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SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN

A COMPLEX SPACE FORM WITH ξ-PARALLEL

STRUCTURE JACOBI OPERATOR

U - Hang KI and Hyunjung SONG∗

Abstract. Let M be a semi-invariant submanifold of codimension 3 with

almost contact metric structure (ϕ, ξ, η, g) in a complex space formMn+1(c).
We denote by A, K and L the second fundamental forms with respect to

the unit normal vector C, D and E respectively, where C is the distin-

guished normal vector, and by Rξ = R(ξ, ·)ξ the structure Jacobi operator.
Suppose that the third fundamental form t satisfies dt(X,Y ) = 2θg(ϕX, Y )

for a scalar θ( ̸= 2c) and any vector fields X and Y , and at the same time

RξK = KRξ and ∇ϕ∇ξξRξ = 0. In this paper, we prove that if it satis-

fies ∇ξRξ = 0 on M , then M is a real hypersurface of type (A) in Mn(c)

provided that the scalar curvature r̄ of M holds r̄ − 2(n− 1)c ≤ 0.

1. introduction

Let M̃ a Kaehlerian manifoldn manifold with complex structure J . A sub-
manifold M of M̃ is called a CR submanifold if there exists a differentiable
distribution △ : p → △p ⊂ TpM on M such that △ is J-invariant and the
complementary orthogonal distribution △⊥ is totally real, where TpM denote
by the tangent space at each point p in M ([1], [33]). In particular, M is said to
be a semi-invariant submanifold if dim △⊥ = 1. In this case, M admits an al-
most contact metric structure (ϕ, ξ, η, g). A typical example of a semi-invariant

submanifold is real hypersurfaces in M̃ . Furthermore, nontrivial examples of
semi-invariant submanifold in a complex projective space are constructed in [18]
and [28]. Thus, we may expect to generalize some results which are valid in a
real hypersurface to a semi-invariant submanifold.

As is well known, complete and simply connected nonflat complex space form
Mn(c) are isometric to a complex projective space PnC, or a complex hyperbolic
space HnC according as c > 0 or c < 0.
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In the study of real hypersurfaces in a complex projective space PnC, Takagi
([29], [30]) classified all homogeneous Hopf hypersurfaces, and Cecil-Ryan ([5])
and Kimura ([21]) showed that they can be regarded as the tubes of constant
radius over Kaehlerian submanifolds. Such tubes can be divided into six type :
A1, A2, B,C,D and E.

In the case of real hypersurfaces in a complex hyperbolic space HnC, the
classification of homogenous raal hypersurfaces inHnC was obtained by Berndt-
Tamaru([3]). Berndt ([2]) showed that all real hypersurfaces with constant
principal curvatures are realized as the tubes over certain submanifolds. Such
tubes are said to be real hypersurfaces of type A0, A1, A2 and B.

Among the several types of real hypersurfaces appearing in Takagi′s list or
Berndt′s list, several pieces are tubes over totally geodesic PnC or HkC (0 ≤
k ≤ n− 1). These and a horosphere in HnC are together said to be of type (A).

Characterization problems for a real hypersurface of type (A) in a complex
space form Mn(c) were started by many authors ([7], [13], [14], [19], [22], [23],
[24], etc). Two of them, we introduce the following theorem without proof due
to Okumura ([24]) for c > 0 and Montiel-Romero ([22]) for c < 0 respectively.

Theorem O-MR. Let M be a real hypersurface of Mn(c), c ̸= 0, n ≥ 2.
Then Aϕ = ϕA, if and only if M is locally congruent to a homogeneous real
hypersurface of type (A). More precisely :

(I) in case of PnC,
(A1) a hyperplane Pn−1C, where 0 < r < π/2,
(A2) a totally geodesic PkC (1 ≤ k ≤ n− 2), where 0 < r < π/2

(II) in case of HnC,
(A0) a horosphere HnC, i,e, a Montiel tube,
(A1) a geodesic hypersphere or a tube over a hyperplane Hn−1C,
(A2) a tube over a totally geodesic HkC (1 ≤ k ≤ n− 2).

We define the Jacobi operator Rξ(X) = R(X, ξ)ξ with respect to the struc-
ture vector ξ for the curvature tensor R and any vector field X on M . Then Rξ

is a self-adjoint endomorphism on the tangent space of a CR submanifold M .
But, it is known that there no real hypersurfaces in a complex space form Mn(c)
with parallel structure Jacobi operator ([27]). Using several conditions on the
structure Jacobi operator Rξ, characterization problems for a real hypersurface
of type (A) have recently studied. In the previous paper ([13]), Kurihara and
the present author gave, using the structure Jacobi operator, another charac-
terization of a real hypersurface of type (A) in a complex space form. Namely
they proved the following :

Theorem K([13]). Let M be a connected real hypersurface of a complex space
form Mn(c), c ̸= 0. If it satisfies ∇ξRξ = 0 and ∇ϕ∇ξξRξ = 0, then M is a
real hypersurface of type (A).
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On the other hand, semi-invariant submanifolds of codimension 3 in a com-
plex space form Mn+1(c) have been studied in [18] by using properties of in-
duced almost contact structure and those of the third fundamental form of the
submanifold. Furthermore, using several conditions for the structure Jacobi
operator Rξ, semi-invariant submanifolds of codimension 3 in a complex space
form were studied ([9], [12], [15], [16], [17], etc.).

In the present paper, we discuss a semi-invariant submanifold version of the
Theorem K, that is, we consider a semi-invariant submanifold M of codimension
3 in a nonflat complex space form Mn+1(c) which satisfies RξK = KRξ and
at the same time the third fundamental form t satisfies dt = 2θω for a scalar
θ(̸= 2c), where ω(X,Y ) = g(ϕX, Y ) for any vector fields X and Y on M . Then
we prove that if it satisfies ∇ξRξ = 0, then M is a real hypersurface in Mn(c)
provided that the scalar curvature r̄ of M holds r̄− 2(n− 1)c ≤ 0. Further, we
also prove that M satisfies ∇ϕ∇ξξRξ = 0, then M is a real hypersurface of type
(A). Our main theorem appears in section 4.

A all manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant submanifold supposed to be orientable.

