλ3(r−1)/s

.
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Since (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω), we then have

�Z

B

wλ1
1 dx

�α/s
 Z

ρB

�
1

w2

�λ2/(r−1)

dx

!αλ3(r−1)/s

(2.16)

≤
0
@
�Z

ρB

wλ1
1 dx

� Z

ρB

�
1

w2

�λ2/(r−1)

dx

!λ3(r−1)
1
A

α/s

=

0
@|ρB|λ3(r−1)+1

�
1

|ρB|
Z

ρB

wλ1
1 dx

� 
1

|ρB|
Z

ρB

�
1

w2

�λ2/(r−1)

dx

!λ3(r−1)
1
A

α/s

≤ C4|B|α(λ3(r−1)+1)/s.

Combining (2.16) and (2.15), we find that

(2.17)

�Z

B

|∇(Tu)|swαλ1
1 dx

�1/s

≤ C4|B|
�Z

ρB

|u|swαλ2λ3
2 dx

�1/s

for all balls B with ρB ⊂ Ω. The proof of Theorem 2.6 has been completed. �
Now, we prove the following local weighted imbedding inequality for differential forms

under the homotopy operator T .

Theorem 2.7. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : Ls(Ω,

Vl) → W 1, s(Ω,
Vl−1) be a ho-

motopy operator defined in (1.5). Assume that ρ > 1 and (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω)

for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C, independent of
u, such that

(2.18) ‖Tu‖
W1, s(B,

Vl), w
αλ1
1

≤ C|B|‖u‖
s, ρB, w

αλ2λ3
2

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Proof. Form (1.1), (2.2)′ and (2.10)′, we obtain

‖Tu‖
W1, s(B,

Vl), w
αλ1
1

= diam(B)−1‖Tu‖
s, B, w

αλ1
1

+ ‖∇(Tu)‖
s, B, w

αλ1
1

≤ diam(B)−1
h
C1|B|diam(B)‖u‖

s, ρB, w
αλ2λ3
2

i
+ C2|B|‖u‖s, ρB, w

αλ2λ3
2

= C1|B|‖u‖s, ρB, w
αλ2λ3
2

+ C2|B|‖u‖s, ρB, w
αλ2λ3
2

≤ C3|B|‖u‖s, ρB, w
αλ2λ3
2

which is equivalent to (2.18). The proof of Theorem 2.7 has been completed. �
Using Theorem 2.7, we prove the following Sobolev-Poincaré imbedding inequality for

differential forms.

Theorem 2.8. Let du ∈ Ls
loc(Ω,

Vl+1), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn. Assume that ρ > 1 and (w1(x), w2(x)) ∈
Aλ3

r (λ1, λ2, Ω) for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C,
independent of u, such that

(2.19) ‖u− uB‖W1, s(B,
Vl), w

αλ1
1

≤ C|B|‖du‖
s, ρB, w

αλ2λ3
2
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for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Proof. Since ω = du ∈ Ls
loc(Ω,

Vl+1) satisfies (1.2), using (2.18) and uB = u − T (du) we
have

‖u− uB‖W1, s(B,
Vl), w

αλ1
1

= ‖T (du)‖
W1, s(B,

Vl), w
αλ1
1

≤ C|B|‖du‖
s, ρB, w

αλ2λ3
2

.

This ends the proof of Theorem 2.8. �

Note that the parameters λ1, λ2, λ3 and α in the above Theorems are any real numbers
with 0 < α < 1 and 0 < λ1, λ2, λ3 < ∞. Therefore, we will have different versions of
the weighted imbedding inequalities by choosing λ1, λ2, λ3 and α to take different values.
Choosing λ1 = 1, α = 1/s and α = 1/λ1 with λ1 > 1 in theorems 2.5 and 2.6, we have the
following Corollaries 2.9-2.11, respectively.

