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Weighted Lp Boundedness for the Function of Marcinkiewicz
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Abstract. In this paper, we prove a weighted norm inequality for the Marcinkiewicz

integral operator MΩ,h when h satisfies a mild regularity condition and Ω belongs to

L(log L)1l2(Sn−1), n ≥ 2. We also prove the weighted Lp boundedness for a class of

Marcinkiewicz integral operators M∗
Ω,h,λ and MΩ,h,S related to the Littlewood-Paley g∗λ-

function and the area integral S, respectively.

1. Introduction and statement of results

Let n ≥ 2 and Sn−1 be the unit sphere in Rn equipped with the induced
Lebesgue measure dσ = dσ(·). Let Ω be a homogeneous function of degree 0 satis-
fying Ω ∈ L1(Sn−1) and

(1.1)
∫

Sn−1
Ω(x′) dσ (x′) = 0,

where x′ = x/ |x| ∈ Sn−1 for any x 6= 0.

For a suitable C1 function Φ on R+ and a measurable function h : R+ −→ C,
the Marcinkiewicz integral operator MΩ,Φ,h is defined by

MΩ,Φ,hf(x) =
(∫ ∞

0

|FΩ,Φ,h,tf(x)|2 dt

t3

)1/2

,

where

FΩ,Φ,h,tf(x) =
∫

|y|≤t

|y|1−n Ω(y′)h(|y|)f(x− Φ(|y|)y′)dy.

We are also interested in studying the related Marcinkiewicz integral operators
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MΩ,Φ,h,S and M∗
Ω,Φ,h,λ which are defined by

MΩ,Φ,h,Sf(x) =

(∫

Γ(x)

|FΩ,Φ,h,tf(x)|2 dydt

tn+3

)1/2

,

M∗
Ω,Φ,h,λf(x) =

(∫ ∫

Rn+1
+

(
t

t + |x− y|
)nλ

|FΩ,Φ,h,tf(x)|2 dydt

tn+3

)1/2

,

where λ > 1 and Γ(x) =
{
(y, t) ∈ Rn+1

+ : |x− y| < t
}

.
If Φ(t) = t we denote MΩ,Φ,h,MΩ,Φ,h,S and M∗

Ω,Φ,h,λ by MΩ,h,MΩ,h,S and
M∗

Ω,h,λ, respectively. Also, if h ≡ 1 and Φ(t) = t we denote MΩ,Φ,h,MΩ,Φ,h,S and
M∗

Ω,Φ,h,λ by MΩ,h,MΩ,S and M∗
Ω,λ, respectively.

We point out that MΩ,S and M∗
Ω,λ are respectively related to the Lusin area

integral S and the Littlewood-Paley g∗λ-function.
The operator MΩ was introduced by E. M. Stein in [13] as an extension of

the notion of Marcinkiewicz function. Stein showed that if Ω ∈Lipα(Sn−1), (0 <
α ≤ 1), then MΩ is of type (p, p) for p ∈ (1, 2] and of weak type (1, 1) (see [13]).
Subsequently, Benedek, Calderón and R. Panzone proved that MΩ is of type (p, p)
for p ∈ (1,∞) if Ω ∈ C1

(
Sn−1

)
(see [2]). Some years later, T. Walsh [18] showed

that if p ∈ (1,∞), r = min{p, p′}, and Ω ∈ L(log L)1/r(log log L)2(1−2/r′)(Sn−1),
then MΩ is bounded on Lp(Rn). In particular, by Walsh’s result we have MΩ is of
type (2, 2) if Ω ∈ L(log L)1/2(Sn−1). Moreover,Walsh showed the optimality of the
condition Ω ∈ L(log L)1/2(Sn−1) for the L2 boundedness of MΩ in the sense that
the exponent 1/2 in L(log L)1/2(Sn−1) cannot be replaced by any smaller numbers.
Very recently, Al-Salman-Al-Qassem-Chen-Pan in [1] were able to prove the Lp

boundedness (1 < p < ∞) of MΩ if Ω ∈ L(log L)1/2(Sn−1).
On the other hand, the weighted Lp boundedness of MΩ has also attracted

the attention of many authors in the recent years. Indeed, Torchinsky and Wang
in [17] proved that if Ω ∈ Lipα(Sn−1), (0 < α ≤ 1), then MΩ is bounded on
Lp(ω) for p ∈ (1,∞) and ω ∈ Ap (The Muckenhoupt’s weight class, see [9] for the
definition). The result of Torchinsky-Wang was improved by Ding, Fan and Pan in
[4] who were able to show that MΩ,h is bounded on Lp(ω) for p ∈ (1,∞) provided
that h ∈ L∞(R+), Ω ∈ Lq(Sn−1), q > 1 and ωq′ ∈ Ap (Rn) . In a recent paper,
Ming-Yi Lee and Chin-Cheng Lin in [11] showed that MΩ,h is bounded on Lp(ω)
for p ∈ (1,∞) if h ∈ L∞(R+), Ω ∈ H1(Sn−1) and ω ∈ ÃI

p (Rn) , where ÃI
p (Rn) is

a special class of radial weights introduced by Duoandikoetxea [6] and its definition
will recalled below.