2. Structure equations of semi-invariant submanifolds

In this section, elemental facts of semi-invariant submanifolds are re-called.
Let M̃ be a real 2(n+ 1)-dimensional Kaehlerian manifold of constant holo-

morphic sectional curvature 4c with parallel almost complex structure J and a
Riemannian metric tensor G, which is called a complex space form and denoted
by Mn+1(c). Let M be a real (2n − 1)-dimensional Riemannian manifold im-

mersed isometrically in M̃ by the immersion i : M → M̃ . In the sequel, we
identify i(M) with M itself. We denote by g the Riemannian metric tensor on

M from that of M̃ .
If we denote by ∇̃ the operator of covariant differentiation with respect to the

metric tensor G on M̃ and by ∇ the one on M , then the Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + g(AX,Y )C + g(KX,Y )D + g(LX, Y )E, (2.1)

∇̃XC = −AX + l(X)D +m(X)E,

∇̃XD = −KX − l(X)C + t(X)E,

∇̃XE = −LX −m(X)C − t(X)D

(2.2)

for any vector fields tangent to X and Y on M and any unit vector field C,D
and E normal to M because we take C,D and E are mutually orthogonal,
where A,K,L are called the second fundamental forms and l,m and t the third
fundamental forms.
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As is well-known, a submanifold M of a Kaehlerian manifold M̃ is said to be
a CR submanifold ([1], [33]) if it is endowed with a pair of mutually orthogonal
and complementary differentiable distribution (∆,∆−1) such that for any point
p in M we have J∆p = TpM , JT⊥

p ⊂ T⊥
p M , where T⊥

p M denote the normal
space of M at p. In particular, M is said to be semi-invariant submanifold([4],
[31]) provided that dim∆⊥ = 1 or to be a CR submanifold with CR dimension
n− 1([25]).

In this case the unit normal vector field in J∆⊥ is called a distinguished
normal to the semi-invariant submanifold and denote this by C ([31], [32]).

From now on we discuss that M is a real (2n−1)-dimensional semi-invariant

submanifold of codimension 3 in a Kaehlerian manifold M̃ of real 2(n + 1)-
dimension. Then we can choose a local orthonormal frame field {e1, · · · , en−1,

Je1, · · · , Jen−1
, e0 = ξ, C = Jξ,D = JE,E} on the tangent space TpM̃ of M̃

for any point p in M such that e1, · · · , en−1, Je1, · · · , Jen−1
, ξ ∈ TpM , and C,

D, E ∈ T⊥
p M .

Now, let ϕ be the restriction of J on M , then we have

JX = ϕX + η(X)C, η(X) = g(ξ,X), JC = −ξ (2.3)

for any vector field X on M ([32]). From this it is, using Hermitian property of
J , verified that the aggregate (ϕ, ξ, η, g) is an almost contact metric structure
on M , that is, we have

ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ξ,X) = η(X),

ϕξ = 0, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y .
In the sequel, we denote the normal components of ∇̃XC by ∇⊥C. The

distinguished normal C is said to be parallel in the normal bundle if we have
∇⊥C = 0, that is, l and m vanish identically.

Using the Kaehler condition ∇̃J = 0 and the Gauss and Weingarten formu-
las,we obtain from (2.3)

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, (2.4)

∇Xξ = ϕAX, (2.5)

KX = ϕLX −m(X)ξ, (2.6)

LX = −ϕKX + l(X)ξ (2.7)

for any vectors X and Y on M . From the last two equations, we have

g(Kξ,X) = −m(X), (2.8)

g(Lξ,X) = l(X). (2.9)

Using the frame field {e0 = ξ, e1, · · · , en−1, ϕe1, · · · , ϕen−1} on M it follows
from (2.6) ∼ (2.9) that

TrK = η(Kξ) = −m(ξ), TrL = η(Lξ) = l(ξ). (2.10)
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Now, we retake D and E, there is no loss of generality such that we may
assume TrL = 0(cf. [18]). So we have

l(ξ) = 0. (2.11)

In what follows, to write our formulas in a convention form, we denote by
α = η(Aξ), β = η(A2ξ), TrA = h, TrK = k, Tr(

tAA) = h(2) and for a function
f we denote by ∇f the gradient vector field of f .

From (2.10) we also have

m(ξ) = −k. (2.12)

From (2.6) and (2.7) we also get

η(X)l(ϕY )− η(Y )l(ϕX) = m(Y )η(X)−m(X)η(Y ),

which together with (2.12) gives

l(ϕX) = m(X) + kη(X), (2.13)

which tells us, using (2.11), that

m(ϕX) = −l(X), (2.14)

where we have used (2.9) and (2.11).
Taking the inner product with LY to (2.6) and using (2.9), we obtain

g(KLX,Y ) + g(LKX,Y ) = −{l(X)m(Y ) + l(Y )m(X)}. (2.15)

We put ∇ξξ = U in the sequel. Then U is orthogonal to ξ be because of (2.5).
We put

Aξ = αξ + µW, (2.16)

where W is a unit vector orthogonal to ξ. Then we have

U = µϕW (2.17)

by virtue of (2.5). Thus, W is also orthogonal to U . Further, we have

µ2 = β − α2. (2.18)

From (2.16) and (2.17) we obtain

ϕU = −Aξ + αξ. (2.19)

If we take account of (2.5), (2.10) and (2.19), then we find

g(∇Xξ, U) = µg(AW,X). (2.20)

Since W is orthogonal to ξ, we can, using (2.5) and (2.17), see that

µg(∇XW, ξ) = g(AU,X). (2.21)

Differentiating (2.19) covariantly along M and using (2.4) and (2.5), we find

(∇XA)ξ = −ϕ∇XU + g(AU +∇α,X)ξ −AϕAX + αϕAX. (2.22)
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In the rest of this paper we shall suppose that M is a semi-invariant sub-
manifold of codimension 3 in a complex space form Mn+1(c), c ̸= 0 and that
the third fundamental form t satisfies

dt = 2θω, ω(X,Y ) = g(ϕX, Y ) (2.23)

for any vector fields X and Y and a certain scalar θ, where d denotes by the
exterior differential operator. Then we can verify that (see, [18])

l = 0 (2.24)

provided that θ − 2c ̸= 0 and hence

m(X) = −kη(X) (2.25)

because of (2.13). Using these facts (2.8) and (2.9) turn out respectively to

Kξ = kξ, Lξ = 0. (2.26)

Because of (2.24) and (2.25), we can also write respectively (2.6) and (2.7)
as

KX = ϕLX + kη(X), (2.27)

L = −ϕK. (2.28)

Since M̃ is a Kaehlerian manifold of constant holomorphic sectional curvature
4c, we have

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX

− g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY

+ g(KY,Z)KX − g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY.

