East Asian Math. J.
Vol. 40 (2024), No. 1, pp. 001-023
YNMS
http://dx.doi.org/10.7858/eamj.2024.001

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM WITH ξ-PARALLEL STRUCTURE JACOBI OPERATOR

U - Hang KI and Hyunjung SONG*

Abstract

Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (ϕ, ξ, η, g) in a complex space form $M_{n+1}(c)$. We denote by A, K and L the second fundamental forms with respect to the unit normal vector C, D and E respectively, where C is the distinguished normal vector, and by $R_{\xi}=R(\xi, \cdot) \xi$ the structure Jacobi operator. Suppose that the third fundamental form t satisfies $d t(X, Y)=2 \theta g(\phi X, Y)$ for a scalar $\theta(\neq 2 c)$ and any vector fields X and Y, and at the same time $R_{\xi} K=K R_{\xi}$ and $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. In this paper, we prove that if it satisfies $\nabla_{\xi} R_{\xi}=0$ on M, then M is a real hypersurface of type (A) in $M_{n}(c)$ provided that the scalar curvature \bar{r} of M holds $\bar{r}-2(n-1) c \leq 0$.

1. introduction

Let \tilde{M} a Kaehlerian manifoldn manifold with complex structure J. A submanifold M of \tilde{M} is called a $C R$ submanifold if there exists a differentiable distribution $\triangle: p \rightarrow \triangle_{p} \subset T_{p} M$ on M such that \triangle is J-invariant and the complementary orthogonal distribution Δ^{\perp} is totally real, where $T_{p} M$ denote by the tangent space at each point p in M ([1], [33]). In particular, M is said to be a semi-invariant submanifold if $\operatorname{dim} \Delta^{\perp}=1$. In this case, M admits an almost contact metric structure (ϕ, ξ, η, g). A typical example of a semi-invariant submanifold is real hypersurfaces in \tilde{M}. Furthermore, nontrivial examples of semi-invariant submanifold in a complex projective space are constructed in [18] and [28]. Thus, we may expect to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold.

As is well known, complete and simply connected nonflat complex space form $M_{n}(c)$ are isometric to a complex projective space $P_{n} \mathbb{C}$, or a complex hyperbolic space $H_{n} \mathbb{C}$ according as $c>0$ or $c<0$.

[^0]In the study of real hypersurfaces in a complex projective space $P_{n} \mathbb{C}$, Takagi ([29], [30]) classified all homogeneous Hopf hypersurfaces, and Cecil-Ryan ([5]) and Kimura ([21]) showed that they can be regarded as the tubes of constant radius over Kaehlerian submanifolds. Such tubes can be divided into six type : A_{1}, A_{2}, B, C, D and E.

In the case of real hypersurfaces in a complex hyperbolic space $H_{n} \mathbb{C}$, the classification of homogenous raal hypersurfaces in $H_{n} \mathbb{C}$ was obtained by BerndtTamaru([3]). Berndt ([2]) showed that all real hypersurfaces with constant principal curvatures are realized as the tubes over certain submanifolds. Such tubes are said to be real hypersurfaces of type A_{0}, A_{1}, A_{2} and B.

Among the several types of real hypersurfaces appearing in Takagi's list or Berndt's list, several pieces are tubes over totally geodesic $P_{n} \mathbb{C}$ or $H_{k} \mathbb{C}(0 \leq$ $k \leq n-1$). These and a horosphere in $H_{n} \mathbb{C}$ are together said to be of type (A).

Characterization problems for a real hypersurface of type (A) in a complex space form $M_{n}(c)$ were started by many authors ([7], [13], [14], [19], [22], [23], [24], etc). Two of them, we introduce the following theorem without proof due to Okumura ([24]) for $c>0$ and Montiel-Romero ([22]) for $c<0$ respectively.

Theorem O-MR. Let M be a real hypersurface of $M_{n}(c), c \neq 0, n \geq 2$. Then $A \phi=\phi A$, if and only if M is locally congruent to a homogeneous real hypersurface of type (A). More precisely :
(I) in case of $P_{n} \mathbb{C}$,
$\left(A_{1}\right)$ a hyperplane $P_{n-1} \mathbb{C}$, where $0<r<\pi / 2$,
$\left(A_{2}\right)$ a totally geodesic $P_{k} \mathbb{C}(1 \leq k \leq n-2)$, where $0<r<\pi / 2$
(II) in case of $H_{n} \mathbb{C}$,
$\left(A_{0}\right)$ a horosphere $H_{n} \mathbb{C}$, i,e, a Montiel tube,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}(1 \leq k \leq n-2)$.

We define the Jacobi operator $R_{\xi}(X)=R(X, \xi) \xi$ with respect to the structure vector ξ for the curvature tensor R and any vector field X on M. Then R_{ξ} is a self-adjoint endomorphism on the tangent space of a $C R$ submanifold M. But, it is known that there no real hypersurfaces in a complex space form $M_{n}(c)$ with parallel structure Jacobi operator ([27]). Using several conditions on the structure Jacobi operator R_{ξ}, characterization problems for a real hypersurface of type (A) have recently studied. In the previous paper ([13]), Kurihara and the present author gave, using the structure Jacobi operator, another characterization of a real hypersurface of type (A) in a complex space form. Namely they proved the following :

Theorem K([13]). Let M be a connected real hypersurface of a complex space form $M_{n}(c), c \neq 0$. If it satisfies $\nabla_{\xi} R_{\xi}=0$ and $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$, then M is a real hypersurface of type (A).

On the other hand, semi-invariant submanifolds of codimension 3 in a complex space form $M_{n+1}(c)$ have been studied in [18] by using properties of induced almost contact structure and those of the third fundamental form of the submanifold. Furthermore, using several conditions for the structure Jacobi operator R_{ξ}, semi-invariant submanifolds of codimension 3 in a complex space form were studied ([9], [12], [15], [16], [17], etc.).

In the present paper, we discuss a semi-invariant submanifold version of the Theorem K, that is, we consider a semi-invariant submanifold M of codimension 3 in a nonflat complex space form $M_{n+1}(c)$ which satisfies $R_{\xi} K=K R_{\xi}$ and at the same time the third fundamental form t satisfies $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$, where $\omega(X, Y)=g(\phi X, Y)$ for any vector fields X and Y on M. Then we prove that if it satisfies $\nabla_{\xi} R_{\xi}=0$, then M is a real hypersurface in $M_{n}(c)$ provided that the scalar curvature \bar{r} of M holds $\bar{r}-2(n-1) c \leq 0$. Further, we also prove that M satisfies $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$, then M is a real hypersurface of type (A). Our main theorem appears in section 4.

A all manifolds in the present paper are assumed to be connected and of class C^{∞} and the semi-invariant submanifold supposed to be orientable.

2. Structure equations of semi-invariant submanifolds

In this section, elemental facts of semi-invariant submanifolds are re-called.
Let \tilde{M} be a real $2(n+1)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature 4 c with parallel almost complex structure J and a Riemannian metric tensor G, which is called a complex space form and denoted by $M_{n+1}(c)$. Let M be a real $(2 n-1)$-dimensional Riemannian manifold immersed isometrically in \tilde{M} by the immersion $i: M \rightarrow \tilde{M}$. In the sequel, we identify $i(M)$ with M itself. We denote by g the Riemannian metric tensor on M from that of \tilde{M}.

If we denote by $\tilde{\nabla}$ the operator of covariant differentiation with respect to the metric tensor G on \tilde{M} and by ∇ the one on M, then the Gauss and Weingarten formulas are respectively given by

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) C+g(K X, Y) D+g(L X, Y) E, \tag{2.1}\\
\tilde{\nabla}_{X} C=-A X+l(X) D+m(X) E \\
\tilde{\nabla}_{X} D=-K X-l(X) C+t(X) E \tag{2.2}\\
\tilde{\nabla}_{X} E=-L X-m(X) C-t(X) D
\end{gather*}
$$

for any vector fields tangent to X and Y on M and any unit vector field C, D and E normal to M because we take C, D and E are mutually orthogonal, where A, K, L are called the second fundamental forms and l, m and t the third fundamental forms.

As is well-known, a submanifold M of a Kaehlerian manifold \tilde{M} is said to be a $C R$ submanifold ([1], [33]) if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution $\left(\Delta, \Delta^{-1}\right)$ such that for any point p in M we have $J \Delta_{p}=T_{p} M, J T_{p}^{\perp} \subset T_{p}^{\perp} M$, where $T_{p}^{\perp} M$ denote the normal space of M at p. In particular, M is said to be semi-invariant submanifold([4], [31]) provided that $\operatorname{dim} \Delta^{\perp}=1$ or to be a $C R$ submanifold with $C R$ dimension $n-1([25])$.

In this case the unit normal vector field in $J \Delta^{\perp}$ is called a distinguished normal to the semi-invariant submanifold and denote this by C ([31], [32]).

