DOI QR코드

DOI QR Code

Real Hypersurfaces in Complex Two-plane Grassmannians with F-parallel Normal Jacobi Operator

  • Jeong, Im-Soon (Kyungpook National University, Department of Mathematics) ;
  • Suh, Young-Jin (Kyungpook National University, Department of Mathematics)
  • Received : 2011.02.01
  • Accepted : 2011.09.14
  • Published : 2011.11.23

Abstract

In this paper we give a non-existence theorem for Hopf hypersurfaces M in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator $\bar{R}_N$ is parallel on the distribution F defined by $F=[{\xi}]{\cup}D^{\bot}$, where [${\xi}$] = Span{${\xi}$}, $D^{\bot}$ = Span {${\xi}_1$, ${\xi}_2$, ${\xi}_3$} and $T_xM=D{\oplus}D^{\bot}$, $x{\in}M$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. D. V. Alekseevskii, Compact quaternion spaces, Func. Anal. Appl., 2(1968), 106-114. https://doi.org/10.1007/BF01075944
  2. J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math., 419(1991), 9-26.
  3. J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatshefte fur Math., 127(1999), 1-14. https://doi.org/10.1007/s006050050018
  4. J. Berndt and Y. J. Suh, Isometric ows on real hypersurfaces in complex two-plane Grassmannians, Monatshefte fur Math., 137(2002), 87-98. https://doi.org/10.1007/s00605-001-0494-4
  5. I. Jeong, J. D. Perez and Y. J. Suh Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator, Acta Math. Hungarica, 117(2007), 201-217. https://doi.org/10.1007/s10474-007-6091-9
  6. I. Jeong and Y. J. Suh Real hypersurfaces in complex two-plane Grassmannians with Lie $\xi$-parallel normal Jacobi operator, J. of Korean Math. Soc., 45(2008), 1113-1133. https://doi.org/10.4134/JKMS.2008.45.4.1113
  7. I. Jeong, H. J. Kim and Y. J. Suh Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, Publ. Math. Debrecen, 76(2010), 203-218.
  8. U-H. Ki, J. D. Perez, F. G. Santos and Y. J. Suh Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator, J. of Korean Math. Soc., 44(2007), 307-326. https://doi.org/10.4134/JKMS.2007.44.2.307
  9. U-H. Ki and Y. J. Suh, Real hypersurfaces in complex hyperbolic space with commuting Ricci tensor, Kyungpook Math. J., 48(2008), 433-442. https://doi.org/10.5666/KMJ.2008.48.3.433
  10. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
  11. J. D. Perez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying ${\nabla}_U_{\iota}R$= 0, Diff. Geom. and Its Appl., 7(1997), 211-217. https://doi.org/10.1016/S0926-2245(97)00003-X
  12. J. D. Perez and Y. J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. of Korean Math. Soc., 44(2007), 211-235. https://doi.org/10.4134/JKMS.2007.44.1.211
  13. J. D. Perez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\xi$-parallel, Diff. Geom. and Its Appl., 22(2005), 181-188. https://doi.org/10.1016/j.difgeo.2004.10.005
  14. Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. of Austral. Math. Soc., 67(2003), 493-502. https://doi.org/10.1017/S000497270003728X
  15. Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II, J. of Korean Math. Soc., 41(2004), 535-565. https://doi.org/10.4134/JKMS.2004.41.3.535
  16. Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with vanishing Lie derivatives, Canadian Math. Bull., 49(2006), 134-143. https://doi.org/10.4153/CMB-2006-014-8
  17. Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatshefte fur Math., 147(2006), 337-355. https://doi.org/10.1007/s00605-005-0329-9

Cited by

  1. Characterizations for Real Hypersurfaces in Complex and Quaternionic Space Forms Related to the Normal Jacobi Operator vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.993
  2. Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator vol.65, pp.1, 2015, https://doi.org/10.1007/s10587-015-0169-2
  3. Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians vol.65, pp.2, 2015, https://doi.org/10.1007/s10587-015-0196-z
  4. Semi-parallelism of normal Jacobi operator for Hopf hypersurfaces in complex two-plane Grassmannians vol.172, pp.2, 2013, https://doi.org/10.1007/s00605-013-0553-7
  5. Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians vol.31, pp.1, 2015, https://doi.org/10.1007/s10114-015-1765-7