We remark that on Sn−1, for any q > 1 and 0 < α ≤ 1, the following inclusions
hold and are proper:

(1.2) C1(Sn−1) ⊆ Lipα(Sn−1) ⊆ Lq(Sn−1) ⊆ L(log+ L)(Sn−1) ⊆ H1(Sn−1).

Also, it is easy to see that L(log L)(Sn−1) ⊆ L(log L)1/2(Sn−1). However, it
is known that L(log L)1/2(Sn−1) is disjoint from H1(Sn−1) in the sense that
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L(log L)1/2(Sn−1) " H1(Sn−1) and H1(Sn−1) " L(log L)1/2(Sn−1) (see [3] for
more details).

Our chief concern in this paper is studying the weighted Lp(ω) boundedness of
MΩ,h under the natural condition Ω ∈ L(log L)1/2(Sn−1) and under a very weak
condition on h. To sate our main results, we need to recall some definitions.

We say that Ω ∈ L (log L)α (Sn−1) (α > 0) if Ω satisfies
∫

Sn−1
|Ω(x)| (log(2 + |Ω(x)|))α

dσ(x) < ∞.

For γ > 1, we say that h ∈ ∆γ (R+) if h is a measurable function on R+

satisfying

‖h‖∆γ
= sup

R>0

(
1
R

∫ R

0

|h (t)|γ dt

)1/γ

< ∞.

Let Lp(ω) be the weighted Lp spaces associated to the weight ω ≥ 0 which is defined
by

Lp(Rn, ω(x)dx) =

{
f : ‖f‖Lp(ω) =

(∫

Rn

|f(x)|p ω(x)dx

)1/p

< ∞
}

.

Definition 1.1. Let ω(t) ≥ 0 and ω ∈ L1
loc(R+). For 1 < p < ∞, we say that

ω ∈ Ap(R+) if there is a positive constant C such that for any interval I ⊂ R+,

(
|I|−1

∫

I

ω(t)dt

) (
|I|−1

∫

I

ω(t)−1/(p−1)dt

)p−1

≤ C < ∞.

We say that ω ∈ A1(R+) if there is a positive constant C such that

|I|−1
∫

I

ω(t)dt ≤ C . ess inf
t∈I

ω(t) for any interval I ⊂ R+.

It is easy to verify that ω ∈ A1(R+) if and only if there is a positive constant C
such that

MHLω(t) ≤ Cω(t) for a.e. t ∈ R+,

where MHL(f) is the Hardy-Littlewood maximal function of f .

Definition 1.2. Let 1 ≤ p < ∞. We say that ω ∈ Ãp(R+) if

ω(x) = ν1(|x|)ν2(|x|)1−p,

where either νi ∈ A1(R+) is decreasing or ν2
i ∈ A1(R+), i = 1, 2.

Let AI
p(Rn) be the weight class defined by exchanging the cubes in the defi-

nitions of Ap for all n-dimensional intervals with sides parallel to coordinate axes
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(see [9]). Let ÃI
p = Ãp ∩AI

p. If ω ∈ Ãp, it follows from [6] that the standard Hardy-
Littlewood maximal function MHLf is bounded on Lp(Rn, ω(|x|)dx). Therefore, if
ω(t) ∈ Ãp(R+), then ω(|x|) ∈ Ap(Rn).

We shall need the following lemma which can be proved by the same argument
as in the proof of the elementary properties of Ap weight class (see for example [9]):

Lemma 1.3. If 1 ≤ p < ∞, then the weight class ÃI
p(R+) has the following

properties:

(i) ÃI
p1
⊂ ÃI

p1
, if 1 ≤ p1 < p2 < ∞;

(ii) For any ω ∈ ÃI
p, there exists an ε > 0 such that ω1+ε ∈ ÃI

p;

(iii) For any ω ∈ ÃI
p and p > 1, there exists an ε > 0 such that p − ε > 1 and

ω ∈ ÃI
p−ε.

Our main results are the following:

Theorem 1.1. Let h ∈ ∆γ (R+) for some γ > 1. Let Φ be in C2([0,∞)), convex,
and increasing function with Φ(0) = 0. If Ω ∈ L(log L)1/2(Sn−1) and satisfies (1.1),
then

(1.3) ‖MΩ,Φ,h(f)‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn)

is bounded on Lp(Rn) for |1/p− 1/2| < min{1/γ′, 1/2}.
Theorem 1.2. Let Φ be in C2([0,∞)), convex, and increasing function with Φ(0) =
0. Suppose Ω ∈ L(log L)1/2(Sn−1) satisfying (1.1) and h ∈ ∆γ (R+) for some γ ≥ 2.
If p and ω satisfy one of the following conditions:

(a) 2 < p < ∞ and ω ∈ ÃI
p/2(R+);

(b) γ′ < p ≤ 2 and ω ∈ ÃI
p/γ′(R+),

then there exists Cp > 0, independent of f , such that

(1.4) ‖MΩ,Φ,h(f)‖Lp(ω) ≤ Cp ‖f‖Lp(ω) .