(2.29)

If we take account of (2.24) and (2.25), then equations of the Codazzi are
given respectively by

(∇XA)Y − (∇Y A)X = k{η(Y )LX − η(X)LY }
+ c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},

(2.30)

(∇XK)Y − (∇Y K)X = t(X)LY − t(Y )LX, (2.31)

(∇XL)Y − (∇Y L)X = k{η(X)AY − η(Y )AX} − t(X)KY + t(Y )KX, (2.32)

KAX −AKX = k{η(X)t− t(X)ξ}, (2.33)

LAX −ALX = (Xk)ξ − η(X)∇k + k(ϕAX +AϕX),

g((LK −KL)X,Y ) = −2(θ − c)g(ϕX, Y ),
(2.34)

which together with (2.15) and (2.24) yields

g(LKX,Y ) = −(θ − c)g(ϕX, Y ). (2.35)

From (2.28) and this, we obtain

L2X = (θ − c)(X − η(X)ξ). (2.36)
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By properties of the almost contact metric structure we have from (2.35)

Tr(
tKK)− ∥Kξ∥2 + ∥Lξ∥2 = 2(n− 1)(θ − c),

where we have used (2.6), (2.9) and (2.10), and ∥F∥2 = g(F, F ) for any tensor
field F on M . which connected to (2.8) gives

∥K −m⊗ ξ∥2 + ∥Lξ∥2 = 2(n− 1)(θ − c). (2.37)

In the same way, using (2.7), (2.11), (2.14), (2.35) we see that

∥K − kξ∥2 − ∥Lξ∥2 − Tr(tLL) = 2(n− 1)(θ − c). (2.38)

Differentiating (2.23) covariantly along M and making use of (2.4) and the
first Bianchi identity, we find

(Xθ)ω(Y,Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Therefore, θ is a constant if n > 2.
For the case where θ = c in (2.23) we have dt = 2cω. In this case, the normal

connection of M is said to be L− flat([25]).
Using (2.37) and (2.38) we can verify that the following lemma (see [17],[18])

:

Lemma 2.1. Let M be a semi-invariant submanifold with L-flat normal con-
nection in Mn+1(c), c ̸= 0. If Aξ = αξ, then we have ∇⊥C = 0 and K = L = 0
on M .

Putting X = ξ in (2.33) and using (2.26), we find

KAξ = kAξ + k{t′ − t(ξ)ξ}, (2.39)

where g(t′, X) = t(X). From now on we will use the same letter t instead of t′.
If we apply this by ϕ and use (2.19), (2.26) and (2.28), then we get

g(KU,X) = k{t(ϕX)− u(X)}, (2.40)

where u(X) = g(U,X) for any vector field X.
Replacing X by ξ in (2.34) and using (2.5), (2.26) and (2.28), we have

KU = (ξk)ξ −∇k + kU. (2.41)

which together with (2.40) gives

Xk = (ξk)η(X) + k{2u(X)− t(ϕX)}. (2.42)

If we apply (2.34) by ϕ and take account of (2.27) and the last equation, then
we find

ϕALX −KAX = −k{(t− t(ξ)ξ)η(X) + 2η(X)(Aξ − αξ)

+ 2g(Aξ,X)ξ −AX + ϕAϕX},

or, using (2.33) we have ϕAL+ LAϕ = 0.
Since θ is constant if n > 2, differentiating (2.36) covariantly, we get

2L∇XL = (c− θ){η(X)ϕA+ g(ϕA,X)ξ},
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or, using (2.32), (2.35) and (2.42), it is verified that (see, [17])

(θ − c)(Aϕ− ϕA)X + (k2 + θ − c)(u(X)ξ + η(X)U)

+ k{(AL+ LA)X + k(−t(ϕX)ξ + η(X)ϕ ◦ t)} = 0.
(2.43)

In the previous paper [12], [18] the following lemma was proved.

Lemma 2.2 If M satisfies dt = 2θω for a scalar θ(̸= 2c) and µ = 0 in Mn+1(c),
c ̸= 0, then we have k = 0 on M .

We set Ω = {p ∈ M : k(p) ̸= 0}, and suppose that Ω is not empty. In the
rest of this paper, we discuss our arguments on the open subset Ω of M . So, by
Lemma 2.2, we see that µ ̸= 0 on Ω.

3. Jacobi operators of semi-invariant submanifolds

We introduce the structure Jacobi operator Rξ with respect to the structure
vector field ξ which is defined by RξX = R(X, ξ)ξ for any vector field X. Then
we have from (2.29)

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + η(Kξ)KX − η(KX)Kξ

+ η(Lξ)LX − η(LX)Lξ.

Since l and m are dual 1-forms of Lξ and Kξ respectively because of (2.8)
and (2.9), the last relationship is reformed as

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX +m(X)Kξ − l(X)Lξ.

where we have used (2.8)∼(2.12).
We will continue now, our arguments under the same hypotheses dt = 2θω

for a scalar θ(̸= 2c) as in section 2. Then, by virtue of (2.25) and (2.26) we can
write the last equation as

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX − k2η(X)ξ. (3.1)

which implies

RξKX = c(KX − kη(X)ξ) + αAKX − η(AKX)Aξ + kK2X + k3η(X)ξ,

where we have used the first equation of (3.26), which together with (2.16),
(2.23) and (2.39) gives

(RξK −KRξ)X = kµ{t(X)W − w(X)t− t(ξ)(η(X)W − w(X)ξ)}, (3.2)

where g(W,X) = w(X) for any vector field X.
According to (3.2) and Lemma 2,2, we then have

Lemma 3.1. RξK = KRξ holds on Ω if and only if t ∈ f(ξ,W ), where f(ξ,W )
is denoted by a linear subspace spanned by ξ and W .
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Further suppose, throughout this paper, that RξK = KRξ and at the same
time ∇ξRξ = 0 hold on M . Then, from Lemma 3.1, we have

t(X) = t(ξ)η(X) + t(W )w(X) (3.3)

for any vector field X.
From (2.17) and (3.3) we obtain t(ϕX) = − 1

µ t(W )u(X), which together with

(2.40) yields

KU = τU, (3.4)

where τ is defined by µτ = −k(µ+ t(W )), or using (2.27),

LU = µτW. (3.5)

By virtue of (2.35) and the last two relationships, it follows that

τ2 = θ − c. (3.6)

τ is a nonnegative constant on Ω if n > 2.
In a direct consequence of (2.28) and (3.4), we verify that

µLW = τU. (3.7)