From now on we discuss that M is a real $(2 n-1)$-dimensional semi-invariant submanifold of codimension 3 in a Kaehlerian manifold \tilde{M} of real $2(n+1)$ dimension. Then we can choose a local orthonormal frame field $\left\{e_{1}, \cdots, e_{n-1}\right.$, $\left.J e_{1}, \cdots, J_{e_{n-1}}, e_{0}=\xi, C=J \xi, D=J E, E\right\}$ on the tangent space $T_{p} \tilde{M}$ of \tilde{M} for any point p in M such that $e_{1}, \cdots, e_{n-1}, J e_{1}, \cdots, J_{e_{n-1}}, \xi \in T_{p} M$, and C, $D, E \in T_{p}^{\perp} M$.

Now, let ϕ be the restriction of J on M, then we have

$$
\begin{equation*}
J X=\phi X+\eta(X) C, \quad \eta(X)=g(\xi, X), \quad J C=-\xi \tag{2.3}
\end{equation*}
$$

for any vector field X on M ([32]). From this it is, using Hermitian property of J, verified that the aggregate (ϕ, ξ, η, g) is an almost contact metric structure on M, that is, we have

$$
\begin{aligned}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi) & =1, \quad g(\xi, X)=\eta(X) \\
\phi \xi=0, \quad g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y)
\end{aligned}
$$

for any vector fields X and Y.
In the sequel, we denote the normal components of $\tilde{\nabla}_{X} C$ by $\nabla^{\perp} C$. The distinguished normal C is said to be parallel in the normal bundle if we have $\nabla^{\perp} C=0$, that is, l and m vanish identically.

Using the Kaehler condition $\tilde{\nabla} J=0$ and the Gauss and Weingarten formulas, we obtain from (2.3)

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.4}\\
\nabla_{X} \xi=\phi A X \tag{2.5}\\
K X=\phi L X-m(X) \xi \tag{2.6}\\
L X=-\phi K X+l(X) \xi \tag{2.7}
\end{gather*}
$$

for any vectors X and Y on M. From the last two equations, we have

$$
\begin{gather*}
g(K \xi, X)=-m(X), \tag{2.8}\\
g(L \xi, X)=l(X) \tag{2.9}
\end{gather*}
$$

Using the frame field $\left\{e_{0}=\xi, e_{1}, \cdots, e_{n-1}, \phi e_{1}, \cdots, \phi e_{n-1}\right\}$ on M it follows from (2.6) ~ (2.9) that

$$
\begin{equation*}
T_{r} K=\eta(K \xi)=-m(\xi), \quad T_{r} L=\eta(L \xi)=l(\xi) \tag{2.10}
\end{equation*}
$$

Now, we retake D and E, there is no loss of generality such that we may assume $T_{r} L=0(c f .[18])$. So we have

$$
\begin{equation*}
l(\xi)=0 \tag{2.11}
\end{equation*}
$$

In what follows, to write our formulas in a convention form, we denote by $\alpha=\eta(A \xi), \beta=\eta\left(A^{2} \xi\right), T_{r} A=h, T_{r} K=k, T_{r}\left({ }^{t} A A\right)=h_{(2)}$ and for a function f we denote by ∇f the gradient vector field of f.

From (2.10) we also have

$$
\begin{equation*}
m(\xi)=-k \tag{2.12}
\end{equation*}
$$

From (2.6) and (2.7) we also get

$$
\eta(X) l(\phi Y)-\eta(Y) l(\phi X)=m(Y) \eta(X)-m(X) \eta(Y)
$$

which together with (2.12) gives

$$
\begin{equation*}
l(\phi X)=m(X)+k \eta(X) \tag{2.13}
\end{equation*}
$$

which tells us, using (2.11), that

$$
\begin{equation*}
m(\phi X)=-l(X) \tag{2.14}
\end{equation*}
$$

where we have used (2.9) and (2.11).
Taking the inner product with $L Y$ to (2.6) and using (2.9), we obtain

$$
\begin{equation*}
g(K L X, Y)+g(L K X, Y)=-\{l(X) m(Y)+l(Y) m(X)\} \tag{2.15}
\end{equation*}
$$

We put $\nabla_{\xi} \xi=U$ in the sequel. Then U is orthogonal to ξ be because of (2.5).
We put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{2.16}
\end{equation*}
$$

where W is a unit vector orthogonal to ξ. Then we have

$$
\begin{equation*}
U=\mu \phi W \tag{2.17}
\end{equation*}
$$

by virtue of (2.5). Thus, W is also orthogonal to U. Further, we have

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} \tag{2.18}
\end{equation*}
$$

From (2.16) and (2.17) we obtain

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{2.19}
\end{equation*}
$$

If we take account of $(2.5),(2.10)$ and (2.19), then we find

$$
\begin{equation*}
g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X) \tag{2.20}
\end{equation*}
$$

Since W is orthogonal to ξ, we can, using (2.5) and (2.17), see that

$$
\begin{equation*}
\mu g\left(\nabla_{X} W, \xi\right)=g(A U, X) \tag{2.21}
\end{equation*}
$$

Differentiating (2.19) covariantly along M and using (2.4) and (2.5), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=-\phi \nabla_{X} U+g(A U+\nabla \alpha, X) \xi-A \phi A X+\alpha \phi A X \tag{2.22}
\end{equation*}
$$

In the rest of this paper we shall suppose that M is a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ and that the third fundamental form t satisfies

$$
\begin{equation*}
d t=2 \theta \omega, \quad \omega(X, Y)=g(\phi X, Y) \tag{2.23}
\end{equation*}
$$

for any vector fields X and Y and a certain scalar θ, where d denotes by the exterior differential operator. Then we can verify that (see, [18])

$$
\begin{equation*}
l=0 \tag{2.24}
\end{equation*}
$$

provided that $\theta-2 c \neq 0$ and hence

$$
\begin{equation*}
m(X)=-k \eta(X) \tag{2.25}
\end{equation*}
$$

because of (2.13). Using these facts (2.8) and (2.9) turn out respectively to

$$
\begin{equation*}
K \xi=k \xi, \quad L \xi=0 \tag{2.26}
\end{equation*}
$$

Because of (2.24) and (2.25), we can also write respectively (2.6) and (2.7) as

$$
\begin{gather*}
K X=\phi L X+k \eta(X) \tag{2.27}\\
L=-\phi K \tag{2.28}
\end{gather*}
$$

Since \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature $4 c$, we have

$$
\begin{align*}
& R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X \\
& \quad-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y \tag{2.29}\\
& \quad+g(K Y, Z) K X-g(K X, Z) K Y+g(L Y, Z) L X-g(L X, Z) L Y
\end{align*}
$$

If we take account of (2.24) and (2.25), then equations of the Codazzi are given respectively by

$$
\begin{gather*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=k\{\eta(Y) L X-\eta(X) L Y\} \\
+c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{2.30}\\
\left(\nabla_{X} K\right) Y-\left(\nabla_{Y} K\right) X=t(X) L Y-t(Y) L X \tag{2.31}\\
\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X=k\{\eta(X) A Y-\eta(Y) A X\}-t(X) K Y+t(Y) K X, \tag{2.32}\\
K A X-A K X=k\{\eta(X) t-t(X) \xi\} \tag{2.33}\\
L A X-A L X=(X k) \xi-\eta(X) \nabla k+k(\phi A X+A \phi X) \\
g((L K-K L) X, Y)=-2(\theta-c) g(\phi X, Y) \tag{2.34}
\end{gather*}
$$

which together with (2.15) and (2.24) yields

$$
\begin{equation*}
g(L K X, Y)=-(\theta-c) g(\phi X, Y) \tag{2.35}
\end{equation*}
$$

From (2.28) and this, we obtain

$$
\begin{equation*}
L^{2} X=(\theta-c)(X-\eta(X) \xi) \tag{2.36}
\end{equation*}
$$

By properties of the almost contact metric structure we have from (2.35)

$$
T_{r}\left({ }^{t} K K\right)-\|K \xi\|^{2}+\|L \xi\|^{2}=2(n-1)(\theta-c),
$$

where we have used (2.6), (2.9) and (2.10), and $\|F\|^{2}=g(F, F)$ for any tensor field F on M. which connected to (2.8) gives

$$
\begin{equation*}
\|K-m \otimes \xi\|^{2}+\|L \xi\|^{2}=2(n-1)(\theta-c) . \tag{2.37}
\end{equation*}
$$

In the same way, using (2.7), (2.11), (2.14), (2.35) we see that

$$
\begin{equation*}
\|K-k \xi\|^{2}-\|L \xi\|^{2}-\operatorname{Tr}\left({ }^{t} L L\right)=2(n-1)(\theta-c) . \tag{2.38}
\end{equation*}
$$

Differentiating (2.23) covariantly along M and making use of (2.4) and the first Bianchi identity, we find

$$
(X \theta) \omega(Y, Z)+(Y \theta) \omega(Z, X)+(Z \theta) \omega(X, Y)=0,
$$

which implies $(n-2) X \theta=0$. Therefore, θ is a constant if $n>2$.
For the case where $\theta=c$ in (2.23) we have $d t=2 c \omega$. In this case, the normal connection of M is said to be $L-f l a t([25])$.

Using (2.37) and (2.38) we can verify that the following lemma (see [17],[18]) :

Lemma 2.1. Let M be a semi-invariant submanifold with L-flat normal connection in $M_{n+1}(c), c \neq 0$. If $A \xi=\alpha \xi$, then we have $\nabla^{\perp} C=0$ and $K=L=0$ on M.