Corollary 2.9. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,

Vl) → C∞(Ω,
Vl−1) be a

homotopy operator defined in (1.4). Assume that ρ > 1 and (w1(x), w2(x)) ∈ Aλ3
r (1, λ2, Ω)

for some r > 1 and 0 < λ2, λ3 < ∞. Then, there exists a constant C, independent of u,
such that

‖Tu‖s, B, wα
1

≤ C|B|diam(B)‖u‖
s, ρB, w

αλ2λ3
2

(2.20)

‖∇(Tu)‖s, B, wα
1

≤ C|B|‖u‖
s, ρB, w

αλ2λ3
2

(2.21)

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Corollary 2.10. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,

Vl) → C∞(Ω,
Vl−1) be a ho-

motopy operator defined in (1.4). Assume that ρ > 1 and (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω)

for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C, independent of
u, such that

‖Tu‖
s, B, w

λ1/s
1

≤ C|B|diam(B)‖u‖
s, ρB, w

λ2λ3/s
2

(2.22)

‖∇(Tu)‖s, B, wλ1/s ≤ C|B|‖u‖s, ρB, wλ2λ3/s(2.23)

for all balls B with ρB ⊂ Ω.

Corollary 2.11. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,

Vl) → C∞(Ω,
Vl−1) be a ho-

motopy operator defined in (1.4). Assume that ρ > 1 and (w1(x), w2(x)) ∈ Aλ3
r (λ1, λ2, Ω)

for some r > 1, λ1 > 1 and 0 < λ2, λ3 < ∞. Then, there exists a constant C, independent
of u, such that

‖Tu‖s, B, w1 ≤ C|B|diam(B)‖u‖
s, ρB, w

λ2λ3/λ1
2

(2.24)

‖∇(Tu)‖s, B, w1 ≤ C|B|‖u‖
s, ρB, w

λ2λ3/λ1
2

(2.25)

for all balls B with ρB ⊂ Ω.
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If we set λ3 = 1/λ2 in Corollary 2.9, we have the following symmetric imbedding
inequality.

Corollary 2.12. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,

Vl) → C∞(Ω,
Vl−1) be a ho-

motopy operator defined in (1.4). Assume that ρ > 1 and (w1(x), w2(x)) ∈ A
1/λ2
r (1, λ2, Ω)

for some r > 1 and 0 < λ2 < ∞. Then, there exists a constant C, independent of u, such
that

‖Tu‖s, B, wα
1

≤ C|B|diam(B)‖u‖s, ρB, wα
2

(2.26)

‖∇(Tu)‖s, B, wα
1

≤ C|B|‖u‖s, ρB, wα
2

(2.27)

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Putting λ1 = λ2λ3 in Corollary 2.10 and Corollary 2.11, we also obtain some symmetric
imbedding inequalities. Considering the length of the paper, we do not list these similar
results here.

If we choose λ1 = 1 in Theorem 2.7, we then have

(2.28) ‖Tu‖W1, s(B,
Vl), wα

1
≤ C|B|‖u‖

s, ρB, w
αλ2λ3
2

.

Putting α = 1/s, s > 1 in Theorem 2.7, we find that

(2.29) ‖Tu‖
W1, s(B,

Vl), w
λ1/s
1

≤ C|B|‖u‖
s, ρB, w

λ2λ3/s
2

.

Putting α = 1/λ1, λ1 > 1 in Theorem 2.7, we have

(2.30) ‖Tu‖W1, s(B,
Vl), w1

≤ C|B|‖u‖
s, ρB, w

λ2λ3/λ1
2

.

Similarly, from Theorem 2.8, we have the following Sobolev-Poincaré imbedding in-
equalities for differential forms.