Using (2.16) and (2.26), we can write (2.39) as

µKW = kµW + k(t− t(ξ)ξ),

which together with (3.2) and (3.3) gives

KW = −τW (3.8)

because of Lemma 2.2.
Now, by using (2.41) and (3.4) it is verified that

t(ϕX) = (1 +
τ

k
)u(X) (3.9)

on Ω, or using the property of the almost contact metric structure,

t(X) = t(ξ)η(X)− µ(1 +
τ

k
)w(X) (3.10)

for any vector field X.
If we take account of (3.4), then (2.41) can be written as

Xk = (ξk)η(X) + (k − τ)u(X) (3.11)

for any vector field X.
On the other hand, if we use (2.19) and (2.30), then (2.22) implies that

(∇ξA)ξ = 2AU +∇α+ 2η(Lξ)− 2η(Kξ)Lξ,

which together with (2.26) implies that

(∇ξA)ξ = 2AU +∇α. (3.12)

Putting X = ξ in (2.22) and making use of (2.16) and (2.18), we get

ϕ(∇ξA)ξ = ∇ξU + βξ − αAξ + ϕAU,
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which together with (3.12) yields

∇ξU = 3ϕAU + αAξ − βξ + ϕ∇α. (3.13)

In the following, we see, using (2.16) and (2.19), that ϕU = −µW . Differen-
tiating this covariantly and using (2.4), we find

g(AU,X)ξ − ϕ∇XU = (Xµ)W + µ∇XW. (3.14)

Putting X = ξ in this and using (3.13), we get

µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W, (3.15)

which tells us that

Wα = ξµ. (3.16)

In the next place, differentiating the first equation of (2.26) covariantly and
using (2.5), we find

(∇XK)ξ +KϕAX = (Xk)ξ + kϕAX,

which together with (2.26) and (2.31) yields

(∇ξK)X = −KϕAX + (Xk)ξ + kϕAX + t(ξ)LX. (3.17)

If we put X = ξ in this and make use of (2.26) and (3.4), then we obtain

(∇ξK)ξ = (ξk)ξ + (k − τ)U. (3.18)

Now, differentiating (3.1) covariantly along M and using (2.5), we find

g((∇XRξ)Y,Z)

= −(k2 + c)(η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z)) + (Xα)g(AY,Z)

+ αg((∇XA)Y,Z)− g(Aξ,Z)(g((∇XA)ξ, Y )− g(AϕAY,X))

− g(Aξ, Y )(g((∇XA)ξ, Z)− g(AϕAZ,X)) + (Xk)g(KY,Z)

+ kg((∇XK)Y,Z)− 2k(Xk)η(Y )η(Z).

Replacing X by ξ in this and using (2.5) and (3.12), we find

g((∇XRξ)Y,Z)

= −(k2 + c)(u(Y )η(Z) + u(Z)η(Y )) + (ξα)g(AY,Z) + αg((∇ξA)Y,Z)

− g(Aξ,Z)(3g(AU, Y ) + Y α)− g(Aξ, Y )(3g(AU,Z) + Zα)

+ (ξk)g(KY,Z) + kg((∇ξK)Y, Z)− 2k(ξk)η(Y )η(Z),

which shows

(∇ξRξ)X =− (k2 + c)(u(X)ξ + η(X)U) + (ξα)AX + α(∇ξA)X

− (3AU +∇α)g(Aξ,X)− (3g(AU,X) +Xα)Aξ + (ξk)KX

+ k(∇ξK)X − 2k(ξk)η(X)ξ.



SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 11

Thus, the second assumption ∇ξRξ = 0 gives

α(∇ξA)X + k(∇ξK)X + (ξα)AX + (ξk)KX

= (k2 + c)(u(X)ξ + η(X)U) + (3AU +∇α)g(Aξ,X)

+ (3g(AU,X) +Xα)Aξ + 2k(ξk)η(X)ξ.

(3.19)

Replacing X by ξ in this and using (2.26), we find

α(∇ξA)ξ + k(∇ξK)ξ = (k2 + c)U + α(3AU +∇α) + k(ξk)ξ, (3.20)

which together with (3.18) gives

αAU + (kτ + c)U = 0, (3.21)

where we have used (2.26) and (3.12).
Replacing X by U in (3.17) and using (2.19), (3.4) and (3.5), we find

(∇ξK)U = −KϕAU + kϕAU + µτt(ξ)W + (k − τ)µ2ξ.

If we put X = U in (3.19) and make use of the last equation, then we obtain

α(∇ξA)U + k{kϕAU −KϕAU + µτt(ξ)W}+ (ξα)AU + τ(ξk)U

= µ2(kτ + c)ξ + {3g(AU,U) + Uα}Aξ.
(3.22)

Now, if we take account of (3.6) and (3.9), then (2.43) turns out to be

τ2(Aϕ− ϕA)X + τ(τ − k)(u(X)ξ + η(X)U) + k(AL+ LA)X = 0.

Putting X = µW in this and using (3.7), we find

τ(k + c)AU = µ(τ2ϕAW − kLAW ).

By the way, if we replace X by µW in the first equation of (2.34) and use (2.19)
and (3.7), then we obtain

(k + τ)AU = µ(LAW − kϕAW ).

Combining this to the last equation, we have

(k + τ)AU = µ(τ − k)ϕAW (3.23)

because k + τ does not vanish with the aid of (3.11).

Lemma 3,2. If k − τ = 0, then we have on Ω the following :

(t(ξ) + 2α){u(X)η(Y )− u(Y )η(X) + g(ϕAX, Y )− g(ϕAY,X)}
+ 4{cg(ϕX, Y )− g(AϕAX, Y )} = 0.

(3.24)

Proof. Since we have k − τ = 0, we see from (3.23) that AU = 0 because
of (3.11). Thus, it follows that kτ + c = 0 by virtue of (3.21), which tells
us that τ2 + c = 0. So we have θ = 0 because of (3.6). Since k − τ = 0 was
assumed, (3.10) reformed as t(Y ) = t(ξ)η(Y )+2g(ϕU, Y ) for any vector field Y .
Differentiating this covariantly and using (2.4), (2.6) and the fact that AU = 0,
we find

(∇Xt)(Y ) = X(t(ξ))η(Y ) + t(ξ)g(ϕAX, Y )− 2g(ϕ∇XU, Y ),
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from which taking the skew-symmetric part and using (2.23) with θ = 0

X(t(ξ))η(Y )− Y (t(ξ))η(X) + t(ξ)(g(ϕAX, Y )− g(ϕAY,X))

+ 2(g(ϕ∇Y U,X)− g(ϕ∇XU, Y )) = 0.

