DOI QR코드

DOI QR Code

Lr INEQUALITIES OF GENERALIZED TURÁN-TYPE INEQUALITIES OF POLYNOMIALS

  • Received : 2021.06.28
  • Accepted : 2021.08.21
  • Published : 2021.12.15

Abstract

If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for 𝜌R ≥ k2 and 𝜌 ≤ R, Aziz and Zargar [4] proved that $${\max_{{\mid}z{\mid}=1}}{\mid}p^{\prime}(z){\mid}{\geq}n{\frac{(R+k)^{n-1}}{({\rho}+k)^n}}\{{\max_{{\mid}z{\mid}=1}}{\mid}p(z){\mid}+{\min_{{\mid}z{\mid}=k}}{\mid}p(z){\mid}\}$$. We prove a generalized Lr extension of the above result for a more general class of polynomials $p(z)=a_nz^n+\sum\limits_{{\nu}={\mu}}^{n}a_n-_{\nu}z^{n-\nu}$, $1{\leq}{\mu}{\leq}n$. We also obtain another Lr analogue of a result for the above general class of polynomials proved by Chanam and Dewan [6].

Keywords

Acknowledgement

The authors are extremely grateful to the referees for their valuable comments and suggestions about the paper.

References

  1. V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
  2. A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivatives, J. Approx. Theory, 54 (1988), 306-313. https://doi.org/10.1016/0021-9045(88)90006-8
  3. A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivatives, Math. Inequal. Appl., 7(3) (2004), 379-391.
  4. A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivatives, Math. Inequal. Appl.,1(4) (1998), 543-550.
  5. S. Bernstein, Lecons sur les propri'et'es extr'emales et la meilleure approximation desfonctions analytiques d'une variable r'eelle, Gauthier Villars, Paris, 1926.
  6. B. Chanam and K.K. Dewan, Inequalities for a polynomial and its derivatives, J. Interdis. Math., 11(4) (2008), 469-478. https://doi.org/10.1080/09720502.2008.10700574
  7. E. Hille, Analytic Function Theory, Vol. II, Ginn. and Company, New York, Toronto, 1962.
  8. M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57
  9. M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343. https://doi.org/10.1090/S0002-9939-1992-1113648-1
  10. W. Rudin, Real and Complex Analysis, Tata Mcgraw-Hill Publishing Company (Reprinted in India), 1977.
  11. A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc. New York, 1958.
  12. P. Turan, Uber die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.
  13. A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400. https://doi.org/10.1112/plms/s2-34.1.392