• Title/Summary/Keyword: $G_1$-operator

Search Result 167, Processing Time 0.024 seconds

ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION

  • Kim, Jung-Ok;Kwon, Ern-Gun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.623-632
    • /
    • 2010
  • A holomorphic function F defined on the unit disc belongs to $A^{p,{\alpha}}$ (0 < p < $\infty$, 1 < ${\alpha}$ < $\infty$) if $\int\limits_U|F(z)|^p \frac{1}{1-|z|}(1+log)\frac{1}{1-|z|})^{-\alpha}$ dxdy < $\infty$. For boundedness of the composition operator defined by $C_{fg}=g{\circ}f$ mapping Blochs into $A^{p,{\alpha}$ the following (1) is a sufficient condition while (2) is a necessary condition. (1) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha}M_p(r,\lambda{\circ}f)^p\;dr$ < $\infty$ (2) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha+p}(1-r)^pM_p(r,f^#)^p\;dr$ < $\infty$.

Weighted Lp Boundedness for the Function of Marcinkiewicz

  • Al-Qassem, Hussain M.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.31-48
    • /
    • 2006
  • In this paper, we prove a weighted norm inequality for the Marcinkiewicz integral operator $\mathcal{M}_{{\Omega},h}$ when $h$ satisfies a mild regularity condition and ${\Omega}$ belongs to $L(log L)^{1l2}(S^{n-1})$, $n{\geq}2$. We also prove the weighted $L^p$ boundedness for a class of Marcinkiewicz integral operators $\mathcal{M}^*_{{\Omega},h,{\lambda}}$ and $\mathcal{M}_{{\Omega},h,S}$ related to the Littlewood-Paley $g^*_{\lambda}$-function and the area integral S, respectively.

  • PDF

DUAL SURFACES DEFINED BY z = f(u) + g(ν) IN SIMPLY ISOTROPIC 3-SPACE ${\mathbb{I}}{\frac{1}{3}}$

  • Cakmak, Ali;Karacan, Murat Kemal;Kiziltug, Sezai
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.267-277
    • /
    • 2019
  • In this study, we define the dual surfaces by z = f(u) + g(v) and also classify these surfaces in ${\mathbb{I}}{\frac{1}{3}}$ satisfying some algebraic equations in terms of the coordinate functions and the Laplace operators according to fundamental forms of the surface.

SENSITIVITY ANALYSIS IN FUZZY RELIABILITY ANALYSISA

  • Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.764-769
    • /
    • 1988
  • In this paper the failure possibility and the error possibility are used to represent reliability of a technical component and that of a human operator, respectively. The failure possibility and the error possibility are fuzzy sets on the interval [0,1]. In a man-machine system, reliability of the technical component and that of the human operator are usually affected by many factors, e.g., the environment in which a machine is operated, psychological stress of the human operator, etc. The possibility is derived from not only the failure or the error rate but also estimates of these factors. The fuzzy reasoning plays an important role in the derivation. The reliability analysis is performed by the use of the possibility obtained by the present method. Moreover this paper discusses the sensitivity analysis which evaluates what extent the change of the estimation of each factor has an influence on reliability of a man-machine system. The important factors to be ameliorated are shown through the sensitivity analysis.

  • PDF

Real Hypersurfaces in Complex Two-plane Grassmannians with F-parallel Normal Jacobi Operator

  • Jeong, Im-Soon;Suh, Young-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.395-410
    • /
    • 2011
  • In this paper we give a non-existence theorem for Hopf hypersurfaces M in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator $\bar{R}_N$ is parallel on the distribution F defined by $F=[{\xi}]{\cup}D^{\bot}$, where [${\xi}$] = Span{${\xi}$}, $D^{\bot}$ = Span {${\xi}_1$, ${\xi}_2$, ${\xi}_3$} and $T_xM=D{\oplus}D^{\bot}$, $x{\in}M$.

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

Range of Operators and an Application to Existence of a Periodic Solution

  • Bae, Jong Sook;Sung, Nak So
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 1988
  • In this paper, we calculate the precise estimation of range of a Gateaux differentiable operator, and apply to the existence of a periodic solution of the second order nonlinear differential equation $$z^{{\prime}{\prime}}+Az^{\prime}+G(z)=e(t)=e(t+2{\pi})$$.

  • PDF

G/M/1 QUEUES WITH ERLANGIAN VACATIONS

  • Park, Bong-Dae;Han, Dong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.443-460
    • /
    • 1995
  • We consider a G/M/1 vacation model where the vacation time has k-stages generalized Erlang distribution. By using the methods of the shift operator and supplementary variable, we explicitly obtain the limiting probabilities of the queue length at arrival time points and arbitrary time points simultaneously. Operational calculus technique is used for solving non-homogeneous difference equations.

  • PDF

EXPLICIT SOLUTIONS OF INFINITE QUADRATIC PROGRAMS

  • Sivakumar, K.C.;Swarna, J.Mercy
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.211-218
    • /
    • 2003
  • Let H be a Hilbert space, X be a real Banach space, A : H \longrightarrow X be an operator with D(A) dense in H, G: H \longrightarrow H be positive definite, $\chi$ $\in$ D(A) and b $\in$ H. Consider the quadratic programming problem: QP: Minimize $\frac{1}{2}$〈p, $\chi$〉 + 〈$\chi$, G$\chi$〉 subject to A$\chi$= b In this paper, we obtain an explicit solution to the above problem using generalized inverses.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM WITH 𝜉-PARALLEL STRUCTURE JACOBI OPERATOR

  • U-Hang KI;Hyunjung SONG
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c). We denote by A, K and L the second fundamental forms with respect to the unit normal vector C, D and E respectively, where C is the distinguished normal vector, and by R𝜉 = R(𝜉, ·)𝜉 the structure Jacobi operator. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y , and at the same time R𝜉K = KR𝜉 and ∇𝜙𝜉𝜉R𝜉 = 0. In this paper, we prove that if it satisfies ∇𝜉R𝜉 = 0 on M, then M is a real hypersurface of type (A) in Mn(c) provided that the scalar curvature $\bar{r}$ of M holds $\bar{r}-2(n-1)c{\leq}0$.