Theorem 1.3. Let h ∈ ∆γ (R+) for some γ ≥ 2. Let Φ be in C2([0,∞)), convex,

and increasing function with Φ(0) = 0. If Ω ∈ L(log L)1/2(Sn−1), then there exists
Cp > 0 such that

(1.5) ‖MΩ,Φ,h,S(f)‖Lp(ω) +
∥∥M∗

Ω,Φ,h,λ(f)
∥∥

Lp(ω)
≤ Cp ‖f‖Lp(ω)

for 2 ≤ p < ∞ and ω ∈ ÃI
p/2(R+).
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It is worth noting that the range of p given in Theorem 1.1 is the full range
(1,∞) whenever γ ≥ 2. Also, the result in Theorem 1.1 extends the result of Al-
Salman-Al-Qassem-Chen-Pan in [1] who obtained Theorem 1.1 in the special case
h ≡ 1 and Φ(t) = t. We remark also that Theorems 1.2 and 1.3 represent an
improvement and extension of Theorems 1 and 2 in [4] in the case ω ∈ ÃI

p(R+).
The main tools used in this paper come from [5] and [12]. The paper is divided

into three sections. In the second section, we compute certain Fourier transform
estimates and prove the weighted Lp(ω) boundedness of a maximal function. The
proofs of Theorems 1.1–1.3 will appear in Section 3, along with a further result.

Throughout the rest of the paper the letter C will stand for a positive constant
not necessarily the same one at each occurrence.

2. Some basic lemmas

Definition 2.1. Let h be a measurable function and Φ(t) be a C1 function on R+.
For m ∈ N ∪ {0}, let a

m
= 2(m+1) and Ω

m
be a function on Sn−1 satisfying the

following conditions:

‖Ωm‖L2(Sn−1) ≤ (am)2;(2.1)

‖Ωm‖1 ≤ 1.(2.2)

Define the family of measures {σm,t : t ∈ R+} and the corresponding maximal
operator σ∗m on Rn by

∫

Rn

fdσm,t =
1
t

∫
1
2 t<|y|≤t

f(Φ(|y|)y′)h(|y|)Ωm(y′)
|y|n−1 dy,

σ∗mf (x) = sup
t∈R+

||σm,t| ∗ f(x)| ,

where |σm,t| is defined in the same way as σm,t, but with Ωm replaced by |Ωm | and
h replaced by |h| .
Lemma 2.2. Let m ∈ N and h ∈ ∆γ (R+) for some γ, 1 < γ ≤ 2. Let Ωm be
a function on Sn−1satisfying (2.1)-(2.2) and (1.1) with Ω replaced by Ωm . Assume
that Φ is in C2([0,∞)), convex, and increasing function with Φ(0) = 0. Then there
exist constants C and 0 < α < 1 such that for all k ∈ Z and ξ ∈ Rn we have

‖σm,t‖ ≤ C;(2.3)
∫ ak+1

m

ak
m

|σ̂m,t(ξ)|2 dt

t
≤ C(m + 1)

∣∣Φ(ak−1
m

)ξ
∣∣− α

γ′(m+1) ;(2.4)

∫ ak+1
m

ak
m

|σ̂m,t(ξ)|2 dt

t
≤ C(m + 1)

∣∣Φ(ak+1
m

)ξ
∣∣ α

γ′(m+1) ,(2.5)

where ‖σm,t‖ stands for the total variation of σm,t. The constant C is independent
of k, m, ξ and Φ (·).
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By (2.2) and the definition of σm,t, one can easily see that (2.3) holds with
a constant C independent of t and m. Next we prove (2.4). Switching to polar
coordinates and then applying Hölder’s inequality, we obtain

|σ̂m,t(ξ)| ≤
(

1
t

∫ t

1
2 t

|h(s)|γ ds

)1/γ (
1
t

∫ t

1
2 t

|Im (s)|γ
′
ds

)1/γ′

,

where
Im (s) =

∫

Sn−1
e−iΦ(s)ξ·xΩm(x)dσ (x) .

Since |Im (s)| ≤ 1 we immediately get

|σ̂m,t(ξ)| ≤ C

(
1
t

∫ t

1
2 t

|Im (s)|2 ds

)1/γ′

= C

(∫

Sn−1×Sn−1
Ω

m
(x)Ωm(y)Ym,t(ξ, x, y)dσ (x) dσ(y)

)1/γ′

,

where

Ym,t(ξ, x, y) =
∫ 1

1/2

e−iΦ(ts)ξ·(x−y)ds.

We now show that

(2.6) |Ym,t(ξ, x, y)| ≤ C |Φ(t/2)ξ|−α |ξ′ · (x− y)|−α ;

for some 0 < α < 1/2.
To this end, we notice that by the assumptions on Φ and the mean value theorem

we have
d

ds
(Φ(ts)) = tΦ′(ts) ≥ Φ(ts)

s
≥ Φ(t/2).