Putting $X=\xi$ in (2.33) and using (2.26), we find

$$
\begin{equation*}
K A \xi=k A \xi+k\left\{t^{\prime}-t(\xi) \xi\right\}, \tag{2.39}
\end{equation*}
$$

where $g\left(t^{\prime}, X\right)=t(X)$. From now on we will use the same letter t instead of t^{\prime}.
If we apply this by ϕ and use (2.19), (2.26) and (2.28), then we get

$$
\begin{equation*}
g(K U, X)=k\{t(\phi X)-u(X)\}, \tag{2.40}
\end{equation*}
$$

where $u(X)=g(U, X)$ for any vector field X.
Replacing X by ξ in (2.34) and using (2.5), (2.26) and (2.28), we have

$$
\begin{equation*}
K U=(\xi k) \xi-\nabla k+k U . \tag{2.41}
\end{equation*}
$$

which together with (2.40) gives

$$
\begin{equation*}
X k=(\xi k) \eta(X)+k\{2 u(X)-t(\phi X)\} . \tag{2.42}
\end{equation*}
$$

If we apply (2.34) by ϕ and take account of (2.27) and the last equation, then we find

$$
\begin{aligned}
\phi A L X-K A X & =-k\{(t-t(\xi) \xi) \eta(X)+2 \eta(X)(A \xi-\alpha \xi) \\
& +2 g(A \xi, X) \xi-A X+\phi A \phi X\},
\end{aligned}
$$

or, using (2.33) we have $\phi A L+L A \phi=0$.
Since θ is constant if $n>2$, differentiating (2.36) covariantly, we get

$$
2 L \nabla_{X} L=(c-\theta)\{\eta(X) \phi A+g(\phi A, X) \xi\}
$$

or, using (2.32), (2.35) and (2.42), it is verified that (see, [17])

$$
\begin{align*}
& (\theta-c)(A \phi-\phi A) X+\left(k^{2}+\theta-c\right)(u(X) \xi+\eta(X) U) \\
& \quad+k\{(A L+L A) X+k(-t(\phi X) \xi+\eta(X) \phi \circ t)\}=0 \tag{2.43}
\end{align*}
$$

In the previous paper [12], [18] the following lemma was proved.
Lemma 2.2 If M satisfies $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$ and $\mu=0$ in $M_{n+1}(c)$, $c \neq 0$, then we have $k=0$ on M.

We set $\Omega=\{p \in M: k(p) \neq 0\}$, and suppose that Ω is not empty. In the rest of this paper, we discuss our arguments on the open subset Ω of M. So, by Lemma 2.2, we see that $\mu \neq 0$ on Ω.

3. Jacobi operators of semi-invariant submanifolds

We introduce the structure Jacobi operator R_{ξ} with respect to the structure vector field ξ which is defined by $R_{\xi} X=R(X, \xi) \xi$ for any vector field X. Then we have from (2.29)

$$
\begin{aligned}
R_{\xi} X=c(X-\eta(X) \xi)+\alpha A X- & \eta(A X) A \xi+\eta(K \xi) K X-\eta(K X) K \xi \\
& +\eta(L \xi) L X-\eta(L X) L \xi
\end{aligned}
$$

Since l and m are dual 1 -forms of $L \xi$ and $K \xi$ respectively because of (2.8) and (2.9), the last relationship is reformed as

$$
R_{\xi} X=c(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi+k K X+m(X) K \xi-l(X) L \xi
$$

where we have used (2.8) $\sim(2.12)$.
We will continue now, our arguments under the same hypotheses $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$ as in section 2. Then, by virtue of (2.25) and (2.26) we can write the last equation as

$$
\begin{equation*}
R_{\xi} X=c(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi+k K X-k^{2} \eta(X) \xi \tag{3.1}
\end{equation*}
$$

which implies

$$
R_{\xi} K X=c(K X-k \eta(X) \xi)+\alpha A K X-\eta(A K X) A \xi+k K^{2} X+k^{3} \eta(X) \xi
$$

where we have used the first equation of (3.26), which together with (2.16), (2.23) and (2.39) gives

$$
\begin{equation*}
\left(R_{\xi} K-K R_{\xi}\right) X=k \mu\{t(X) W-w(X) t-t(\xi)(\eta(X) W-w(X) \xi)\} \tag{3.2}
\end{equation*}
$$

where $g(W, X)=w(X)$ for any vector field X.
According to (3.2) and Lemma 2,2, we then have
Lemma 3.1. $R_{\xi} K=K R_{\xi}$ holds on Ω if and only if $t \in f(\xi, W)$, where $f(\xi, W)$ is denoted by a linear subspace spanned by ξ and W.

Further suppose, throughout this paper, that $R_{\xi} K=K R_{\xi}$ and at the same time $\nabla_{\xi} R_{\xi}=0$ hold on M. Then, from Lemma 3.1, we have

$$
\begin{equation*}
t(X)=t(\xi) \eta(X)+t(W) w(X) \tag{3.3}
\end{equation*}
$$

for any vector field X.
From (2.17) and (3.3) we obtain $t(\phi X)=-\frac{1}{\mu} t(W) u(X)$, which together with (2.40) yields

$$
\begin{equation*}
K U=\tau U, \tag{3.4}
\end{equation*}
$$

where τ is defined by $\mu \tau=-k(\mu+t(W))$, or using (2.27),

$$
\begin{equation*}
L U=\mu \tau W \tag{3.5}
\end{equation*}
$$

By virtue of (2.35) and the last two relationships, it follows that

$$
\begin{equation*}
\tau^{2}=\theta-c \tag{3.6}
\end{equation*}
$$

τ is a nonnegative constant on Ω if $n>2$.
In a direct consequence of (2.28) and (3.4), we verify that

$$
\begin{equation*}
\mu L W=\tau U \tag{3.7}
\end{equation*}
$$

Using (2.16) and (2.26), we can write (2.39) as

$$
\mu K W=k \mu W+k(t-t(\xi) \xi),
$$

which together with (3.2) and (3.3) gives

$$
\begin{equation*}
K W=-\tau W \tag{3.8}
\end{equation*}
$$

because of Lemma 2.2.
Now, by using (2.41) and (3.4) it is verified that

$$
\begin{equation*}
t(\phi X)=\left(1+\frac{\tau}{k}\right) u(X) \tag{3.9}
\end{equation*}
$$

on Ω, or using the property of the almost contact metric structure,

$$
\begin{equation*}
t(X)=t(\xi) \eta(X)-\mu\left(1+\frac{\tau}{k}\right) w(X) \tag{3.10}
\end{equation*}
$$

for any vector field X.
If we take account of (3.4), then (2.41) can be written as

$$
\begin{equation*}
X k=(\xi k) \eta(X)+(k-\tau) u(X) \tag{3.11}
\end{equation*}
$$

for any vector field X.
On the other hand, if we use (2.19) and (2.30), then (2.22) implies that

$$
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha+2 \eta(L \xi)-2 \eta(K \xi) L \xi
$$

which together with (2.26) implies that

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{3.12}
\end{equation*}
$$

Putting $X=\xi$ in (2.22) and making use of (2.16) and (2.18), we get

$$
\phi\left(\nabla_{\xi} A\right) \xi=\nabla_{\xi} U+\beta \xi-\alpha A \xi+\phi A U
$$

which together with (3.12) yields

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha \tag{3.13}
\end{equation*}
$$

In the following, we see, using (2.16) and (2.19), that $\phi U=-\mu W$. Differentiating this covariantly and using (2.4), we find

$$
\begin{equation*}
g(A U, X) \xi-\phi \nabla_{X} U=(X \mu) W+\mu \nabla_{X} W \tag{3.14}
\end{equation*}
$$

Putting $X=\xi$ in this and using (3.13), we get

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U+\nabla \alpha-(\xi \alpha) \xi-(\xi \mu) W \tag{3.15}
\end{equation*}
$$

which tells us that

$$
\begin{equation*}
W \alpha=\xi \mu . \tag{3.16}
\end{equation*}
$$

In the next place, differentiating the first equation of (2.26) covariantly and using (2.5), we find

$$
\left(\nabla_{X} K\right) \xi+K \phi A X=(X k) \xi+k \phi A X
$$

which together with (2.26) and (2.31) yields

$$
\begin{equation*}
\left(\nabla_{\xi} K\right) X=-K \phi A X+(X k) \xi+k \phi A X+t(\xi) L X \tag{3.17}
\end{equation*}
$$

If we put $X=\xi$ in this and make use of (2.26) and (3.4), then we obtain

$$
\begin{equation*}
\left(\nabla_{\xi} K\right) \xi=(\xi k) \xi+(k-\tau) U \tag{3.18}
\end{equation*}
$$