By the way, we see from (2.22) that

g(ϕ∇XU, Y )− g(ϕ∇Y U,X) + (Y α)η(X)− (Xα)η(Y )

= 2cg(ϕX, Y )− 2g(AϕAX, Y ) + α(g(ϕAX, Y )− g(ϕAY,X)),

where we have used (2.30). If we substitute this into the last relationship, then
we obtain

4cg(ϕX, Y ) + t(ξ){g(ϕAX, Y )− g(ϕAY,X)}
= Y (t(ξ))η(X)−X(t(ξ))η(Y ) + 2{2g(AϕAX, Y )

− α(g(ϕAX, Y )− g(ϕAY,X))− (Xα)η(Y ) + (Y α)η(X)}.

Putting Y = ξ in this and using the fact that AU = 0 and τ2 + c = 0, we get

X(t(ξ)) + 2(Xα) = (ξ(t(ξ)) + 2(ξα))η(X) + (t(ξ) + 2α)u(X).

Substituting this into the last equation, we have (3.24). This completes the
proof of Lemma 3.2. ■

Remark 3.1. α ̸= 0 on Ω.
In fact, if not, then we have α = 0 on this open subset of Ω. So we have

kτ + c = 0 because of (3.21) on the set. We discuss our arguments on such
a place. From this and (3.11) we see that k − τ = 0 and hence τ2 + c = 0.
We also have AU = 0 because of (3.23). If we put X = U in (3.24) and take
account of these facts, then we have t(ξ) = 0. Therefore (3.24) will produce a
contradiction by using α = 0 and AU = 0. Accordingly α = 0 is not impossible
on Ω.

Remark 3.2. τ ̸= 0 on Ω.
In fact, if not, then we have τ = 0. Thus, we see, using (2.27) and (2.36),

that KX = kη(X)ξ and L = 0. Consequently (2.32) is reduced to

k{η(X)AY − η(Y )AX}+ η(X)t(Y )− η(Y )t(X) = 0,

which implies that AX = η(X)Aξ+ g(Aξ,X)ξ−αη(X)ξ. Accordingly we have
AU = 0, which connected to (3.21) gives a contradiction. Hence τ ̸= 0 on Ω is
proved.

Lemma 3.3. k − τ ̸= 0 on Ω.

Proof. Let Ω′ be a set of points such that k(p)− τ ̸= 0 on Ω and suppose that
Ω′ be nonvoid. We discuss our arguments on such a place. Then we have (3.24).
Furthermore, it is clear that AU = 0 and τ2 + c = 0 on Ω′. Putting X = U in
(3.24) and using these facts, we find

(t(ξ) + 2α)(µ2ξ − µAW ) = −4cµW,
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which implies

AW = µξ + g(AW,W )W

on Ω′, where we have put g(AW,W ) = −4c/(t(ξ) + 2α), which together with
(2.16) implies that A2ξ = ρAξ+(β−ρα)ξ, where we have put ρ = α+g(AW,W ).
Thus, it follows that

AW = µξ + (ρ− α)W (3.25)

on Ω′.
Differentiating this covariantly along Ω′, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(ρ− α)W + (ρ− α)∇XW. (3.26)

If we take the inner product with ξ to this, and use (2.21) and (2.30), then we
find

µ(∇WA)ξ = (ρ− 2α)AU − 2cU + µ∇µ, (3.27)

which implies that

Wµ = ξρ− ξα. (3.28)

In the next step, differentiating (3.8) covariantly, we find

g((∇XK)W,Y ) + g(K∇XW,Y ) + τg(∇XW,Y ) = 0,

from which, taking the skew-symmetric part and using (2.31) and (3.7),

τ

µ
(t(X)u(Y )− t(Y )u(X)) + g(K∇XW,Y )− g(K∇Y W,X)

= τ((∇Y W )X − (∇XW )Y ).
(3.29)

Putting X = ξ in this and taking account of (2.21) and the fact that AU = 0,
we find τt(ξ)U − µK∇ξW = µτ∇ξW , which together with (3.15) and AU = 0
yields

K∇α+ τ∇α = 2τ(ξα)ξ + τ(2α+ t(ξ))U,

where have used (2.26) and (3.8), which connected to (3.4) yields 2Uα = (t(ξ)+
2α)µ2. From this and (t(ξ) + 2α)g(AW,W ) + 4c = 0 it follows that

(ρ− α)Uα = −2cµ2. (3.30)

On the other hand, if we put X = µW in (3.26) and make use of (3.25) and
(3.27), then we obtain

µ2∇WW − µ∇µ = (α2 − αρ− 2c)U − µ(Wα)ξ − µ(Wµ)W.

Since we have t(W ) = −2µ because of (3.10), replacing X by W in (3.29)
and making use of the last relationship, we obtain

µ(K∇µ+ τ∇µ) = 2τ(µ2 − α2 + ρα+ 2c)U + 2µτ(Wα)ξ,

which together with (3.4) gives

Uµ = (µ2 − α2 + ρα+ 2c)µ. (3.31)

In the meanwhile, differentiating AU = 0 covariantly, we find (∇XA)U +
A∇XU = 0, which shows g(∇XAU,U) = 0 and hence (∇UA)U = 0 because of
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(2.30) and (3.5). Thus, it follows that A∇UU = 0. We also have above equation
that (∇ξA)U +A∇ξU = 0, which together with (3.13) yields

(∇ξA)U + αA2ξ − βAξ +Aϕ∇α = 0,

or, using the fact that A2ξ = ρAξ + (β − ρα)ξ gives

ϕ(∇ξA)U + (ρα− β)U + ϕAϕ∇α = 0. (3.32)

Putting X = U and Y = ξ in (2.30), we obtain

(∇UA)ξ = (∇ξA)U (3.33)

by virtue of (2.19), (2.26), (3.5) and the fact that AU = 0.
On the other hand, applying (2.22) by ϕ and using (2.20), we get

ϕ(∇XA)ξ = ∇XU + µg(AW,X)ξ − ϕAϕAX − αAX + αg(Aξ,X)ξ,

which together with the fact that AU = 0 gives ∇UU = ϕ(∇UA)ξ. Hence (3.33)
becomes ∇UU = ϕ(∇ξA)U . Using this, we can write (3.32) as

∇UU = (β − ρα)U − ϕAϕ∇α.