Thus by van der Corput’s lemma, |Ym,t(ξ, x, y)| ≤ |Φ(t/2)ξ|−1 |ξ′ · (x− y)|−1
. By

combining this estimate with the trivial estimate |Ym,t(ξ, x, y)| ≤ 1/2 and choosing
α such that 0 < α < 1/2 we get (2.6). Applying now Schwarz’s inequality and (2.1)
we get

|σ̂m,t(ξ)|

≤ C |Φ(t/2)ξ|−α/γ′
(∫

Sn−1×Sn−1
|Ωm(x)Ωm(y)| |ξ′ · (x− y)|−α

dσ (x) dσ(y)
)1/γ′

≤ C |Φ(t/2)ξ|−α/γ′ (am)4/γ′
{∫

Sn−1×Sn−1
|x1 − y1|−2α

dσ (x) dσ(y)
}1/2γ′

,

where x = (x1, · · · , xn) and y = (y1, · · · , yn). Since the last integral is finite, we
obtain

|σ̂m,t(ξ)| ≤ C |Φ(t/2)ξ|−α/γ′ (am)4/γ′ ,
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which easily leads to

∫ ak+1
m

ak
m

|σ̂m,t(ξ)|2 dt

t
≤ C(m + 1)(am)8/γ′

∣∣∣∣Φ(
1
2
ak

m
)ξ

∣∣∣∣
− 2α

γ′

≤ C(m + 1)(a
m

)8/γ′
∣∣Φ(ak−1

m
)ξ

∣∣− 2α
γ′ .

By combining the last estimate with the trivial estimate

∫ ak+1
m

ak
m

|σ̂m,t(ξ)|2 dt

t
≤ C(m + 1)

we get (2.4).
We now turn to the proof of (2.5). By using the mean zero property (1.1) of

Ω
m

we get

|σ̂m,t(ξ)| ≤ 1
t

∫

Sn−1

∫ t

1
2 t

∣∣∣e−iΦ(s)ξ·x − 1
∣∣∣ |h(s)| |Ωm(x)| dsdσ(x).

Hence by (2.2) and since Φ is increasing we get

|σ̂m,t(ξ)| ≤ C |Φ(t)ξ| .

By using the same argument as above we get (2.5). The lemma is proved.

By the same argument as in [15, p. 57] we get

Lemma 2.3. Let ϕ be a nonnegative, decreasing function on [0,∞) with∫
[0,∞)

ϕ(t)dt = 1. Then

∣∣∣∣∣
∫

[0,∞)

f(x− ty′)ϕ(t)dt

∣∣∣∣∣ ≤ My′f(x),

where

My′f(x) = sup
R∈R

1
R

∫ R

0

|f(x− sy′)| ds

is the Hardy-Littlewood maximal function of f in the direction of y′.

Lemma 2.4. Let m ∈ N, h ∈ ∆γ (R+) for some γ > 1, γ′ < p < ∞ and
ω ∈ Ãp/γ′(R+). Let Ωm be a function on Sn−1 satisfying (2.1)-(2.2) and let Φ be
in C2([0,∞)), convex, and increasing function with Φ(0) = 0. Then

(2.7) ‖σ∗m(f)‖Lp(ω) ≤ Cp ‖f‖Lp(ω) ,

where Cp is independent of m and f .
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Proof. By Hölder’s inequality and (2.2), we have

||σm,t| ∗ f(x)|

≤
(

1
t

∫ t

1
2 t

|h(s)|γ ds

)1/γ (
1
t

∫ t

1
2 t

∣∣∣∣
∫

Sn−1
Ωm(y′)f(x− Φ(s)y′)dσ(y′)

∣∣∣∣
γ′

ds

)1/γ′

≤ C

(
1
t

∫ t

1
2 t

∫

Sn−1
|Ωm(y′)| |f(x− Φ(s)y′)|γ

′
dσ(y′)ds

)1/γ′

.

Thus

(2.8) σ∗mf(x) ≤ C

(∫

Sn−1
|Ω

m
(y′)|MΦ,y′(|f |γ

′
)(x)dσ(y′)

)1/γ′

,

where

MΦ,y′f(x) = sup
t∈R+

∣∣∣∣
1
t

∫ t

0

f(x− Φ(s)y′)ds

∣∣∣∣ .

Without loss of generality, we may assume that Φ(t) > 0 for all t > 0. By a change
of variable we have

MΦ,y′f(x) ≤ sup
t∈R+

(
1
t

∫ Φ(t)

0

|f(x− sy′)| ds

Φ′(Φ−1(s))

)
.

Since the function 1
tΦ′(Φ−1(s)) is nonnegative, decreasing and its integral over [0, Φ(t)]

is equal to 1, by Lemma 2.3 we obtain

(2.9) MΦ,y′f(x) ≤ My′f(x).

By (2.8)-(2.9) and Minkowski’s inequality for integrals we get

(2.10) ‖σ∗mf‖Lp(ω) ≤
(∫

Sn−1
|Ωm(y′)|

∥∥∥My′(|f |γ
′
)
∥∥∥

Lp/γ′ (ω)
dσ(y′)

)1/γ′

.

By (8) in [6] and since ω ∈ Ãp/γ′(R+) we have

(2.11) ‖My′f‖Lp/γ′ (ω) ≤ C ‖f‖Lp/γ′ (ω)

with C independent of y′. By (2.2) and (2.10)-(2.11) we get (2.7) which finishes the
proof of the lemma. ¤

3. Proof of theorems

Assume that Ω ∈ L(log L)1/2(Sn−1) and satisfies (1.1). We may assume without
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loss of generality that σ is normalized so that σ(Sn−1) = 1. For each m ∈ N, let
Em =

{
y ∈ Sn−1 : 2m−1 ≤ |Ω(y)| < 2m

}
. Let

(3.1) DΩ = {m ∈ N : σ(Em) > 2−4m},

and for each m ∈ DΩ, let θm = ‖Ω‖L1(Em) ,

(3.2) Ωm(x) = θ−1
m

(
Ω(x)χEm(x)−

∫

Em

Ω(u)dσ(u)
)

.