Now, differentiating (3.1) covariantly along M and using (2.5), we find

$$
\begin{aligned}
& g\left(\left(\nabla_{X} R_{\xi}\right) Y, Z\right) \\
& \quad=-\left(k^{2}+c\right)\left(\eta(Z) g\left(\nabla_{X} \xi, Y\right)+\eta(Y) g\left(\nabla_{X} \xi, Z\right)\right)+(X \alpha) g(A Y, Z) \\
& \quad+\alpha g\left(\left(\nabla_{X} A\right) Y, Z\right)-g(A \xi, Z)\left(g\left(\left(\nabla_{X} A\right) \xi, Y\right)-g(A \phi A Y, X)\right) \\
& \quad-g(A \xi, Y)\left(g\left(\left(\nabla_{X} A\right) \xi, Z\right)-g(A \phi A Z, X)\right)+(X k) g(K Y, Z) \\
& \quad+k g\left(\left(\nabla_{X} K\right) Y, Z\right)-2 k(X k) \eta(Y) \eta(Z)
\end{aligned}
$$

Replacing X by ξ in this and using (2.5) and (3.12), we find

$$
\begin{aligned}
& g\left(\left(\nabla_{X} R_{\xi}\right) Y, Z\right) \\
& \quad=-\left(k^{2}+c\right)(u(Y) \eta(Z)+u(Z) \eta(Y))+(\xi \alpha) g(A Y, Z)+\alpha g\left(\left(\nabla_{\xi} A\right) Y, Z\right) \\
& \quad-g(A \xi, Z)(3 g(A U, Y)+Y \alpha)-g(A \xi, Y)(3 g(A U, Z)+Z \alpha) \\
& \quad+(\xi k) g(K Y, Z)+k g\left(\left(\nabla_{\xi} K\right) Y, Z\right)-2 k(\xi k) \eta(Y) \eta(Z),
\end{aligned}
$$

which shows

$$
\begin{aligned}
\left(\nabla_{\xi} R_{\xi}\right) X= & -\left(k^{2}+c\right)(u(X) \xi+\eta(X) U)+(\xi \alpha) A X+\alpha\left(\nabla_{\xi} A\right) X \\
& -(3 A U+\nabla \alpha) g(A \xi, X)-(3 g(A U, X)+X \alpha) A \xi+(\xi k) K X \\
& +k\left(\nabla_{\xi} K\right) X-2 k(\xi k) \eta(X) \xi
\end{aligned}
$$

Thus, the second assumption $\nabla_{\xi} R_{\xi}=0$ gives

$$
\begin{align*}
& \alpha\left(\nabla_{\xi} A\right) X+k\left(\nabla_{\xi} K\right) X+(\xi \alpha) A X+(\xi k) K X \\
& \quad=\left(k^{2}+c\right)(u(X) \xi+\eta(X) U)+(3 A U+\nabla \alpha) g(A \xi, X) \tag{3.19}\\
& \quad+(3 g(A U, X)+X \alpha) A \xi+2 k(\xi k) \eta(X) \xi .
\end{align*}
$$

Replacing X by ξ in this and using (2.26), we find

$$
\begin{equation*}
\alpha\left(\nabla_{\xi} A\right) \xi+k\left(\nabla_{\xi} K\right) \xi=\left(k^{2}+c\right) U+\alpha(3 A U+\nabla \alpha)+k(\xi k) \xi, \tag{3.20}
\end{equation*}
$$

which together with (3.18) gives

$$
\begin{equation*}
\alpha A U+(k \tau+c) U=0, \tag{3.21}
\end{equation*}
$$

where we have used (2.26) and (3.12).
Replacing X by U in (3.17) and using (2.19), (3.4) and (3.5), we find

$$
\left(\nabla_{\xi} K\right) U=-K \phi A U+k \phi A U+\mu \tau t(\xi) W+(k-\tau) \mu^{2} \xi
$$

If we put $X=U$ in (3.19) and make use of the last equation, then we obtain

$$
\begin{align*}
& \alpha\left(\nabla_{\xi} A\right) U+k\{k \phi A U-K \phi A U+\mu \tau t(\xi) W\}+(\xi \alpha) A U+\tau(\xi k) U \\
& \quad=\mu^{2}(k \tau+c) \xi+\{3 g(A U, U)+U \alpha\} A \xi . \tag{3.22}
\end{align*}
$$

Now, if we take account of (3.6) and (3.9), then (2.43) turns out to be

$$
\tau^{2}(A \phi-\phi A) X+\tau(\tau-k)(u(X) \xi+\eta(X) U)+k(A L+L A) X=0
$$

Putting $X=\mu W$ in this and using (3.7), we find

$$
\tau(k+c) A U=\mu\left(\tau^{2} \phi A W-k L A W\right)
$$

By the way, if we replace X by μW in the first equation of (2.34) and use (2.19) and (3.7), then we obtain

$$
(k+\tau) A U=\mu(L A W-k \phi A W)
$$

Combining this to the last equation, we have

$$
\begin{equation*}
(k+\tau) A U=\mu(\tau-k) \phi A W \tag{3.23}
\end{equation*}
$$

because $k+\tau$ does not vanish with the aid of (3.11).
Lemma 3,2. If $k-\tau=0$, then we have on Ω the following :

$$
\begin{gather*}
(t(\xi)+2 \alpha)\{u(X) \eta(Y)-u(Y) \eta(X)+g(\phi A X, Y)-g(\phi A Y, X)\} \\
+4\{c g(\phi X, Y)-g(A \phi A X, Y)\}=0 \tag{3.24}
\end{gather*}
$$

Proof. Since we have $k-\tau=0$, we see from (3.23) that $A U=0$ because of (3.11). Thus, it follows that $k \tau+c=0$ by virtue of (3.21), which tells us that $\tau^{2}+c=0$. So we have $\theta=0$ because of (3.6). Since $k-\tau=0$ was assumed, (3.10) reformed as $t(Y)=t(\xi) \eta(Y)+2 g(\phi U, Y)$ for any vector field Y. Differentiating this covariantly and using (2.4), (2.6) and the fact that $A U=0$, we find

$$
\left(\nabla_{X} t\right)(Y)=X(t(\xi)) \eta(Y)+t(\xi) g(\phi A X, Y)-2 g\left(\phi \nabla_{X} U, Y\right),
$$

from which taking the skew-symmetric part and using (2.23) with $\theta=0$

$$
\begin{aligned}
X(t(\xi)) \eta(Y)-Y(t(\xi)) \eta(X) & +t(\xi)(g(\phi A X, Y)-g(\phi A Y, X)) \\
& +2\left(g\left(\phi \nabla_{Y} U, X\right)-g\left(\phi \nabla_{X} U, Y\right)\right)=0
\end{aligned}
$$

By the way, we see from (2.22) that

$$
\begin{aligned}
& g\left(\phi \nabla_{X} U, Y\right)-g\left(\phi \nabla_{Y} U, X\right)+(Y \alpha) \eta(X)-(X \alpha) \eta(Y) \\
& \quad=2 c g(\phi X, Y)-2 g(A \phi A X, Y)+\alpha(g(\phi A X, Y)-g(\phi A Y, X))
\end{aligned}
$$

where we have used (2.30). If we substitute this into the last relationship, then we obtain

$$
\begin{aligned}
& 4 c g(\phi X, Y)+t(\xi)\{g(\phi A X, Y)-g(\phi A Y, X)\} \\
& \quad=Y(t(\xi)) \eta(X)-X(t(\xi)) \eta(Y)+2\{2 g(A \phi A X, Y) \\
& \quad-\alpha(g(\phi A X, Y)-g(\phi A Y, X))-(X \alpha) \eta(Y)+(Y \alpha) \eta(X)\}
\end{aligned}
$$

Putting $Y=\xi$ in this and using the fact that $A U=0$ and $\tau^{2}+c=0$, we get

$$
X(t(\xi))+2(X \alpha)=(\xi(t(\xi))+2(\xi \alpha)) \eta(X)+(t(\xi)+2 \alpha) u(X)
$$

Substituting this into the last equation, we have (3.24). This completes the proof of Lemma 3.2.

Remark 3.1. $\alpha \neq 0$ on Ω.
In fact, if not, then we have $\alpha=0$ on this open subset of Ω. So we have $k \tau+c=0$ because of (3.21) on the set. We discuss our arguments on such a place. From this and (3.11) we see that $k-\tau=0$ and hence $\tau^{2}+c=0$. We also have $A U=0$ because of (3.23). If we put $X=U$ in (3.24) and take account of these facts, then we have $t(\xi)=0$. Therefore (3.24) will produce a contradiction by using $\alpha=0$ and $A U=0$. Accordingly $\alpha=0$ is not impossible on Ω.

Remark 3.2. $\tau \neq 0$ on Ω.
In fact, if not, then we have $\tau=0$. Thus, we see, using (2.27) and (2.36), that $K X=k \eta(X) \xi$ and $L=0$. Consequently (2.32) is reduced to

$$
k\{\eta(X) A Y-\eta(Y) A X\}+\eta(X) t(Y)-\eta(Y) t(X)=0,
$$

which implies that $A X=\eta(X) A \xi+g(A \xi, X) \xi-\alpha \eta(X) \xi$. Accordingly we have $A U=0$, which connected to (3.21) gives a contradiction. Hence $\tau \neq 0$ on Ω is proved.