Corollary 2.13. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differ-
ential form satisfying (1.2) in a bounded domain Ω ⊂ Rn. Assume that ρ > 1 and
(w1(x), w2(x)) ∈ Aλ3

r (1, λ2, Ω) for some r > 1 and 0 < λ2, λ3 < ∞. Then, there ex-
ists a constant C, independent of u, such that

(2.31) ‖u− uB‖W1, s(B,
Vl), wα

1
≤ C|B|‖du‖

s, ρB, w
αλ2λ3
2

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

Corollary 2.14. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn. Assume that ρ > 1 and (w1(x), w2(x)) ∈
Aλ3

r (λ1, λ2, Ω) for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C,
independent of u, such that

(2.32) ‖u− uB‖
W1, s(B,

Vl), w
λ1/s
1

≤ C|B|‖du‖
s, ρB, w

λ2λ3/s
2

for all balls B with ρB ⊂ Ω.

Corollary 2.15. Let u ∈ Ls
loc(Ω,

Vl), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form
satisfying (1.2) in a bounded domain Ω ⊂ Rn. Assume that ρ > 1 and (w1(x), w2(x)) ∈
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Aλ3
r (λ1, λ2, Ω) for some r > 1, λ1 > 1 and 0 < λ2, λ3 < ∞. Then, there exists a constant

C, independent of u, such that

(2.33) ‖u− uB‖W1, s(B,
Vl), w1

≤ C|B|‖du‖
s, ρB, w

λ2λ3/λ1
2

for all balls B with ρB ⊂ Ω.

Putting λ3 = 1/λ2, λ1 = λ2λ3 in (2.28)-(2.30), Corollaries 2.13, 2.14 and 2.15, we also
obtain similar symmetric imbedding inequalities. Considering the length of the paper, we
leave it to the reader to find the similar results.

3. Global Aλ3
r (λ1, λ2, Ω)-weighted imbedding inequalities

As applications of the local results, we prove the global Aλ3
r (λ1, λ2, Ω)-weighted imbed-

ding inequalities in this section. We shall need the following Lemma about the Whitney
covers appearing in [8]. See [19] for more properties of Whitney cubes.

Lemma 3.1. Each Ω has a modified Whitney cover of cubes ν = {Qi} such that

[
i

Qi = Ω,

X
Q∈ν

χ√
5/4Q

(x) ≤ NχΩ(x),

for all x ∈ Rn and N > 1, where χE is the characteristic function for a set E. Moreover,

if Qi ∩ Qj 6= φ, there exists a cube R (this cube does not need to be a member of ν)

in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR. Also, if Ω is a δ-John domain, then there is a

distinguished cube Q0 ∈ ν which can be connected with every cube Q ∈ ν by a chain of

cubes Q0, Q1, · · · , Qk = Q from ν and such that Q ⊂ ρQi, i = 0, 1, 2, · · · , k, for some

ρ = ρ(n, δ).

Now, we prove the following global Aλ3
r (λ1, λ2,Ω)-weighted imbedding inequal-

ities in a bounded domain Ω for differential forms satisfying the A-harmonic equa-
tion.

Theorem 3.2. Let u ∈ Ls(Ω,
∧l), l = 1, 2, · · · , n, 1 < s < ∞, be a differ-

ential form satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : C∞(Ω,
∧l) →

C∞(Ω,
∧l−1) be a homotopy operator defined in (1.4). Assume that (w1(x), w2(x)) ∈

Aλ3
r (λ1, λ2, Ω) for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant

C, independent of u, such that

(3.1) ‖Tu‖
s, Ω, w

αλ1
1

≤ C‖u‖
s, Ω, w

αλ2λ3
2

and

(3.2) ‖∇(Tu)‖
s, Ω, w

αλ1
1

≤ C‖u‖
s, Ω, w

αλ2λ3
2

for any real number α with 0 < α < 1.
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Proof. Using (2.2) and Lemma 3.1, we find that

(∫

Ω

|Tu|swαλ1
1 dx

)1/s

≤
∑

Q∈ν

C1|Q|diam(Q)
(∫

ρQ

|u|swαλ2λ3
2 dx

)1/s

≤ C1|Ω|diam(Ω)
∑

Q∈ν

(∫

ρQ

|u|swαλ2λ3
2 dx

)1/s

≤ C2

(∫

Ω

|u|swαλ2λ3
2 dx

)1/s

since Ω is bounded. We have proved the inequality (3.1). Similarly, using Lemma
3.1 and (2.10), we can prove (3.2). The proof of Theorem 3.2 has been completed.
¤

From Theorem 2.7 and Theorem 3.2, we have the following global imbedding
inequality.