If we take the inner product with U to this and use AU = 0, then we find

µ(Uµ) = (β − ρα)µ2 − (ρ− α)Uα,

which together with (3.30) and (3.31) yields α(ρ − α) = 0. It is, using (3.30)
and Remark 3.1, a contradictory. Hence, we have Ω′ = ∅, that is, k − τ ̸= 0 is
proved on Ω. ■

Because of (3.21) and Remark 3.1, we can write (3.23) as

µϕAW =
kτ + c

α(k − τ)
U,

which together with (2.19) implies that

AW = µξ + g(AW,W )W

on Ω, where we have define g(AW,W ) by

α(k − τ)g(AW,W ) + kτ + c = 0.

If we put g(AW,W ) = ρ− α, then we have on Ω the following :

AW = µξ + (ρ− α)W. (3.34)

From (3.21) we have

AU = λU, αλ+ kτ + c = 0. (3.35)

From this and (3.34) it is verified that (see, [17])

ξλ = 0, Wλ = 0. (3.36)

Because of (3.34) and (3.35), the equation (3.23) implies that

λ(k + τ) + (k − τ)(ρ− α) = 0. (3.37)
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Lemma 3.4. ξk = 0 on Ω.

Proof. Differentiating (3.11) covariantly along Ω, we find

Y (Xk) = Y (ξk)η(X)+(ξk)g(ϕAY,X)+(Y k)u(X)+(k−τ){g(∇Y U,X)+u(∇Y X)},

from which taking the skew-symmetric part with respect to X and Y and using
(3.11),

Y (ξk)η(X)−X(ξk)η(Y ) + (ξk){g(ϕAY,X)− g(ϕAX, Y )}
+ (ξk)(η(Y )u(X)− η(X)u(Y )) + (k − τ)(g(∇Y U,X)− g(∇XU, Y )) = 0.

(3.38)

On the other hand, differentiating (3.4) covariantly, we find

g((∇Y K)U,X) + g(K∇Y U,X) = τg(∇Y U,X). (3.39)

Putting X = U in this, we find g((∇Y K)U,U) = 0, which together with (2.33),
(3.5) and (3.10) yields (∇UK)U = 0. If we put Y = U in (3.39) and use
this fact, then we get K∇UU = τ∇UU , which implies that g(∇UU,W ) = 0.
If we put Y = U and X = W in (3.38) and use the last fact, then we obtain
(ξk){g(ϕAU,W )−g(ϕAW,U)} = 0, which together with (3.34) and (3.35) gives
ξk(λ + ρ − α) = 0. From this and (3.37) it follows that τλ(ξk) = 0, which
connected to (3.35) and Remark 3.2 implies that (kτ + c)(ξk) = 0. Accordingly
ξk = 0 is proved. ■

Owing to Lemma 3.3 and Lemma 3.4, we can write (3.38) as

g(∇Y U,X) = g(∇XU, Y ). (3.40)

Putting Y = ξ in this, we find g(∇ξU,X)+g(U,∇Xξ) = 0, which together with
(2.20) and (3.13) gives

3ϕAU + αAξ − βξ + ϕ∇α+ µAW = 0.

By virtue of (2.16), (2.19), (3.34) and (3.35), this is reformed as

ϕ∇α+ (ρ− 3λ)µW = 0,

which tells us that

∇α = (ξα)ξ + (ρ− 3λ)U.

If we differentiate the second equation of (3.35), and take account of (3.36),
Lemma 3.3 and Lemma 3.4, then we find λξα = 0. But, λ does not vanish be-
cause of (3.11), (3.35) and Lemma 3.3. Thus, we have ξα = 0 on Ω. Accordingly
we have

∇α = (ρ− 3λ)U. (3.41)
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4. Theorems

We will continue our arguments under the same hypotheses dt = 2θω for a
scalar θ(̸= 2c), and at the same time RξK = KRξ and ∇ξRξ = 0 as in section
3.

If we take the skew-symmetric part of (3.39) with respect to X and Y , and
use (3.40), then we find

g(K∇XU, Y )− g(K∇Y U,X) + µτ{t(X)w(Y )− t(Y )w(X)} = 0.

Putting X = ξ in this and using (2.20), (3.13) and (3.35), we find

K(3λϕU + αAξ − βξ + ϕ∇α) + kµAW + µτ(ξ)W = 0,

which connected to (2.16), (2.19), (3.8), (3.34) and (3.41) gives

τt(ξ) + (ρ− α)(k + τ) = 0, (4.1)

or using (3.37)

τ(k − τ)t(ξ) = λ(k + τ)2. (4.2)

On the other side, differentiating (3.10) covariantly along Ω and taking ac-
count of (2.4), (2.5), (3.11), (3.14) ,(3.35) and Lemma 3.4, we find

X(t(Y )) = X(t(ξ))η(Y ) + t(ξ)g(ϕAX, Y ) +
τ

k2
(k − τ)µu(X)w(Y )

− (1 +
τ

k
)(λu(X)η(Y )− g(ϕ∇XU, Y ) + t(∇XY )),

from which, taking the skew-symmetric part with respect to X and Y and using
(2.22) and (2.23),

2θg(ϕX, Y ) +
τ

k2
(k − τ)µ(u(Y )w(X)− u(X)w(Y ))

+ Y (t(ξ))η(X)−X(t(ξ))η(Y ) + t(ξ)(g(ϕAY,X)− g(ϕAX, Y ))

= (1 +
τ

k
){2cg(ϕX, Y ) + (ρ− 3λ)(u(X)η(Y )− u(Y )η(X))

− 2g(AϕAX, Y ) + α(g(ϕAX, Y )− g(ϕAY,X))},

(4.3)

where we have used (226), (2.30), (3.35) and (3.41).
From this we can verify that (see, (6.8) of [17])

(k + τ)∇λ = 6τλU. (4.4)

If we put X = U and Y = W in (4.3) and take account of (3.34), (3.35) and
(3.37), then we find

2θk(k− τ)+
τ

k
(k− τ)2µ2+2τλkt(ξ) = 2c(k2− τ2)+2λ2(k+ τ)2−2τ(k+ τ)αλ.

(4.5)
On the other hand, because of (3.35) and (3.41) we can write (3.13) as

∇ξU = −µ2ξ + µ(α− ρ)W.
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If we differentiate the first equation of (3.35) covariantly with respect to ξ and
remember (3.36), then we find (∇ξA)U +A∇ξU = λ∇ξU , which together with
(2.16), (3.34) and the last relationship yields

(∇ξA)U = µ2(ρ− λ)ξ + µ{µ2 + (ρ− α)2 + λ(α− ρ)}W.