Lemma 3.3. $k-\tau \neq 0$ on Ω.
Proof. Let Ω^{\prime} be a set of points such that $k(p)-\tau \neq 0$ on Ω and suppose that Ω^{\prime} be nonvoid. We discuss our arguments on such a place. Then we have (3.24). Furthermore, it is clear that $A U=0$ and $\tau^{2}+c=0$ on Ω^{\prime}. Putting $X=U$ in (3.24) and using these facts, we find

$$
(t(\xi)+2 \alpha)\left(\mu^{2} \xi-\mu A W\right)=-4 c \mu W
$$

which implies

$$
A W=\mu \xi+g(A W, W) W
$$

on Ω^{\prime}, where we have put $g(A W, W)=-4 c /(t(\xi)+2 \alpha)$, which together with (2.16) implies that $A^{2} \xi=\rho A \xi+(\beta-\rho \alpha) \xi$, where we have put $\rho=\alpha+g(A W, W)$. Thus, it follows that

$$
\begin{equation*}
A W=\mu \xi+(\rho-\alpha) W \tag{3.25}
\end{equation*}
$$

on Ω^{\prime}.
Differentiating this covariantly along Ω^{\prime}, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi+X(\rho-\alpha) W+(\rho-\alpha) \nabla_{X} W \tag{3.26}
\end{equation*}
$$

If we take the inner product with ξ to this, and use (2.21) and (2.30), then we find

$$
\begin{equation*}
\mu\left(\nabla_{W} A\right) \xi=(\rho-2 \alpha) A U-2 c U+\mu \nabla \mu \tag{3.27}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
W \mu=\xi \rho-\xi \alpha . \tag{3.28}
\end{equation*}
$$

In the next step, differentiating (3.8) covariantly, we find

$$
g\left(\left(\nabla_{X} K\right) W, Y\right)+g\left(K \nabla_{X} W, Y\right)+\tau g\left(\nabla_{X} W, Y\right)=0,
$$

from which, taking the skew-symmetric part and using (2.31) and (3.7),

$$
\begin{align*}
\frac{\tau}{\mu}(t(X) u(Y)-t(Y) u(X)) & +g\left(K \nabla_{X} W, Y\right)-g\left(K \nabla_{Y} W, X\right) \tag{3.29}\\
& =\tau\left(\left(\nabla_{Y} W\right) X-\left(\nabla_{X} W\right) Y\right)
\end{align*}
$$

Putting $X=\xi$ in this and taking account of (2.21) and the fact that $A U=0$, we find $\tau t(\xi) U-\mu K \nabla_{\xi} W=\mu \tau \nabla_{\xi} W$, which together with (3.15) and $A U=0$ yields

$$
K \nabla \alpha+\tau \nabla \alpha=2 \tau(\xi \alpha) \xi+\tau(2 \alpha+t(\xi)) U
$$

where have used (2.26) and (3.8), which connected to (3.4) yields $2 U \alpha=(t(\xi)+$ $2 \alpha) \mu^{2}$. From this and $(t(\xi)+2 \alpha) g(A W, W)+4 c=0$ it follows that

$$
\begin{equation*}
(\rho-\alpha) U \alpha=-2 c \mu^{2} . \tag{3.30}
\end{equation*}
$$

On the other hand, if we put $X=\mu W$ in (3.26) and make use of (3.25) and (3.27), then we obtain

$$
\mu^{2} \nabla_{W} W-\mu \nabla \mu=\left(\alpha^{2}-\alpha \rho-2 c\right) U-\mu(W \alpha) \xi-\mu(W \mu) W .
$$

Since we have $t(W)=-2 \mu$ because of (3.10), replacing X by W in (3.29) and making use of the last relationship, we obtain

$$
\mu(K \nabla \mu+\tau \nabla \mu)=2 \tau\left(\mu^{2}-\alpha^{2}+\rho \alpha+2 c\right) U+2 \mu \tau(W \alpha) \xi,
$$

which together with (3.4) gives

$$
\begin{equation*}
U \mu=\left(\mu^{2}-\alpha^{2}+\rho \alpha+2 c\right) \mu . \tag{3.31}
\end{equation*}
$$

In the meanwhile, differentiating $A U=0$ covariantly, we find $\left(\nabla_{X} A\right) U+$ $A \nabla_{X} U=0$, which shows $g\left(\nabla_{X} A U, U\right)=0$ and hence $\left(\nabla_{U} A\right) U=0$ because of
(2.30) and (3.5). Thus, it follows that $A \nabla_{U} U=0$. We also have above equation that $\left(\nabla_{\xi} A\right) U+A \nabla_{\xi} U=0$, which together with (3.13) yields

$$
\left(\nabla_{\xi} A\right) U+\alpha A^{2} \xi-\beta A \xi+A \phi \nabla \alpha=0
$$

or, using the fact that $A^{2} \xi=\rho A \xi+(\beta-\rho \alpha) \xi$ gives

$$
\begin{equation*}
\phi\left(\nabla_{\xi} A\right) U+(\rho \alpha-\beta) U+\phi A \phi \nabla \alpha=0 \tag{3.32}
\end{equation*}
$$

Putting $X=U$ and $Y=\xi$ in (2.30), we obtain

$$
\begin{equation*}
\left(\nabla_{U} A\right) \xi=\left(\nabla_{\xi} A\right) U \tag{3.33}
\end{equation*}
$$

by virtue of (2.19), (2.26), (3.5) and the fact that $A U=0$.
On the other hand, applying (2.22) by ϕ and using (2.20), we get

$$
\phi\left(\nabla_{X} A\right) \xi=\nabla_{X} U+\mu g(A W, X) \xi-\phi A \phi A X-\alpha A X+\alpha g(A \xi, X) \xi
$$

which together with the fact that $A U=0$ gives $\nabla_{U} U=\phi\left(\nabla_{U} A\right) \xi$. Hence (3.33) becomes $\nabla_{U} U=\phi\left(\nabla_{\xi} A\right) U$. Using this, we can write (3.32) as

$$
\nabla_{U} U=(\beta-\rho \alpha) U-\phi A \phi \nabla \alpha
$$

If we take the inner product with U to this and use $A U=0$, then we find

$$
\mu(U \mu)=(\beta-\rho \alpha) \mu^{2}-(\rho-\alpha) U \alpha
$$

which together with (3.30) and (3.31) yields $\alpha(\rho-\alpha)=0$. It is, using (3.30) and Remark 3.1, a contradictory. Hence, we have $\Omega^{\prime}=\varnothing$, that is, $k-\tau \neq 0$ is proved on Ω.

Because of (3.21) and Remark 3.1, we can write (3.23) as

$$
\mu \phi A W=\frac{k \tau+c}{\alpha(k-\tau)} U
$$

which together with (2.19) implies that

$$
A W=\mu \xi+g(A W, W) W
$$

on Ω, where we have define $g(A W, W)$ by

$$
\alpha(k-\tau) g(A W, W)+k \tau+c=0
$$

If we put $g(A W, W)=\rho-\alpha$, then we have on Ω the following :

$$
\begin{equation*}
A W=\mu \xi+(\rho-\alpha) W \tag{3.34}
\end{equation*}
$$

From (3.21) we have

$$
\begin{equation*}
A U=\lambda U, \quad \alpha \lambda+k \tau+c=0 \tag{3.35}
\end{equation*}
$$

From this and (3.34) it is verified that (see, [17])

$$
\begin{equation*}
\xi \lambda=0, \quad W \lambda=0 . \tag{3.36}
\end{equation*}
$$

Because of (3.34) and (3.35), the equation (3.23) implies that

$$
\begin{equation*}
\lambda(k+\tau)+(k-\tau)(\rho-\alpha)=0 \tag{3.37}
\end{equation*}
$$

Lemma 3.4. $\xi k=0$ on Ω.
Proof. Differentiating (3.11) covariantly along Ω, we find
$Y(X k)=Y(\xi k) \eta(X)+(\xi k) g(\phi A Y, X)+(Y k) u(X)+(k-\tau)\left\{g\left(\nabla_{Y} U, X\right)+u\left(\nabla_{Y} X\right)\right\}$,
from which taking the skew-symmetric part with respect to X and Y and using (3.11),

$$
\begin{align*}
& Y(\xi k) \eta(X)-X(\xi k) \eta(Y)+(\xi k)\{g(\phi A Y, X)-g(\phi A X, Y)\} \\
& \quad+(\xi k)(\eta(Y) u(X)-\eta(X) u(Y))+(k-\tau)\left(g\left(\nabla_{Y} U, X\right)-g\left(\nabla_{X} U, Y\right)\right)=0 . \tag{3.38}
\end{align*}
$$

On the other hand, differentiating (3.4) covariantly, we find

$$
\begin{equation*}
g\left(\left(\nabla_{Y} K\right) U, X\right)+g\left(K \nabla_{Y} U, X\right)=\tau g\left(\nabla_{Y} U, X\right) \tag{3.39}
\end{equation*}
$$

Putting $X=U$ in this, we find $g\left(\left(\nabla_{Y} K\right) U, U\right)=0$, which together with (2.33), (3.5) and (3.10) yields $\left(\nabla_{U} K\right) U=0$. If we put $Y=U$ in (3.39) and use this fact, then we get $K \nabla_{U} U=\tau \nabla_{U} U$, which implies that $g\left(\nabla_{U} U, W\right)=0$. If we put $Y=U$ and $X=W$ in (3.38) and use the last fact, then we obtain $(\xi k)\{g(\phi A U, W)-g(\phi A W, U)\}=0$, which together with (3.34) and (3.35) gives $\xi k(\lambda+\rho-\alpha)=0$. From this and (3.37) it follows that $\tau \lambda(\xi k)=0$, which connected to (3.35) and Remark 3.2 implies that $(k \tau+c)(\xi k)=0$. Accordingly $\xi k=0$ is proved.