Also, let

(3.3) Ω0 = Ω−
∑

m∈DΩ

θmΩm .

Let θ0 = 1. Then the following hold for all m ∈ DΩ ∪ {0}:
∫

Sn−1
Ωm(x)dσ = 0;(3.4)

‖Ωm‖L1(Sn−1) ≤ C;(3.5)

‖Ωm‖L2(Sn−1) ≤ C(am)2;(3.6)
∑

m∈DΩ∪{0}
(m + 1)1/2θm ≤ C ‖Ω‖L(log L)1/2(Sn−1) ;(3.7)

and

(3.8) Ω =
∑

m∈DΩ∪{0}
θmΩm

for some positive constant C.
By (3.8) we have

(3.9) MΩ,Φ,h(f) ≤
∑

m∈DΩ∪{0}
θmMΩm ,Φ,h(f) .

Therefore, Theorems 1.1 and 1.2 are proved if we can show that

(3.10)
∥∥MΩm ,Φ,h(f)

∥∥
Lp(Rn)

≤ Cp(m + 1)1/2 ‖f‖Lp(Rn)

for p satisfying |1/p− 1/2| < min{1/γ′, 1/2}; and

(3.11)
∥∥MΩm ,Φ,h(f)

∥∥
Lp(ω)

≤ Cp(m + 1)1/2 ‖f‖Lp(ω)

if p and ω satisfy one of the conditions (a) and (b) of Theorem 1.2.
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Proof of (3.10). Since ∆γ (R+) ⊆ ∆2 (R+) for γ ≥ 2, we may assume that 1 <
γ ≤ 2. Therefore, it suffices to prove (3.10) for p satisfying |1/p− 1/2| < 1/γ′. For
k ∈ Z and m ∈ N let Υm,k = Φ(ak

m
). We notice that {Υm,k : k ∈ Z} is a lacunary

sequence with Υm,k+1/Υm,k ≥ a
m

. Let {Λk,m}∞−∞ be a smooth partition of unity in
(0, ∞) adapted to the interval Ik,m = [Υ−1

m,k+1, Υ−1
m,k−1]. To be precise, we require

the following:

Λk,m ∈ C∞, 0 ≤ Λk,m ≤ 1,
∑

k

Λk,m (t) = 1;

supp Λk,m ⊆ Ik,m;
∣∣∣∣
dsΛk,m (t)

dts

∣∣∣∣ ≤
Cs

ts
,

where Cs is independent of the lacunary sequence {Υm,k : k ∈ Z}. Let Ψ̂k,m(ξ) =
Λk,m(|ξ|).

By Minkowski’s inequality we have

MΩm ,Φ,hf(x)

=




∫ ∞

0

∣∣∣∣∣
∞∑

k=0

2−kσm,2−kt ∗ f(x)

∣∣∣∣∣

2
dt

t




1/2

≤
∞∑

k=0

2−k

(∫ ∞

0

∣∣σm,2−kt ∗ f(x)
∣∣2 dt

t

)1/2

= 2
(∫ ∞

0

|σm,t ∗ f(x)|2 dt

t

)1/2

.

Decompose

f ∗ σm,t(x) =
∑

j∈Z

∑

k∈Z

(Ψk+j,m ∗ σm,t ∗ f)(x)χ
[ak

m
,ak+1

m
)
(t) :=

∑

j∈Z

Sj,m(x, t)

and define

Mj,mf(x) =
(∫ ∞

0

|Sj,m(x, t)|2 dt

t

)1/2

.

Then
MΩm ,Φ,h(f) ≤ 2

∑

j∈Z

Mj,m(f)

holds for f ∈ S(Rn).
We notice that to prove (3.10), it is enough to show that

(3.12) ‖Mj,m(f)‖Lp(Rn) ≤ C(m + 1)1/22−αp|j| ‖f‖Lp(Rn)

for some αp > 0 and for p satisfying |1/p− 1/2| < 1/γ′. This can be achieved
by interpolation between a sharp L2 estimate and a cruder Lp estimate of Mj,m.
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To this end, as usual a sharp L2 estimate can be obtained by using Plancherel’s
theorem. In fact,

‖Mj,m(f)‖2L2(Rn) =
∑

k∈Z

∫

Rn

∫ ak+1
m

ak
m

|Ψk+j,m ∗ σm,t ∗ f(x)|2 dt

t
dx

≤
∑

k∈Z

∫

Γk+j,m

(∫ ak+1
m

ak
m

|σ̂m,t(ξ)|2 dt

t

)∣∣∣f̂(ξ)
∣∣∣
2

dξ,

where
Γk,m = {ξ ∈ Rn : |ξ| ∈ Ik,m}.

By Lemma 2.2 we have

(3.13) ‖Mj,m(f)‖L2(Rn) ≤ C(m + 1)1/2 2−
α
2 |j| ‖f‖L2(Rn) .

On the other hand, we compute the Lp(Rn)-norm of Mj,m(f). To this end,
assume first that 2 ≤ p < 2γ

2−γ . By duality there exists a nonnegative function g in
L(p/2)′(Rn) with ‖g‖(p/2)′ ≤ 1 such that

‖Mj,m(f)‖2Lp(Rn) =
∑

k∈Z

∫

Rn

∫ ak+1
m

ak
m

|σm,t ∗Ψk+j,m ∗ f(x)|2 dt

t
g(x)dx.