Thus, it follows that

g((∇ξA)U,W ) = µ{µ2 + (ρ− α)2 + λ(α− ρ)}. (4.6)

In the meanwhile, using (3.35), (3.41) and Lemma 3.3, we can also write
(3.22) as

g((∇ξA)U + kµ{τt(ξ)− λ(k + τ)}W = µ2(kτ + c)ξ + ρµ2Aξ,

which together with (3.37) and (4.1) gives

α(∇ξA)U = µ2(k2 + c)ξ + ρµ2Aξ,

which implies that αg((∇ξA)U,W ) = ρµ3.
Combining this to (4.6), we obtain

(ρ− α){µ2 − α(ρ− α) + αλ} = 0. (4.7)

However, ρ− α ̸= 0 on Ω. Indeed, if not, then we have ρ = α on this subset.
Using (4.1) and (4.2), we obtain (k + τ)λ = 0 and hence λ = 0 on the set by
virtue of (3.11) with ξk = 0. Hence, the second equation of (3.35) becomes
kτ + c = 0 and consequently k − τ = 0 on the set, a contradiction because of
Lemma 3.3. Thus, ρ − α = 0 on Ω is impossible. Therefore (4.7) implies that
µ2 = α(ρ− α)− αλ, which connected to (3.37) gives (k − τ)µ2 = −2kλα.
Substituting this and (4.1) into (4.5), we obtain

θk(k − τ) + 2τ2αλ+ λk(α− ρ)(k + τ) = c(k2 − τ2) + λ2(k + τ)2,

which together with (3.6) and (3.37)

(c+τ2)k(k−τ)2+2τ2αλ(k−τ)+kλ2(k+τ)2 = c(k−τ)2(k+τ)+λ2(k+τ)2(k−τ).

Because of (3.35), it follows that

λ2(k + τ)2 − 2τ(k − τ)(c+ kτ) + (kτ − c)(k − τ)2 = 0.

Differentiating this and using (3.11) with ξk = 0 and (4.4), we find

λ2(k + τ)(k + 9τ) + (k − τ)2(2τk − 3τ2 − c) = 0.

If we eliminate λ to above two equations, then we can verify that k is a root
of an algebraic equation with constant coefficients. So k is a constant, which
together with (3.11) implies that k − τ = 0, a contradiction because of Lemma
3.3. Therefore, we conclude that Ω = ∅, that is k = 0 on M . Hence m = 0
because of (2.25). We also have Kξ = 0 be virtue of (2.26).

Combining (2.27) with k = 0 to (2.35), we get

K2X = (θ − c)(X − η(X)ξ). (4.8)
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By (2.41) we have KU = 0, we see from (4.8) that (θ−c)U = 0. Thus, (2.43)
turns out to be (θ − c)(Aϕ− ϕA) = 0.

In the following we assume that θ − c ̸= 0 on M . Then we have

Aϕ− ϕA = 0. (4.9)

From this we have Aξ = αξ, that is U = 0. If we take account of (2.30) with
k = 0 and (4.9), then we can verify that (cf. [11])

A2X = αAX + c(X − η(X)ξ),

which implies that
h(2) = αh+ 2(n− 1)c. (4.10)

On the other hand, differentiating (4.8) covariantly and using previously
obtained formulas, we find (see, (4.13) of [18])

(∇XK)Y = t(X)LY − η(X)ALY − η(Y )ALX − g(AX,LY )ξ,

from which, differentiating covariantly and using the Ricci identity for K, we
obtain (for detail, see (4.20) and (4.22) of [18]):

(h+ 3α)(h− α) = δ, (4.11)

where we have put δ = 4(n− 1){(n+ 1)θ − 2(n+ 2)c} and

(4θ − 12c− h(2) − 3α2)(h− α) = 2(n− 1){4cα− (θ − 2c)(h− α)}. (4.12)

Combining (4.12) to (4.10), we obtain

(θ − 3c)(h− α) = 2(n− 1)(θ − 2c)α. (4.13)

Now, from (2.29) the Ricci tensor of type (1,1) of M is given by

SX = {c(2n+ 1)− 2(θ − c)}X + {2(θ − c)− 3c}η(X)ξ + hAX −A2X, (4.14)

where we have used (2.36) and (4.8), which implies that the scalar curvature r̄
of M is given by

r̄ = 4c(n2 − 1)− 4(n− 1)(θ − c) + h2 − h(2).

Using (4.10), it follows that

r̄ = 2(n− 1)(2n+ 1)c− 4(n− 1)(θ − c) + h(h− α). (4.15)

By the way, if we use (4.11) and (4.13), then we have (see, [17])

h(h− α) = 2(n− 1)(2n− 1)(θ − c)− 4n(n− 1)c.

Thus, (4.15) becomes

r̄ − 2(n− 1)c = 2(n− 1)(2n− 3)(θ − c).

Therefore we have θ− c = 0 if r̄− 2(n− 1)c ≤ 0 and hence K = L = 0 because
of (2.36) and (4.8). Thus, it follows that ∇⊥

XC = 0 for any vector field X on
M .

Let N0(p) = {υ ∈ T⊥
p (M) : Aν = 0} and Ho(p) be the maximal J-invariant

subspace of N0(p). Since K = L = 0, the orthogonal complement of N0(p) is
invariant under the parallel translation with respect to the normal connection
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because of ∇⊥C = 0. Thus, by the reduction theorem for Pn+1C([26]) and
Hn+1C ([10]), there exists a totally geodesic complex space form including M
in Mn+1(c)([8]). Accordingly we conclude that

Theorem 4.1. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c ̸= 0 such
that the third fundamental form t satisfies dt = 2θω for a scalar θ(̸= 2c), where
ω(X,Y ) = g(ϕX, Y ) for any vector fields X and Y on M . If M satisfies
RξK = KRξ and at the same time ∇ξRξ = 0, then M is a real hypersurface in
a complex space form Mn(c), c ̸= 0 provided that the scalar curvature r̄ of M
holds r̄ − 2(n− 1)c ≤ 0.

Since k = 0 on M , (3.19) can be written as

α(∇ξA)X + (ξα)AX = c(u(X)ξ + η(X)U) + η(AX)(3AU +∇α)

+ {3g(AU,X) +Xα}Aξ.
(4.16)

Here, the distinguished normal C can be regard a unit normal vector field N
on M in Mn(c). Thus, the second fundamental form A with respect to C can
also be regarded as that of N .