Owing to Lemma 3.3 and Lemma 3.4, we can write (3.38) as

$$
\begin{equation*}
g\left(\nabla_{Y} U, X\right)=g\left(\nabla_{X} U, Y\right) . \tag{3.40}
\end{equation*}
$$

Putting $Y=\xi$ in this, we find $g\left(\nabla_{\xi} U, X\right)+g\left(U, \nabla_{X} \xi\right)=0$, which together with (2.20) and (3.13) gives

$$
3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha+\mu A W=0 .
$$

By virtue of (2.16), (2.19), (3.34) and (3.35), this is reformed as

$$
\phi \nabla \alpha+(\rho-3 \lambda) \mu W=0
$$

which tells us that

$$
\nabla \alpha=(\xi \alpha) \xi+(\rho-3 \lambda) U
$$

If we differentiate the second equation of (3.35), and take account of (3.36), Lemma 3.3 and Lemma 3.4, then we find $\lambda \xi \alpha=0$. But, λ does not vanish because of (3.11), (3.35) and Lemma 3.3. Thus, we have $\xi \alpha=0$ on Ω. Accordingly we have

$$
\begin{equation*}
\nabla \alpha=(\rho-3 \lambda) U . \tag{3.41}
\end{equation*}
$$

4. Theorems

We will continue our arguments under the same hypotheses $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$, and at the same time $R_{\xi} K=K R_{\xi}$ and $\nabla_{\xi} R_{\xi}=0$ as in section 3.

If we take the skew-symmetric part of (3.39) with respect to X and Y, and use (3.40), then we find

$$
g\left(K \nabla_{X} U, Y\right)-g\left(K \nabla_{Y} U, X\right)+\mu \tau\{t(X) w(Y)-t(Y) w(X)\}=0 .
$$

Putting $X=\xi$ in this and using (2.20), (3.13) and (3.35), we find

$$
K(3 \lambda \phi U+\alpha A \xi-\beta \xi+\phi \nabla \alpha)+k \mu A W+\mu \tau(\xi) W=0
$$

which connected to (2.16), (2.19), (3.8), (3.34) and (3.41) gives

$$
\begin{equation*}
\tau t(\xi)+(\rho-\alpha)(k+\tau)=0 \tag{4.1}
\end{equation*}
$$

or using (3.37)

$$
\begin{equation*}
\tau(k-\tau) t(\xi)=\lambda(k+\tau)^{2} \tag{4.2}
\end{equation*}
$$

On the other side, differentiating (3.10) covariantly along Ω and taking account of (2.4), (2.5), (3.11), (3.14), (3.35) and Lemma 3.4, we find

$$
\begin{aligned}
& X(t(Y))=X(t(\xi)) \eta(Y)+t(\xi) g(\phi A X, Y)+\frac{\tau}{k^{2}}(k-\tau) \mu u(X) w(Y) \\
&-\left(1+\frac{\tau}{k}\right)\left(\lambda u(X) \eta(Y)-g\left(\phi \nabla_{X} U, Y\right)+t\left(\nabla_{X} Y\right)\right)
\end{aligned}
$$

from which, taking the skew-symmetric part with respect to X and Y and using (2.22) and (2.23),

$$
\begin{align*}
& 2 \theta g(\phi X, Y)+\frac{\tau}{k^{2}}(k-\tau) \mu(u(Y) w(X)-u(X) w(Y)) \\
& \quad+Y(t(\xi)) \eta(X)-X(t(\xi)) \eta(Y)+t(\xi)(g(\phi A Y, X)-g(\phi A X, Y)) \\
& =\left(1+\frac{\tau}{k}\right)\{2 c g(\phi X, Y)+(\rho-3 \lambda)(u(X) \eta(Y)-u(Y) \eta(X)) \tag{4.3}\\
& \quad-2 g(A \phi A X, Y)+\alpha(g(\phi A X, Y)-g(\phi A Y, X))\}
\end{align*}
$$

where we have used (226), (2.30), (3.35) and (3.41).
From this we can verify that (see, (6.8) of [17])

$$
\begin{equation*}
(k+\tau) \nabla \lambda=6 \tau \lambda U \tag{4.4}
\end{equation*}
$$

If we put $X=U$ and $Y=W$ in (4.3) and take account of (3.34), (3.35) and (3.37), then we find
$2 \theta k(k-\tau)+\frac{\tau}{k}(k-\tau)^{2} \mu^{2}+2 \tau \lambda k t(\xi)=2 c\left(k^{2}-\tau^{2}\right)+2 \lambda^{2}(k+\tau)^{2}-2 \tau(k+\tau) \alpha \lambda$.
On the other hand, because of (3.35) and (3.41) we can write (3.13) as

$$
\nabla_{\xi} U=-\mu^{2} \xi+\mu(\alpha-\rho) W
$$

If we differentiate the first equation of (3.35) covariantly with respect to ξ and remember (3.36), then we find $\left(\nabla_{\xi} A\right) U+A \nabla_{\xi} U=\lambda \nabla_{\xi} U$, which together with (2.16), (3.34) and the last relationship yields

$$
\left(\nabla_{\xi} A\right) U=\mu^{2}(\rho-\lambda) \xi+\mu\left\{\mu^{2}+(\rho-\alpha)^{2}+\lambda(\alpha-\rho)\right\} W
$$

Thus, it follows that

$$
\begin{equation*}
g\left(\left(\nabla_{\xi} A\right) U, W\right)=\mu\left\{\mu^{2}+(\rho-\alpha)^{2}+\lambda(\alpha-\rho)\right\} . \tag{4.6}
\end{equation*}
$$

In the meanwhile, using (3.35), (3.41) and Lemma 3.3, we can also write (3.22) as

$$
g\left(\left(\nabla_{\xi} A\right) U+k \mu\{\tau t(\xi)-\lambda(k+\tau)\} W=\mu^{2}(k \tau+c) \xi+\rho \mu^{2} A \xi,\right.
$$

which together with (3.37) and (4.1) gives

$$
\alpha\left(\nabla_{\xi} A\right) U=\mu^{2}\left(k^{2}+c\right) \xi+\rho \mu^{2} A \xi
$$

which implies that $\alpha g\left(\left(\nabla_{\xi} A\right) U, W\right)=\rho \mu^{3}$.
Combining this to (4.6), we obtain

$$
\begin{equation*}
(\rho-\alpha)\left\{\mu^{2}-\alpha(\rho-\alpha)+\alpha \lambda\right\}=0 \tag{4.7}
\end{equation*}
$$

However, $\rho-\alpha \neq 0$ on Ω. Indeed, if not, then we have $\rho=\alpha$ on this subset. Using (4.1) and (4.2), we obtain $(k+\tau) \lambda=0$ and hence $\lambda=0$ on the set by virtue of (3.11) with $\xi k=0$. Hence, the second equation of (3.35) becomes $k \tau+c=0$ and consequently $k-\tau=0$ on the set, a contradiction because of Lemma 3.3. Thus, $\rho-\alpha=0$ on Ω is impossible. Therefore (4.7) implies that $\mu^{2}=\alpha(\rho-\alpha)-\alpha \lambda$, which connected to (3.37) gives $(k-\tau) \mu^{2}=-2 k \lambda \alpha$.
Substituting this and (4.1) into (4.5), we obtain

$$
\theta k(k-\tau)+2 \tau^{2} \alpha \lambda+\lambda k(\alpha-\rho)(k+\tau)=c\left(k^{2}-\tau^{2}\right)+\lambda^{2}(k+\tau)^{2},
$$

which together with (3.6) and (3.37)
$\left(c+\tau^{2}\right) k(k-\tau)^{2}+2 \tau^{2} \alpha \lambda(k-\tau)+k \lambda^{2}(k+\tau)^{2}=c(k-\tau)^{2}(k+\tau)+\lambda^{2}(k+\tau)^{2}(k-\tau)$.
Because of (3.35), it follows that

$$
\lambda^{2}(k+\tau)^{2}-2 \tau(k-\tau)(c+k \tau)+(k \tau-c)(k-\tau)^{2}=0 .
$$

Differentiating this and using (3.11) with $\xi k=0$ and (4.4), we find

$$
\lambda^{2}(k+\tau)(k+9 \tau)+(k-\tau)^{2}\left(2 \tau k-3 \tau^{2}-c\right)=0
$$

If we eliminate λ to above two equations, then we can verify that k is a root of an algebraic equation with constant coefficients. So k is a constant, which together with (3.11) implies that $k-\tau=0$, a contradiction because of Lemma 3.3. Therefore, we conclude that $\Omega=\varnothing$, that is $k=0$ on M. Hence $m=0$ because of (2.25). We also have $K \xi=0$ be virtue of (2.26).