Now

|σm,t ∗Ψk+j,m ∗ f(x)|2

=

∣∣∣∣∣
1
t

∫ t

1
2 t

∫

Sn−1
(Ψk+j,m ∗ f) (x− Φ(r)y)h(r)Ωm(y)dσ(y)dr

∣∣∣∣∣

2

≤ C ‖Ωm‖1
(

1
t

∫ t

1
2 t

∫

Sn−1
|(Ψk+j,m ∗ f) (x− Φ(r)y)|2 |Ωm(y)| |h(r)|2−γ

dσ(y)dr

)
.

Thus by a change of variable we get

‖Mj,m(f)‖2Lp(Rn) ≤ C ‖Ωm‖1
∫

Rn

∑

k∈Z

∫ ak+1
m

ak
m

(
1
t

∫ t

1
2 t

∫

Sn−1
g(x + Φ(r)y) |Ωm(y)| ×

|h(r)|2−γ
dσ(y)dr

) dt

t
|Ψk+j,m ∗ f(x)|2 dx.

Therefore, by (2.2) we have

(3.14) ‖Mj,m(f)‖2Lp(Rn) ≤ C(m + 1)
∫

Rn

∑

k∈Z

|Ψk+j,m ∗ f(x)|2 M|h|2−γ ,mg(x)dx,
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where

M|h|2−γ ,mg(x) = sup
t∈R+

∣∣∣∣∣
1
t

∫
1
2 t<|y|≤t

g(x + Φ(|y|)y′) |h(|y|)|2−γ |Ωm(y)|
|y|n−1 dy

∣∣∣∣∣ .

By invoking Lemma 2.4 with ω = 1 and noticing that |h(·)|2−γ ∈ ∆
γ/(2−γ) (R+) and

(p/2)′ >
(

γ
2−γ

)′
we obtain

∥∥∥M|h|2−γ ,mg
∥∥∥

L(p/2)′ (Rn)
≤ Cp ‖g‖L(p/2)′ (Rn) ≤ Cp.

Therefore, by Hölder’s inequality and using Littlewood-Paley theory and Theorem
3 along with the remark that follows its statement in ([14], p.96), we have

‖Mj,m(f)‖2Lp(Rn) ≤ Cp(m + 1)

∥∥∥∥∥∥

(∑

k∈Z

|Ψk+j,m ∗ f |2
)1/2

∥∥∥∥∥∥

2

Lp(Rn)

×
∥∥∥M|h|2−γ ,mg

∥∥∥
L(p/2)′ (Rn)

which in turn gives

(3.15) ‖Mj,m(f)‖Lp(Rn) ≤ Cp(m + 1)1/2 ‖f‖Lp(Rn) for 2 ≤ p <
2γ

2− γ
.

Now we need to handle the case 2γ
3γ−2 < p < 2. Let Jm,k = [ak

m
, ak+1

m
). By

a duality argument, there exist functions h = hk(x, t) defined on Rn × R+ with∥∥∥
∥∥∥‖hk‖L2(Jm,k,dt/t)

∥∥∥
l2

∥∥∥
Lp′

≤ 1 such that

‖Mj,m(f)‖p =
∫

Rn

∑

k∈Z

∫

Jm,k

(Ψk+j,m ∗ σm,t ∗ f(x)) hk(x, t)
dt

t
dx.

By a change of variable, Hölder’s inequality and using Littlewood-Paley theory we
have

‖Mj,m(f)‖p ≤ Cp (m + 1)1/2

∥∥∥∥∥∥

(∑

k∈Z

|Ψk+j,m ∗ f |2
) 1

2

∥∥∥∥∥∥
p

∥∥∥(T (h))1/2
∥∥∥

p′
(3.16)

≤ Cp (m + 1)1/2 ‖f‖p ‖T (h)‖1/2
p′/2 ,

where
T (h)(x) =

∑

k∈Z

∫

Jm,k

|σm,t ∗ hk(x, t)|2 dt

t
.
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Now, since p′ > 2, there exists a function q ∈ L(p′/2)′(Rn) such that

‖T (h)‖p′/2 =
∑

k∈Z

∫

Rn

∫

Jm,k

|hk(x, t) ∗ σm,t|2 dt

t
q(x)dx.

By the same argument as above, we have

‖T (h)‖p′/2 ≤
∫

Rn

M|h|2−γ ,mq(x)

(∑

k∈Z

∫

Jm,k

|hk(x, t)|2 dt

t

)
dx

≤
∥∥∥∥∥

(∑

k∈Z

∫

Jm,k

|hk(·, t)|2 dt

t

)∥∥∥∥∥
p′/2

∥∥∥M|h|2−γ ,mq
∥∥∥

(p′/2)′
.

By invoking Lemma 2.4 with ω = 1 we obtain
∥∥∥M|h|2−γ ,m(q)

∥∥∥
(p′/2)′

≤ Cp ‖q‖(p′/2)′ ≤ Cp.