Theorem 3.3. Let u ∈ Ls(Ω,
∧l), l = 1, 2, · · · , n, 1 < s < ∞, be a differential form

satisfying (1.2) in a bounded domain Ω ⊂ Rn and T : Ls(Ω,
∧l) → W 1, s(Ω,

∧l−1) be
a homotopy operator defined in (1.5). Assume that (w1(x), w2(x)) ∈ Aλ3

r (λ1, λ2,Ω)
for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C, indepen-
dent of u, such that

(3.3) ‖Tu‖
W 1, s(Ω,

Vl), w
αλ1
1

≤ C‖u‖
s, Ω, w

αλ2λ3
2

for any real number α with 0 < α < 1.

Proof. Combining (1.1), (3.1) and (3.2), we derive that

‖Tu‖
W 1, s(Ω,

Vl), w
αλ1
1

= diam(Ω)−1‖Tu‖
s, Ω, w

αλ1
1

+ ‖∇(Tu)‖
s, Ω, w

αλ1
1

≤ diam(Ω)−1
[
C1‖u‖s, Ω, w

αλ2λ3
2

]
+ C2‖u‖s, Ω, w

αλ2λ3
2

≤ C3‖u‖s, Ω, w
αλ2λ3
2

.

Hence (3.3) is true. The proof of Theorem 3.3 has been completed. ¤

Theorem 3.4. Let du ∈ Ls(Ω,
∧l+1), l = 1, 2, · · · , n, 1 < s < ∞, be a differential

form satisfying (1.2) in a bounded domain Ω ⊂ Rn. Assume that (w1(x), w2(x)) ∈
Aλ3

r (λ1, λ2,Ω) for some r > 1 and 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant
C, independent of u, such that

(3.4) ‖u− uΩ‖W 1, s(Ω,
Vl), w

αλ1
1

≤ C‖du‖
s, Ω, w

αλ2λ3
2

for any real number α with 0 < α < 1.
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Proof. Since ω = du ∈ Ls(Ω,
∧l+1) satisfies (1.2), using (3.3) and uΩ = u − T (du)

we have

‖u− uΩ‖W 1, s(Ω,
Vl), w

αλ1
1

= ‖T (du)‖
W 1, s(Ω,

Vl), w
αλ1
1

≤ C‖du‖
s, Ω, w

αλ2λ3
2

Therefore, (3.4) is true. The proof of Theorem 3.4 has been completed. ¤

Remark. If we choose λ1, λ2, λ3 and α to take some special values in Theorems
3.2-3.4, respectively, we shall have some global results similar to the local case. For
example, if we let w1 = w2 = w and λ1 = λ2λ3 = 1, then (3.1) and (3.2) become

‖Tu‖s, Ω, wα ≤ C‖u‖s, Ω, wα(3.5)
‖∇(Tu)‖s, Ω, wα ≤ C‖u‖s, Ω, wα(3.6)

respectively. Considering the length of the paper, we leave it to the reader to find
the similar global results.

References

[1] G. Bao, Ar(λ)-weighted integral inequalities for A-harmonic tensors, J. Math. Anal.
Appl., 247(2000), 466-477.

[2] S. Ding, Weighted Hardy-Littlewood inequality for A-harmonic tensors, Proc. Amer.
Math. Soc., 125(1997), 1727-1735.

[3] S. Ding, Parametric weighted integral inequalities for A-harmonic tensors, Zeischrift
fur Analysis und ihre Anwendungen (Journal of Analysis and its Applications),
20(2001), 691-708.

[4] S. Ding, Weighted Caccioppoli-type estimates and weak reverse Hölder inequalities for
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