Since k = 0 was proved as above, we can write (2.30) as

(∇XA)Y − (∇Y A)X = c(η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ). (4.17)

In the following, we will discuss our arguments on M of Mn(c) which satisfies
∇ξRξ = 0. Further, we assume that ∇ϕ∇ξξRξ = 0. Then we have µ∇WRξ = 0.
From now on we set Ω0 = {p ∈ M : µ(p) ̸= 0} and suppose that Ω0 ̸= ∅, that
is, ξ is not principal curvature vector on M . We discuss our arguments on Ω0.
Then we have ∇WRξ = 0. So, if we put X = W and Y = ξ in the following
equation of (3.18) in section 3, then we have

g((∇WRξ)ξ, Z) = −cg(ϕAW,Z)− c(Wα)g(Aξ,Z)− η(AZ)g((∇WA)ξ, ξ)

− αg(AϕAW,Z).

Since ∇WRξ = 0 on Ω0, it follows from the last equation that

αAϕAW + cϕAW = 0 (4.18)

by virtue of (3.12) and (4.17).
In the meanwhile, ∇ξRξ = 0 was assumed, we see from (3.21) that

αAU + cU = 0. (4.19)

If we differentiate (4.19) covariantly along Ω0 and use itself again, then we find

−c(Xα)U + α2(∇XA)U + α2A∇XU + cα∇XU = 0, (4.20)

which connected to (2.19) and (4.17) gives

c{(Y α)u(X)− (Xα)u(Y )}+ cα2µ({η(X)w(Y )− η(Y )w(X)}
+ α2{g(A∇XU, Y )− g(A∇Y U,X)}+ cαdu(X,Y ) = 0,

(4.21)



20 U-H. KI AND H. SONG

where d is the exterior differential operator.
Putting X = U in (4.21), we obtain

c{µ2∇α− (Uα)U}+ α2A∇UU + cα∇UU = 0 (4.22)

because U and W are mutually orthogonal.
Combining (2.22) to (4.16) and using (4.17), we have

α2ϕ∇XU =α2(Xα)ξ − cαu(X)ξ + α(ξα)AX + cα2ϕX

− η(AX)(α∇α− 3cU)− {α(Xα)− 3cu(X)}Aξ

− cα{u(X)ξ + η(X)U} − α2AϕAX + α3ϕAX.

Applying this by ϕ and using (2.20), we have

α2∇XU + α2µg(AW,X)ξ − αη(AX)ϕ∇α

= −α(ξα)ϕAX + cα2{X − η(X)ξ}+ 3cµη(AX)W + α(Xα)U

− 3cu(X)U + α3AX − cαµη(X)W − α3η(AX)ξ + α2ϕAϕAX.

(4.23)

Putting X = U in (4.23) and using (2.16), (2.19) and (4.19), we get

α2∇UU = −cµ(ξα)W + {α(Uα)− 3cµ2}U + cµαϕAW, (4.24)

which shows that

α2A∇UU = −cµ(ξα)AW + {α(Uα)− 3cµ2}AU + cµαϕAϕAW. (4.25)

On the other hand, putting X = αU in (4.16) and taking account of (4.19),
we find

α2(∇ξA)U − c(ξα)U = cαµ2ξ + {α(Uα)− 3cµ2}Aξ.

If we put X = αξ in (4.21) and make use of this, then we have

cαµ2ξ + {α(Uα)− 3cµ2}Aξ + α2A(∇ξU) + cα∇ξU = 0.

This, together with (3.13) and (4.19), implies that

α{αAϕ∇α+ cϕ∇α+ (Uα)Aξ}
+ µ(α2 + 3c){α(AW − µξ)− (µ2 − c)W} = 0.

(4.26)

If we combine (4.22), (4.24), and (4.25) to (4.18), then we get

αµ2∇α = α(Uα)U + µ(ξα)(αAW + cW ), (4.27)

which enables us to obtain

µ(Wα) = (w(AW ) +
c

α
)ξα. (4.28)

Substituting (4.27) into (4.26) and making use of (4.18), we find

{α(Uα)− µ2(α2 + 3c)}{α(AW − µξ)− (µ2 − c)W} = 0,

which implies that α(Uα) = µ2(α2 + 3c).
In fact, if not, then we have AW = µξ + (ρ − α)W , α(ρ − α) = µ2 − c,

where we put ρ − α = w(AW ). From these facts and (2.16), it follows that
A2ξ = ρAξ+cξ, which connected to (3.1) with K = 0 yields RξA = ARξ. Since
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∇ξRξ = 0 was assumed, we verify that Ω0 = ∅ (see, [7]). Thus, (4.27) turns
out to be

α∇α = (α2 + 3c)U + µ(ξα)(αAW + cW ),

which shows that α∇α = (α2 + 3c)U (see, (5.36) of [13]). From this fact we
see that α is a constant and hence Ω0 = ∅ (cf.Theorem 3 of [13]). Therefore
we verify that Aξ = αξ and α is a constant (see, [20]). Accordingly (4.16) is
reduced to α(∇ξA)X = 0 for any vector field X on M . From this and (4.17)
we see that α(Aϕ−ϕA) = 0 and hence Aξ = 0 or Aϕ = ϕA. Since M is a Hopf
hypersurface, Aξ = 0 means α = 0. Here we note that α = 0 corresponds to a
tube of radius π/4 in PnC([5]). But, α never vanishes for Hopf hypersurface in
HnC(cf. [23]) Thus, owing to Theorem 4.1 and Theorem O-MR, we have

Theorem 4.2. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c ̸= 0 such
that the third fundamental from t satisfies dt(X,Y ) = 2θ(ϕX, Y ) for a scalar
θ(̸= 2c), and any vector fields X and Y , and the scalar curvature r̄ of M
satisfies r̄−2(n−1)c ≤ 0. Suppose that the second fundamental form K satisfies
RξK = KRξ and at the same time ∇ϕ∇ξξRξ = 0. Then ∇ξRξ = 0 holds on M
if and only if M is locally congruent to one of the following hypersurfaces :

(I) in case that Mn(c) = PnC,
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r ̸= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, ..., n−

2}, where 0 < r < π/2 and r ̸= π/4;
(T ) a tube of radius π/4 over a certain complex submanifold in PnC,

(II) in case that Mn(c) = HnC,
(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, ..., n− 2}.
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