Thus by our choice of hk(x, t) we have

‖T (h)‖p′/2 ≤ Cp

∥∥∥∥∥

(∑

k∈Z

∫

Jm,k

|hk(·, t)|2 dt

t

)∥∥∥∥∥
p′/2

≤ Cp

which in turn along with (3.16) leads to the conclusion that

(3.17) ‖Mj,m(f)‖p ≤ C (m + 1)1/2 ‖f‖p for
2γ

3γ − 2
< p < 2.

By combining (3.15) and (3.17) we get

(3.18) ‖Mj,m(f)‖p ≤ C (m + 1)1/2 ‖f‖p for p satisfying |1/p− 1/2| < 1/γ′.

Now by interpolation between (3.13) and (3.18) we get (3.12). This completes the
proof of (3.10) which in turn concludes the proof of Theorem 1.1.

Proof of (3.11). As above it is enough to show that

(3.19) ‖Mj,m(f)‖Lp(ω) ≤ C(m + 1)1/22−αp|j| ‖f‖Lp(ω)

if p and ω satisfy one of the conditions (a) and (b) of Theorem 1.2. The proof of
this inequality follows immediately once we prove the estimate

(3.20) ‖Mj,m(f)‖Lp(ω) ≤ C(m + 1)1/2 ‖f‖Lp(ω)

if p and ω satisfy one of the conditions (a) and (b) of Theorem 1.2. In fact, by
interpolating between (3.13) and (3.20) with ω = 1 we get

(3.21) ‖Mj,m(f)‖p ≤ Cp(m + 1)1/22−αp|j| ‖f‖p for γ′ < p < ∞.
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By Lemma 1.3, for any ω ∈ ÃI
p(R+), there is an ε > 0 such that ω1+ε ∈ ÃI

p(R+),
we get

(3.22) ‖Mj,m(f)‖Lp(ω1+ε) ≤ Cp(m + 1)1/2 ‖f‖Lp(ω1+ε)

if p and ω satisfy one of the conditions (a) and (b) of Theorem 1.2. By Lemma 1.3
and using Stein and Weiss’ interpolation theorem with change of measures [16], we
may interpolate between (3.21) and (3.22) to get (3.11) as asserted. So let us turn
to the proof of (3.20). ¤

The key step in the proof of (3.20) will rely on the following lemma.

Lemma 3.1. Let m ∈ N, h ∈ ∆
γ

(R+) for some γ ≥ 2 and ω ∈ Ãp/γ′(R+). Let
Ω

m
be a function on Sn−1 satisfying (2.1)-(2.2) and let Φ be in C2([0,∞)), convex,

and increasing function with Φ(0) = 0. Then, for arbitrary functions {gk(·)}k∈Z on
Rn, the following vector valued inequality holds

∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t

)1/2
∥∥∥∥∥∥

Lp(ω)

(3.23)

≤ Cp(m + 1)1/2

∥∥∥∥∥(
∑

k∈Z

|gk|2)1/2

∥∥∥∥∥
Lp(ω)

if p and ω satisfy one of the conditions (a)and (b) of Theorem 1.2, where Cp is a
positive constant which is independent of m.

Before presenting a proof of this lemma, let us prove (3.20) by applying Lemma
3.1. Let p be as in Lemma 3.1.

‖Mj,m(f)‖Lp(ω) =

∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗Ψk+j,m ∗ f |2 dt

t

)1/2
∥∥∥∥∥∥

Lp(ω)

(3.24)

≤ Cp(m + 1)1/2

∥∥∥∥∥
( ∑

k∈Z

|Ψk+j,m ∗ f |2
) 1

2

∥∥∥∥∥
Lp(ω)

≤ Cp(m + 1)1/2 ‖f‖Lp(ω) ,

where the first inequality follows by Lemma 3.1 and the last inequality follows from
a well-known weighted Littlewood-Paley inequality since ÃI

p/2(R+) ⊂ ÃI
p/γ′(R+) ⊂

Ãp/γ′(R+) ⊂ Ap(R+).

Proof of Lemma 3.1. To prove (3.23) we need to consider two cases. We shall use
frequently the arguments employed in the proof of (3.14).

Case 1: γ = 2, γ′ < p < ∞ and ω ∈ Ãp/2(R+). In this case 2 < p < ∞. By
duality, there is a function u(x) ∈ L(p/2)′(ω1−(p/2)′) satisfying ‖u‖L(p/2)′ (ω1−(p/2)′ ) ≤
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1 such that
∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(ω)

(3.25)

=
∫

Rn

∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk(x)|2 dt

t
u(x)dx.

By the same argument as in the proof of (3.14) we get
∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(ω)

≤ C(m + 1)
∫

Rn

∑

k∈Z

|gk(x)|2 M1,mu(x)dx.

By Hölder’s inequality
∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(ω)

(3.26)

≤ C(m + 1)

∥∥∥∥∥∥

(∑

k∈Z

|gk|2
)1/2

∥∥∥∥∥∥

2

Lp(ω)

‖M1,mu‖L(p/2)′ (ω1−(p/2)′ ) .