Combining (2.27) with $k=0$ to (2.35), we get

$$
\begin{equation*}
K^{2} X=(\theta-c)(X-\eta(X) \xi) \tag{4.8}
\end{equation*}
$$

By (2.41) we have $K U=0$, we see from (4.8) that $(\theta-c) U=0$. Thus, (2.43) turns out to be $(\theta-c)(A \phi-\phi A)=0$.

In the following we assume that $\theta-c \neq 0$ on M. Then we have

$$
\begin{equation*}
A \phi-\phi A=0 \tag{4.9}
\end{equation*}
$$

From this we have $A \xi=\alpha \xi$, that is $U=0$. If we take account of (2.30) with $k=0$ and (4.9), then we can verify that (cf. [11])

$$
A^{2} X=\alpha A X+c(X-\eta(X) \xi)
$$

which implies that

$$
\begin{equation*}
h_{(2)}=\alpha h+2(n-1) c . \tag{4.10}
\end{equation*}
$$

On the other hand, differentiating (4.8) covariantly and using previously obtained formulas, we find (see, (4.13) of [18])

$$
\left(\nabla_{X} K\right) Y=t(X) L Y-\eta(X) A L Y-\eta(Y) A L X-g(A X, L Y) \xi
$$

from which, differentiating covariantly and using the Ricci identity for K, we obtain (for detail, see (4.20) and (4.22) of [18]):

$$
\begin{equation*}
(h+3 \alpha)(h-\alpha)=\delta, \tag{4.11}
\end{equation*}
$$

where we have put $\delta=4(n-1)\{(n+1) \theta-2(n+2) c\}$ and

$$
\begin{equation*}
\left(4 \theta-12 c-h_{(2)}-3 \alpha^{2}\right)(h-\alpha)=2(n-1)\{4 c \alpha-(\theta-2 c)(h-\alpha)\} . \tag{4.12}
\end{equation*}
$$

Combining (4.12) to (4.10), we obtain

$$
\begin{equation*}
(\theta-3 c)(h-\alpha)=2(n-1)(\theta-2 c) \alpha \tag{4.13}
\end{equation*}
$$

Now, from (2.29) the Ricci tensor of type $(1,1)$ of M is given by

$$
\begin{equation*}
S X=\{c(2 n+1)-2(\theta-c)\} X+\{2(\theta-c)-3 c\} \eta(X) \xi+h A X-A^{2} X \tag{4.14}
\end{equation*}
$$

where we have used (2.36) and (4.8), which implies that the scalar curvature \bar{r} of M is given by

$$
\bar{r}=4 c\left(n^{2}-1\right)-4(n-1)(\theta-c)+h^{2}-h_{(2)} .
$$

Using (4.10), it follows that

$$
\begin{equation*}
\bar{r}=2(n-1)(2 n+1) c-4(n-1)(\theta-c)+h(h-\alpha) . \tag{4.15}
\end{equation*}
$$

By the way, if we use (4.11) and (4.13), then we have (see, [17])

$$
h(h-\alpha)=2(n-1)(2 n-1)(\theta-c)-4 n(n-1) c .
$$

Thus, (4.15) becomes

$$
\bar{r}-2(n-1) c=2(n-1)(2 n-3)(\theta-c) .
$$

Therefore we have $\theta-c=0$ if $\bar{r}-2(n-1) c \leq 0$ and hence $K=L=0$ because of (2.36) and (4.8). Thus, it follows that $\nabla \frac{1}{X} C=0$ for any vector field X on M.

Let $N_{0}(p)=\left\{v \in T_{p}^{\perp}(M): A_{\nu}=0\right\}$ and $H_{o}(p)$ be the maximal J-invariant subspace of $N_{0}(p)$. Since $K=L=0$, the orthogonal complement of $N_{0}(p)$ is invariant under the parallel translation with respect to the normal connection
because of $\nabla^{\perp} C=0$. Thus, by the reduction theorem for $P_{n+1} \mathbb{C}([26])$ and $H_{n+1} \mathbb{C}([10])$, there exists a totally geodesic complex space form including M in $M_{n+1}(c)([8])$. Accordingly we conclude that

Theorem 4.1. Let M be a real $(2 n-1)$-dimensional $(n>2)$ semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ such that the third fundamental form t satisfies $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$, where $\omega(X, Y)=g(\phi X, Y)$ for any vector fields X and Y on M. If M satisfies $R_{\xi} K=K R_{\xi}$ and at the same time $\nabla_{\xi} R_{\xi}=0$, then M is a real hypersurface in a complex space form $M_{n}(c), c \neq 0$ provided that the scalar curvature \bar{r} of M holds $\bar{r}-2(n-1) c \leq 0$.

Since $k=0$ on M, (3.19) can be written as

$$
\begin{align*}
\alpha\left(\nabla_{\xi} A\right) X+(\xi \alpha) A X=c(u(X) \xi+\eta(X) U) & +\eta(A X)(3 A U+\nabla \alpha) \\
+ & \{3 g(A U, X)+X \alpha\} A \xi \tag{4.16}
\end{align*}
$$

Here, the distinguished normal C can be regard a unit normal vector field N on M in $M_{n}(c)$. Thus, the second fundamental form A with respect to C can also be regarded as that of N.

Since $k=0$ was proved as above, we can write (2.30) as

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c(\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi) \tag{4.17}
\end{equation*}
$$

In the following, we will discuss our arguments on M of $M_{n}(c)$ which satisfies $\nabla_{\xi} R_{\xi}=0$. Further, we assume that $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. Then we have $\mu \nabla_{W} R_{\xi}=0$. From now on we set $\Omega_{0}=\{p \in M: \mu(p) \neq 0\}$ and suppose that $\Omega_{0} \neq \varnothing$, that is, ξ is not principal curvature vector on M. We discuss our arguments on Ω_{0}. Then we have $\nabla_{W} R_{\xi}=0$. So, if we put $X=W$ and $Y=\xi$ in the following equation of (3.18) in section 3, then we have

$$
\begin{aligned}
& g\left(\left(\nabla_{W} R_{\xi}\right) \xi, Z\right)=-c g(\phi A W, Z)-c(W \alpha) g(A \xi, Z)-\eta(A Z) g\left(\left(\nabla_{W} A\right) \xi, \xi\right) \\
&-\alpha g(A \phi A W, Z)
\end{aligned}
$$

Since $\nabla_{W} R_{\xi}=0$ on Ω_{0}, it follows from the last equation that

$$
\begin{equation*}
\alpha A \phi A W+c \phi A W=0 \tag{4.18}
\end{equation*}
$$

by virtue of (3.12) and (4.17).
In the meanwhile, $\nabla_{\xi} R_{\xi}=0$ was assumed, we see from (3.21) that

$$
\begin{equation*}
\alpha A U+c U=0 \tag{4.19}
\end{equation*}
$$

If we differentiate (4.19) covariantly along Ω_{0} and use itself again, then we find

$$
\begin{equation*}
-c(X \alpha) U+\alpha^{2}\left(\nabla_{X} A\right) U+\alpha^{2} A \nabla_{X} U+c \alpha \nabla_{X} U=0 \tag{4.20}
\end{equation*}
$$

which connected to (2.19) and (4.17) gives

$$
\begin{array}{r}
c\{(Y \alpha) u(X)-(X \alpha) u(Y)\}+c \alpha^{2} \mu(\{\eta(X) w(Y)-\eta(Y) w(X)\} \tag{4.21}\\
+\alpha^{2}\left\{g\left(A \nabla_{X} U, Y\right)-g\left(A \nabla_{Y} U, X\right)\right\}+c \alpha d u(X, Y)=0
\end{array}
$$

where d is the exterior differential operator.
Putting $X=U$ in (4.21), we obtain

$$
\begin{equation*}
c\left\{\mu^{2} \nabla \alpha-(U \alpha) U\right\}+\alpha^{2} A \nabla_{U} U+c \alpha \nabla_{U} U=0 \tag{4.22}
\end{equation*}
$$

because U and W are mutually orthogonal.
Combining (2.22) to (4.16) and using (4.17), we have

$$
\begin{aligned}
\alpha^{2} \phi \nabla_{X} U= & \alpha^{2}(X \alpha) \xi-c \alpha u(X) \xi+\alpha(\xi \alpha) A X+c \alpha^{2} \phi X \\
& -\eta(A X)(\alpha \nabla \alpha-3 c U)-\{\alpha(X \alpha)-3 c u(X)\} A \xi \\
& -c \alpha\{u(X) \xi+\eta(X) U\}-\alpha^{2} A \phi A X+\alpha^{3} \phi A X .
\end{aligned}
$$

Applying this by ϕ and using (2.20), we have

$$
\begin{align*}
& \alpha^{2} \nabla_{X} U+\alpha^{2} \mu g(A W, X) \xi-\alpha \eta(A X) \phi \nabla \alpha \\
& \quad=-\alpha(\xi \alpha) \phi A X+c \alpha^{2}\{X-\eta(X) \xi\}+3 c \mu \eta(A X) W+\alpha(X \alpha) U \tag{4.23}\\
& \quad-3 c u(X) U+\alpha^{3} A X-c \alpha \mu \eta(X) W-\alpha^{3} \eta(A X) \xi+\alpha^{2} \phi A \phi A X .
\end{align*}
$$