It is easy to verify that ω ∈ Ãp/2(R+) if and only if ω1−(p/2)′ ∈ Ã(p/2)′(R+). By
the same proof as that of Lemma 2.4 we get

‖M1,mu‖L(p/2)′ (ω1−(p/2)′ ) ≤ Cp ‖u‖L(p/2)′ (ω1−(p/2)′ ) ≤ 1

which when combined with (3.26) easily leads to (3.23) for γ = 2.
Case 2: γ > 2, γ′ < p < ∞ and ω is given as in Theorem 1.2. In this case we

need to consider two subcases.
Case 2(i): 2 < p < ∞. In this case ω ∈ Ãp/2(R+).
We argue as in the proof in Case 1. By duality, there is a function u(x) ∈

L(p/2)′(ω1−(p/2)′) satisfying ‖u‖L(p/2)′ (ω1−(p/2)′ ) ≤ 1 such that
∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(ω)

(3.27)

=
∫

Rn

∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk(x)|2 dt

t
u(x)dx.

By Schwarz’s inequality and (2.2) we have

|σm,t ∗ gk(x)|2 ≤ C

(
1
t

∫ t

1
2 t

|h(r)|2 dr

)(
1
t

∫ t

1
2 t

∫

Sn−1
|g(x + Φ(r)y)|2 |Ωm(y)| dσ(y)dr

)
.
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Since γ > 2, by Hölder’s inequality we have
(

1
t

∫ t

1
2 t

|h(r)|2 dr

)
≤ C

(
1
t

∫ t

1
2 t

|h(r)|γ dr

)2/γ

≤ C.

Thus, we have
∥∥∥∥∥∥

(∑

k∈Z

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t

)1/2
∥∥∥∥∥∥

2

Lp(ω)

(3.28)

≤ C(m + 1)

∥∥∥∥∥∥

(∑

k∈Z

|gk|2
)1/2

∥∥∥∥∥∥

2

Lp(ω)

‖M1,mu‖L(p/2)′ (ω1−(p/2)′ ) .

Reasoning as above we get (3.23) for the case γ > 2 and 2 < p < ∞.
Case 2(ii): γ′ < p ≤ 2. In this case Ãp/γ′(R+).
Let us first consider the case γ′ < p < 2. Since

∫ ak+1
m

ak
m

|σm,t ∗ gk|2 dt

t
≤ C(m + 1) |σ∗m(|gk|)|2 ,

we notice that to prove (3.23) for γ′ < p < 2 and ω ∈ Ãp/γ′(R+) it suffices to show
that

(3.29)

∥∥∥∥∥∥

(∑

k∈Z

|σ∗m(|gk|)|2
)1/2

∥∥∥∥∥∥
Lp(ω)

≤ Cp

∥∥∥∥∥∥

(∑

k∈Z

|gk|2
)1/2

∥∥∥∥∥∥
Lp(ω)

for γ′ < p < 2 and ω ∈ Ãp/γ′(R+). The proof of this inequality is easy. In fact,
since σ∗m is a positive operator, supk∈Z |σ∗m(|gk|)| ≤ |σ∗m(supk∈Z |gk|)| and since σ∗m
is bounded on Lp(ω) for ω ∈ Ãp/γ′(R+) (by Lemma 2.4), we get

(3.30)
∥∥∥∥sup

k∈Z
|σ∗m(|gk|)|

∥∥∥∥
Lp(ω)

≤
∥∥∥∥
∣∣∣∣sup
k∈Z

|gk|
∣∣∣∣
∥∥∥∥

Lp(ω)

.

Moreover, the boundedness of σ∗m on Lp(ω) for ω ∈ Ãp/γ′(R+) implies that
∥∥∥∥∥∥

(∑

k∈Z

|σ∗m |gk|)|p
)1/p

∥∥∥∥∥∥
Lp(ω)

=

(∑

k∈Z

‖σ∗m(|gk|)‖p
Lp(ω)

)1/p

(3.31)

≤ Cp

(∑

k∈Z

‖gk‖p
Lp(ω)

)1/p

= Cp

∥∥∥∥∥∥

(∑

k∈Z

|gk|p
)1/p

∥∥∥∥∥∥
Lp(ω)

.
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Since p < 2, (3.23) easily follows by (3.30), (3.31) and the Riesz-Thorin interpolation
theorem ([9, page 481]).

Now it remains to verify (3.23) for p = 2 and γ > 2. However, the proof of this
inequality follows by (3.31). This concludes the proof of (3.23) for Case 2 and hence
the proof of Lemma 3.1 is complete. ¤

Proof of Theorem 1.3. A proof of Theorem 1.3 can be obtained by Theorem 1.2
and following a similar argument as in [11]. We omit the details. ¤

We end this section with the following result concerning power weights |x|α .
One of the important special classes of radial weights is the power weights |x|α,

α ∈ R. It is know that |x|α ∈ Ap(Rn) if and only if −n < α < n(p− 1).
Our result regarding this class of weights is the following:

Theorem 3.2. Let h ∈ ∆γ (R+) with γ ≥ 2. Let Φ be in C2([0,∞)), convex, and
increasing function with Φ(0) = 0.If Ω ∈ L(log L)1/2(Sn−1), then

‖MΩ,Φ,h(f)‖Lp(|x|α) ≤ Cp ‖f‖Lp(|x|α)

if p and α satisfy one of the following conditions:

(a) 2 < p < ∞ and α ∈ (−1, p/2− 1);

(b) γ′ < p ≤ 2 and α ∈ (−1, p/γ′ − 1).

A proof of this theorem can be obtained by Theorems 1.2 and noticing that
|x|α ∈ ÃI

p(R+) for α ∈ (−1, p− 1).
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