Putting $X=U$ in (4.23) and using (2.16), (2.19) and (4.19), we get

$$
\begin{equation*}
\alpha^{2} \nabla_{U} U=-c \mu(\xi \alpha) W+\left\{\alpha(U \alpha)-3 c \mu^{2}\right\} U+c \mu \alpha \phi A W \tag{4.24}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
\alpha^{2} A \nabla_{U} U=-c \mu(\xi \alpha) A W+\left\{\alpha(U \alpha)-3 c \mu^{2}\right\} A U+c \mu \alpha \phi A \phi A W \tag{4.25}
\end{equation*}
$$

On the other hand, putting $X=\alpha U$ in (4.16) and taking account of (4.19), we find

$$
\alpha^{2}\left(\nabla_{\xi} A\right) U-c(\xi \alpha) U=c \alpha \mu^{2} \xi+\left\{\alpha(U \alpha)-3 c \mu^{2}\right\} A \xi
$$

If we put $X=\alpha \xi$ in (4.21) and make use of this, then we have

$$
c \alpha \mu^{2} \xi+\left\{\alpha(U \alpha)-3 c \mu^{2}\right\} A \xi+\alpha^{2} A\left(\nabla_{\xi} U\right)+c \alpha \nabla_{\xi} U=0 .
$$

This, together with (3.13) and (4.19), implies that

$$
\begin{align*}
& \alpha\{\alpha A \phi \nabla \alpha+c \phi \nabla \alpha+(U \alpha) A \xi\} \\
& \quad+\mu\left(\alpha^{2}+3 c\right)\left\{\alpha(A W-\mu \xi)-\left(\mu^{2}-c\right) W\right\}=0 \tag{4.26}
\end{align*}
$$

If we combine (4.22), (4.24), and (4.25) to (4.18), then we get

$$
\begin{equation*}
\alpha \mu^{2} \nabla \alpha=\alpha(U \alpha) U+\mu(\xi \alpha)(\alpha A W+c W) \tag{4.27}
\end{equation*}
$$

which enables us to obtain

$$
\begin{equation*}
\mu(W \alpha)=\left(w(A W)+\frac{c}{\alpha}\right) \xi \alpha \tag{4.28}
\end{equation*}
$$

Substituting (4.27) into (4.26) and making use of (4.18), we find

$$
\left\{\alpha(U \alpha)-\mu^{2}\left(\alpha^{2}+3 c\right)\right\}\left\{\alpha(A W-\mu \xi)-\left(\mu^{2}-c\right) W\right\}=0
$$

which implies that $\alpha(U \alpha)=\mu^{2}\left(\alpha^{2}+3 c\right)$.
In fact, if not, then we have $A W=\mu \xi+(\rho-\alpha) W, \alpha(\rho-\alpha)=\mu^{2}-c$, where we put $\rho-\alpha=w(A W)$. From these facts and (2.16), it follows that $A^{2} \xi=\rho A \xi+c \xi$, which connected to (3.1) with $K=0$ yields $R_{\xi} A=A R_{\xi}$. Since
$\nabla_{\xi} R_{\xi}=0$ was assumed, we verify that $\Omega_{0}=\varnothing$ (see, [7]). Thus, (4.27) turns out to be

$$
\alpha \nabla \alpha=\left(\alpha^{2}+3 c\right) U+\mu(\xi \alpha)(\alpha A W+c W),
$$

which shows that $\alpha \nabla \alpha=\left(\alpha^{2}+3 c\right) U$ (see, (5.36) of [13]). From this fact we see that α is a constant and hence $\Omega_{0}=\varnothing$ (cf.Theorem 3 of [13]). Therefore we verify that $A \xi=\alpha \xi$ and α is a constant (see, [20]). Accordingly (4.16) is reduced to $\alpha\left(\nabla_{\xi} A\right) X=0$ for any vector field X on M. From this and (4.17) we see that $\alpha(A \phi-\phi A)=0$ and hence $A \xi=0$ or $A \phi=\phi A$. Since M is a Hopf hypersurface, $A \xi=0$ means $\alpha=0$. Here we note that $\alpha=0$ corresponds to a tube of radius $\pi / 4$ in $P_{n} \mathbb{C}([5])$. But, α never vanishes for Hopf hypersurface in $H_{n} \mathbb{C}(c f .[23])$ Thus, owing to Theorem 4.1 and Theorem O-MR, we have

Theorem 4.2. Let M be a real $(2 n-1)$-dimensional $(n>2)$ semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ such that the third fundamental from t satisfies $d t(X, Y)=2 \theta(\phi X, Y)$ for a scalar $\theta(\neq 2 c)$, and any vector fields X and Y, and the scalar curvature \bar{r} of M satisfies $\bar{r}-2(n-1) c \leq 0$. Suppose that the second fundamental form K satisfies $R_{\xi} K=K R_{\xi}$ and at the same time $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$. Then $\nabla_{\xi} R_{\xi}=0$ holds on M if and only if M is locally congruent to one of the following hypersurfaces :
(I) in case that $M_{n}(c)=P_{n} \mathbb{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-$ $2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
(T) a tube of radius $\pi / 4$ over a certain complex submanifold in $P_{n} \mathbb{C}$, (II) in case that $M_{n}(c)=H_{n} \mathbb{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.

References

[1] A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69(1978), 135-142.
[2] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395(1989), 132-141.
[3] J. Berndt and H. Tamaru, Cohomogeneity one actions on non compact symmetric space of rank one, Trans. Amer. Math. Soc. 359(2007), 3425-3438.
[4] D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27(1976), 313-319.
[5] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
[6] T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer (2015).
[7] J. T. Cho and U-H. Ki, Real hypersurfaces in complex space forms with Reeb-flows symmetric Jacobi operator, Canadian Math. Bull. 51(2008), 359-371.
[8] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 3(1971), 333-340
[9] J. I. Her, U-H. Ki and S.-B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, Bull. Korean Math. Soc. 42(2005), 93-119.
[10] S. Kawamoto, Codimension reduction for real submanifolds of a complex hyperbolic space, Rev. Mat. Univ. Compul. Madrid 7(1994), 119-128.
[11] U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12(1988), 259-268.
[12] U-H. Ki, Semi-invariant submanifold of codimension 3 satisfying $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$ in a complex space form, East Asian Math. J. 37(2021), 47-78.
[13] U-H. Ki and H. Kurihara, Real hypersurfaces and ξ-parallel structure Jacobi operators in complex space forms, J. Nat. Acad. Sci. ROK. Sci. Ser. 48-1(2009), 53-78.
[14] U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J. 32(2009), 5-23.
[15] U-H. Ki and S. J. Kim, Structure Jacobi operators of semi-invariant submanifolds in a complex space form, East Asian Math. J. 36(2020), 389-415.
[16] U-H. Ki and S. J. Kim, Semi-invariant submanifolds of codimension 3 in a complex space form concerned with Jacobi operators with respect to the structure vector, J. Nat. Acad. ROK. Nat. Sci. Ser. 60(2021), 79-107.
[17] U-H. Ki and H. Song, Submanifolds of codimension 3 in a complex space form with commuting structure Jacobi operator, Kyungpook. Math. J. 62(2022), 133-166.
[18] U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math J. 11(2000), 57-86.
[19] U-H. Ki and H. Liu, Some characterizations of real hypersurfaces of type (A) in a nonflat complex space form, Bull. Korean Math. Soc. 44(2007), 152-172.
[20] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32(1990), 207-221.
[21] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137-149.
[22] S. Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
[23] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press : (1998(T. E. Cecil and S.-S. Chern eds.)), 233-305.
[24] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1973), 355-364.
[25] M. Okumura, Normal curvature and real submanifold of the complex projective space. Geom. Dedicata 7(1978), 509-517.
[26] M. Okumura, Codimension reduction problem for real submanifolds of a complex projective space. Colloq. Math János Bolyai. 56(1989), 574-585.
[27] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurface with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36(2006), 1603-1613.
[28] H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25(2001), 279-298.
[29] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19(1973), 495-506.
[30] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan 27(1975), 43-53, 507-516.
[31] Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sũgaku 16(1964), 34-61.
[32] K. Yano, and U-H. Ki, On $(f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Kodai Math. Sem. Rep. 29(1978), 285-307.
[33] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser (1983).

U - Hang KI
The National Academy of Sciences,
Seoul 06579, Korea
Email address: uhangki2005@naver.com
Hyunjung SONG
Department of Mathematics
Hankuk University of Foreign Studies,
Seoul 02450, Korea
Email address: hsong@hufs.ac.kr

[^0]: Received September 25, 2023; Accepted November 29, 2023.
 2010 Mathematics Subject Classification. 53B25, 53C40, 53C42.
 Key words and phrases. semi-invariant submanifold, distinguished normal, complex space form, structure Jacobi operator, scalar curvature.

 * Corresponding author.

